diff --git a/core/src/num/f32.rs b/core/src/num/f32.rs index 9d34d3da9e955..271965c28840a 100644 --- a/core/src/num/f32.rs +++ b/core/src/num/f32.rs @@ -490,6 +490,21 @@ impl f32 { #[stable(feature = "assoc_int_consts", since = "1.43.0")] pub const NEG_INFINITY: f32 = -1.0_f32 / 0.0_f32; + /// Sign bit + const SIGN_MASK: u32 = 0x8000_0000; + + /// Exponent mask + const EXP_MASK: u32 = 0x7f80_0000; + + /// Mantissa mask + const MAN_MASK: u32 = 0x007f_ffff; + + /// Minimum representable positive value (min subnormal) + const TINY_BITS: u32 = 0x1; + + /// Minimum representable negative value (min negative subnormal) + const NEG_TINY_BITS: u32 = Self::TINY_BITS | Self::SIGN_MASK; + /// Returns `true` if this value is NaN. /// /// ``` @@ -515,7 +530,7 @@ impl f32 { #[rustc_const_unstable(feature = "const_float_classify", issue = "72505")] pub(crate) const fn abs_private(self) -> f32 { // SAFETY: This transmutation is fine. Probably. For the reasons std is using it. - unsafe { mem::transmute::(mem::transmute::(self) & 0x7fff_ffff) } + unsafe { mem::transmute::(mem::transmute::(self) & !Self::SIGN_MASK) } } /// Returns `true` if this value is positive infinity or negative infinity, and @@ -682,12 +697,9 @@ impl f32 { // runtime-deviating logic which may or may not be acceptable. #[rustc_const_unstable(feature = "const_float_classify", issue = "72505")] const unsafe fn partial_classify(self) -> FpCategory { - const EXP_MASK: u32 = 0x7f800000; - const MAN_MASK: u32 = 0x007fffff; - // SAFETY: The caller is not asking questions for which this will tell lies. let b = unsafe { mem::transmute::(self) }; - match (b & MAN_MASK, b & EXP_MASK) { + match (b & Self::MAN_MASK, b & Self::EXP_MASK) { (0, 0) => FpCategory::Zero, (_, 0) => FpCategory::Subnormal, _ => FpCategory::Normal, @@ -699,12 +711,9 @@ impl f32 { // plus a transmute. We do not live in a just world, but we can make it more so. #[rustc_const_unstable(feature = "const_float_classify", issue = "72505")] const fn classify_bits(b: u32) -> FpCategory { - const EXP_MASK: u32 = 0x7f800000; - const MAN_MASK: u32 = 0x007fffff; - - match (b & MAN_MASK, b & EXP_MASK) { - (0, EXP_MASK) => FpCategory::Infinite, - (_, EXP_MASK) => FpCategory::Nan, + match (b & Self::MAN_MASK, b & Self::EXP_MASK) { + (0, Self::EXP_MASK) => FpCategory::Infinite, + (_, Self::EXP_MASK) => FpCategory::Nan, (0, 0) => FpCategory::Zero, (_, 0) => FpCategory::Subnormal, _ => FpCategory::Normal, @@ -789,17 +798,14 @@ impl f32 { pub const fn next_up(self) -> Self { // We must use strictly integer arithmetic to prevent denormals from // flushing to zero after an arithmetic operation on some platforms. - const TINY_BITS: u32 = 0x1; // Smallest positive f32. - const CLEAR_SIGN_MASK: u32 = 0x7fff_ffff; - let bits = self.to_bits(); if self.is_nan() || bits == Self::INFINITY.to_bits() { return self; } - let abs = bits & CLEAR_SIGN_MASK; + let abs = bits & !Self::SIGN_MASK; let next_bits = if abs == 0 { - TINY_BITS + Self::TINY_BITS } else if bits == abs { bits + 1 } else { @@ -839,17 +845,14 @@ impl f32 { pub const fn next_down(self) -> Self { // We must use strictly integer arithmetic to prevent denormals from // flushing to zero after an arithmetic operation on some platforms. - const NEG_TINY_BITS: u32 = 0x8000_0001; // Smallest (in magnitude) negative f32. - const CLEAR_SIGN_MASK: u32 = 0x7fff_ffff; - let bits = self.to_bits(); if self.is_nan() || bits == Self::NEG_INFINITY.to_bits() { return self; } - let abs = bits & CLEAR_SIGN_MASK; + let abs = bits & !Self::SIGN_MASK; let next_bits = if abs == 0 { - NEG_TINY_BITS + Self::NEG_TINY_BITS } else if bits == abs { bits - 1 } else { diff --git a/core/src/num/f64.rs b/core/src/num/f64.rs index 95f021b2541ab..bccd39f605941 100644 --- a/core/src/num/f64.rs +++ b/core/src/num/f64.rs @@ -489,6 +489,21 @@ impl f64 { #[stable(feature = "assoc_int_consts", since = "1.43.0")] pub const NEG_INFINITY: f64 = -1.0_f64 / 0.0_f64; + /// Sign bit + const SIGN_MASK: u64 = 0x8000_0000_0000_0000; + + /// Exponent mask + const EXP_MASK: u64 = 0x7ff0_0000_0000_0000; + + /// Mantissa mask + const MAN_MASK: u64 = 0x000f_ffff_ffff_ffff; + + /// Minimum representable positive value (min subnormal) + const TINY_BITS: u64 = 0x1; + + /// Minimum representable negative value (min negative subnormal) + const NEG_TINY_BITS: u64 = Self::TINY_BITS | Self::SIGN_MASK; + /// Returns `true` if this value is NaN. /// /// ``` @@ -514,9 +529,7 @@ impl f64 { #[rustc_const_unstable(feature = "const_float_classify", issue = "72505")] pub(crate) const fn abs_private(self) -> f64 { // SAFETY: This transmutation is fine. Probably. For the reasons std is using it. - unsafe { - mem::transmute::(mem::transmute::(self) & 0x7fff_ffff_ffff_ffff) - } + unsafe { mem::transmute::(mem::transmute::(self) & !Self::SIGN_MASK) } } /// Returns `true` if this value is positive infinity or negative infinity, and @@ -673,13 +686,10 @@ impl f64 { // and some normal floating point numbers truncated from an x87 FPU. #[rustc_const_unstable(feature = "const_float_classify", issue = "72505")] const unsafe fn partial_classify(self) -> FpCategory { - const EXP_MASK: u64 = 0x7ff0000000000000; - const MAN_MASK: u64 = 0x000fffffffffffff; - // SAFETY: The caller is not asking questions for which this will tell lies. let b = unsafe { mem::transmute::(self) }; - match (b & MAN_MASK, b & EXP_MASK) { - (0, EXP_MASK) => FpCategory::Infinite, + match (b & Self::MAN_MASK, b & Self::EXP_MASK) { + (0, Self::EXP_MASK) => FpCategory::Infinite, (0, 0) => FpCategory::Zero, (_, 0) => FpCategory::Subnormal, _ => FpCategory::Normal, @@ -691,12 +701,9 @@ impl f64 { // plus a transmute. We do not live in a just world, but we can make it more so. #[rustc_const_unstable(feature = "const_float_classify", issue = "72505")] const fn classify_bits(b: u64) -> FpCategory { - const EXP_MASK: u64 = 0x7ff0000000000000; - const MAN_MASK: u64 = 0x000fffffffffffff; - - match (b & MAN_MASK, b & EXP_MASK) { - (0, EXP_MASK) => FpCategory::Infinite, - (_, EXP_MASK) => FpCategory::Nan, + match (b & Self::MAN_MASK, b & Self::EXP_MASK) { + (0, Self::EXP_MASK) => FpCategory::Infinite, + (_, Self::EXP_MASK) => FpCategory::Nan, (0, 0) => FpCategory::Zero, (_, 0) => FpCategory::Subnormal, _ => FpCategory::Normal, @@ -756,7 +763,7 @@ impl f64 { // IEEE754 says: isSignMinus(x) is true if and only if x has negative sign. isSignMinus // applies to zeros and NaNs as well. // SAFETY: This is just transmuting to get the sign bit, it's fine. - unsafe { mem::transmute::(self) & 0x8000_0000_0000_0000 != 0 } + unsafe { mem::transmute::(self) & Self::SIGN_MASK != 0 } } #[must_use] @@ -799,17 +806,14 @@ impl f64 { pub const fn next_up(self) -> Self { // We must use strictly integer arithmetic to prevent denormals from // flushing to zero after an arithmetic operation on some platforms. - const TINY_BITS: u64 = 0x1; // Smallest positive f64. - const CLEAR_SIGN_MASK: u64 = 0x7fff_ffff_ffff_ffff; - let bits = self.to_bits(); if self.is_nan() || bits == Self::INFINITY.to_bits() { return self; } - let abs = bits & CLEAR_SIGN_MASK; + let abs = bits & !Self::SIGN_MASK; let next_bits = if abs == 0 { - TINY_BITS + Self::TINY_BITS } else if bits == abs { bits + 1 } else { @@ -849,17 +853,14 @@ impl f64 { pub const fn next_down(self) -> Self { // We must use strictly integer arithmetic to prevent denormals from // flushing to zero after an arithmetic operation on some platforms. - const NEG_TINY_BITS: u64 = 0x8000_0000_0000_0001; // Smallest (in magnitude) negative f64. - const CLEAR_SIGN_MASK: u64 = 0x7fff_ffff_ffff_ffff; - let bits = self.to_bits(); if self.is_nan() || bits == Self::NEG_INFINITY.to_bits() { return self; } - let abs = bits & CLEAR_SIGN_MASK; + let abs = bits & !Self::SIGN_MASK; let next_bits = if abs == 0 { - NEG_TINY_BITS + Self::NEG_TINY_BITS } else if bits == abs { bits - 1 } else { diff --git a/std/src/f32/tests.rs b/std/src/f32/tests.rs index 9ca4e8f2f45fe..63e65698374c8 100644 --- a/std/src/f32/tests.rs +++ b/std/src/f32/tests.rs @@ -2,6 +2,45 @@ use crate::f32::consts; use crate::num::FpCategory as Fp; use crate::num::*; +/// Smallest number +#[allow(dead_code)] // unused on x86 +const TINY_BITS: u32 = 0x1; + +/// Next smallest number +#[allow(dead_code)] // unused on x86 +const TINY_UP_BITS: u32 = 0x2; + +/// Exponent = 0b11...10, Sifnificand 0b1111..10. Min val > 0 +#[allow(dead_code)] // unused on x86 +const MAX_DOWN_BITS: u32 = 0x7f7f_fffe; + +/// Zeroed exponent, full significant +#[allow(dead_code)] // unused on x86 +const LARGEST_SUBNORMAL_BITS: u32 = 0x007f_ffff; + +/// Exponent = 0b1, zeroed significand +#[allow(dead_code)] // unused on x86 +const SMALLEST_NORMAL_BITS: u32 = 0x0080_0000; + +/// First pattern over the mantissa +#[allow(dead_code)] // unused on x86 +const NAN_MASK1: u32 = 0x002a_aaaa; + +/// Second pattern over the mantissa +#[allow(dead_code)] // unused on x86 +const NAN_MASK2: u32 = 0x0055_5555; + +#[allow(unused_macros)] +macro_rules! assert_f32_biteq { + ($left : expr, $right : expr) => { + let l: &f32 = &$left; + let r: &f32 = &$right; + let lb = l.to_bits(); + let rb = r.to_bits(); + assert_eq!(lb, rb, "float {l} ({lb:#010x}) is not bitequal to {r} ({rb:#010x})"); + }; +} + #[test] fn test_num_f32() { test_num(10f32, 2f32); @@ -315,27 +354,16 @@ fn test_is_sign_negative() { assert!((-f32::NAN).is_sign_negative()); } -#[allow(unused_macros)] -macro_rules! assert_f32_biteq { - ($left : expr, $right : expr) => { - let l: &f32 = &$left; - let r: &f32 = &$right; - let lb = l.to_bits(); - let rb = r.to_bits(); - assert_eq!(lb, rb, "float {} ({:#x}) is not equal to {} ({:#x})", *l, lb, *r, rb); - }; -} - // Ignore test on x87 floating point, these platforms do not guarantee NaN // payloads are preserved and flush denormals to zero, failing the tests. #[cfg(not(target_arch = "x86"))] #[test] fn test_next_up() { - let tiny = f32::from_bits(1); - let tiny_up = f32::from_bits(2); - let max_down = f32::from_bits(0x7f7f_fffe); - let largest_subnormal = f32::from_bits(0x007f_ffff); - let smallest_normal = f32::from_bits(0x0080_0000); + let tiny = f32::from_bits(TINY_BITS); + let tiny_up = f32::from_bits(TINY_UP_BITS); + let max_down = f32::from_bits(MAX_DOWN_BITS); + let largest_subnormal = f32::from_bits(LARGEST_SUBNORMAL_BITS); + let smallest_normal = f32::from_bits(SMALLEST_NORMAL_BITS); assert_f32_biteq!(f32::NEG_INFINITY.next_up(), f32::MIN); assert_f32_biteq!(f32::MIN.next_up(), -max_down); assert_f32_biteq!((-1.0 - f32::EPSILON).next_up(), -1.0); @@ -352,8 +380,8 @@ fn test_next_up() { // Check that NaNs roundtrip. let nan0 = f32::NAN; - let nan1 = f32::from_bits(f32::NAN.to_bits() ^ 0x002a_aaaa); - let nan2 = f32::from_bits(f32::NAN.to_bits() ^ 0x0055_5555); + let nan1 = f32::from_bits(f32::NAN.to_bits() ^ NAN_MASK1); + let nan2 = f32::from_bits(f32::NAN.to_bits() ^ NAN_MASK2); assert_f32_biteq!(nan0.next_up(), nan0); assert_f32_biteq!(nan1.next_up(), nan1); assert_f32_biteq!(nan2.next_up(), nan2); @@ -364,11 +392,11 @@ fn test_next_up() { #[cfg(not(target_arch = "x86"))] #[test] fn test_next_down() { - let tiny = f32::from_bits(1); - let tiny_up = f32::from_bits(2); - let max_down = f32::from_bits(0x7f7f_fffe); - let largest_subnormal = f32::from_bits(0x007f_ffff); - let smallest_normal = f32::from_bits(0x0080_0000); + let tiny = f32::from_bits(TINY_BITS); + let tiny_up = f32::from_bits(TINY_UP_BITS); + let max_down = f32::from_bits(MAX_DOWN_BITS); + let largest_subnormal = f32::from_bits(LARGEST_SUBNORMAL_BITS); + let smallest_normal = f32::from_bits(SMALLEST_NORMAL_BITS); assert_f32_biteq!(f32::NEG_INFINITY.next_down(), f32::NEG_INFINITY); assert_f32_biteq!(f32::MIN.next_down(), f32::NEG_INFINITY); assert_f32_biteq!((-max_down).next_down(), f32::MIN); @@ -386,8 +414,8 @@ fn test_next_down() { // Check that NaNs roundtrip. let nan0 = f32::NAN; - let nan1 = f32::from_bits(f32::NAN.to_bits() ^ 0x002a_aaaa); - let nan2 = f32::from_bits(f32::NAN.to_bits() ^ 0x0055_5555); + let nan1 = f32::from_bits(f32::NAN.to_bits() ^ NAN_MASK1); + let nan2 = f32::from_bits(f32::NAN.to_bits() ^ NAN_MASK2); assert_f32_biteq!(nan0.next_down(), nan0); assert_f32_biteq!(nan1.next_down(), nan1); assert_f32_biteq!(nan2.next_down(), nan2); @@ -734,8 +762,8 @@ fn test_float_bits_conv() { // Check that NaNs roundtrip their bits regardless of signaling-ness // 0xA is 0b1010; 0x5 is 0b0101 -- so these two together clobbers all the mantissa bits - let masked_nan1 = f32::NAN.to_bits() ^ 0x002A_AAAA; - let masked_nan2 = f32::NAN.to_bits() ^ 0x0055_5555; + let masked_nan1 = f32::NAN.to_bits() ^ NAN_MASK1; + let masked_nan2 = f32::NAN.to_bits() ^ NAN_MASK2; assert!(f32::from_bits(masked_nan1).is_nan()); assert!(f32::from_bits(masked_nan2).is_nan()); diff --git a/std/src/f64/tests.rs b/std/src/f64/tests.rs index f88d01593b5e4..d9e17fd601d2d 100644 --- a/std/src/f64/tests.rs +++ b/std/src/f64/tests.rs @@ -2,6 +2,45 @@ use crate::f64::consts; use crate::num::FpCategory as Fp; use crate::num::*; +/// Smallest number +#[allow(dead_code)] // unused on x86 +const TINY_BITS: u64 = 0x1; + +/// Next smallest number +#[allow(dead_code)] // unused on x86 +const TINY_UP_BITS: u64 = 0x2; + +/// Exponent = 0b11...10, Sifnificand 0b1111..10. Min val > 0 +#[allow(dead_code)] // unused on x86 +const MAX_DOWN_BITS: u64 = 0x7fef_ffff_ffff_fffe; + +/// Zeroed exponent, full significant +#[allow(dead_code)] // unused on x86 +const LARGEST_SUBNORMAL_BITS: u64 = 0x000f_ffff_ffff_ffff; + +/// Exponent = 0b1, zeroed significand +#[allow(dead_code)] // unused on x86 +const SMALLEST_NORMAL_BITS: u64 = 0x0010_0000_0000_0000; + +/// First pattern over the mantissa +#[allow(dead_code)] // unused on x86 +const NAN_MASK1: u64 = 0x000a_aaaa_aaaa_aaaa; + +/// Second pattern over the mantissa +#[allow(dead_code)] // unused on x86 +const NAN_MASK2: u64 = 0x0005_5555_5555_5555; + +#[allow(unused_macros)] +macro_rules! assert_f64_biteq { + ($left : expr, $right : expr) => { + let l: &f64 = &$left; + let r: &f64 = &$right; + let lb = l.to_bits(); + let rb = r.to_bits(); + assert_eq!(lb, rb, "float {l} ({lb:#018x}) is not bitequal to {r} ({rb:#018x})"); + }; +} + #[test] fn test_num_f64() { test_num(10f64, 2f64); @@ -305,27 +344,16 @@ fn test_is_sign_negative() { assert!((-f64::NAN).is_sign_negative()); } -#[allow(unused_macros)] -macro_rules! assert_f64_biteq { - ($left : expr, $right : expr) => { - let l: &f64 = &$left; - let r: &f64 = &$right; - let lb = l.to_bits(); - let rb = r.to_bits(); - assert_eq!(lb, rb, "float {} ({:#x}) is not equal to {} ({:#x})", *l, lb, *r, rb); - }; -} - // Ignore test on x87 floating point, these platforms do not guarantee NaN // payloads are preserved and flush denormals to zero, failing the tests. #[cfg(not(target_arch = "x86"))] #[test] fn test_next_up() { - let tiny = f64::from_bits(1); - let tiny_up = f64::from_bits(2); - let max_down = f64::from_bits(0x7fef_ffff_ffff_fffe); - let largest_subnormal = f64::from_bits(0x000f_ffff_ffff_ffff); - let smallest_normal = f64::from_bits(0x0010_0000_0000_0000); + let tiny = f64::from_bits(TINY_BITS); + let tiny_up = f64::from_bits(TINY_UP_BITS); + let max_down = f64::from_bits(MAX_DOWN_BITS); + let largest_subnormal = f64::from_bits(LARGEST_SUBNORMAL_BITS); + let smallest_normal = f64::from_bits(SMALLEST_NORMAL_BITS); assert_f64_biteq!(f64::NEG_INFINITY.next_up(), f64::MIN); assert_f64_biteq!(f64::MIN.next_up(), -max_down); assert_f64_biteq!((-1.0 - f64::EPSILON).next_up(), -1.0); @@ -341,8 +369,8 @@ fn test_next_up() { assert_f64_biteq!(f64::INFINITY.next_up(), f64::INFINITY); let nan0 = f64::NAN; - let nan1 = f64::from_bits(f64::NAN.to_bits() ^ 0x000a_aaaa_aaaa_aaaa); - let nan2 = f64::from_bits(f64::NAN.to_bits() ^ 0x0005_5555_5555_5555); + let nan1 = f64::from_bits(f64::NAN.to_bits() ^ NAN_MASK1); + let nan2 = f64::from_bits(f64::NAN.to_bits() ^ NAN_MASK2); assert_f64_biteq!(nan0.next_up(), nan0); assert_f64_biteq!(nan1.next_up(), nan1); assert_f64_biteq!(nan2.next_up(), nan2); @@ -353,11 +381,11 @@ fn test_next_up() { #[cfg(not(target_arch = "x86"))] #[test] fn test_next_down() { - let tiny = f64::from_bits(1); - let tiny_up = f64::from_bits(2); - let max_down = f64::from_bits(0x7fef_ffff_ffff_fffe); - let largest_subnormal = f64::from_bits(0x000f_ffff_ffff_ffff); - let smallest_normal = f64::from_bits(0x0010_0000_0000_0000); + let tiny = f64::from_bits(TINY_BITS); + let tiny_up = f64::from_bits(TINY_UP_BITS); + let max_down = f64::from_bits(MAX_DOWN_BITS); + let largest_subnormal = f64::from_bits(LARGEST_SUBNORMAL_BITS); + let smallest_normal = f64::from_bits(SMALLEST_NORMAL_BITS); assert_f64_biteq!(f64::NEG_INFINITY.next_down(), f64::NEG_INFINITY); assert_f64_biteq!(f64::MIN.next_down(), f64::NEG_INFINITY); assert_f64_biteq!((-max_down).next_down(), f64::MIN); @@ -374,8 +402,8 @@ fn test_next_down() { assert_f64_biteq!(f64::INFINITY.next_down(), f64::MAX); let nan0 = f64::NAN; - let nan1 = f64::from_bits(f64::NAN.to_bits() ^ 0x000a_aaaa_aaaa_aaaa); - let nan2 = f64::from_bits(f64::NAN.to_bits() ^ 0x0005_5555_5555_5555); + let nan1 = f64::from_bits(f64::NAN.to_bits() ^ NAN_MASK1); + let nan2 = f64::from_bits(f64::NAN.to_bits() ^ NAN_MASK2); assert_f64_biteq!(nan0.next_down(), nan0); assert_f64_biteq!(nan1.next_down(), nan1); assert_f64_biteq!(nan2.next_down(), nan2); @@ -715,9 +743,8 @@ fn test_float_bits_conv() { assert_approx_eq!(f64::from_bits(0xc02c800000000000), -14.25); // Check that NaNs roundtrip their bits regardless of signaling-ness - // 0xA is 0b1010; 0x5 is 0b0101 -- so these two together clobbers all the mantissa bits - let masked_nan1 = f64::NAN.to_bits() ^ 0x000A_AAAA_AAAA_AAAA; - let masked_nan2 = f64::NAN.to_bits() ^ 0x0005_5555_5555_5555; + let masked_nan1 = f64::NAN.to_bits() ^ NAN_MASK1; + let masked_nan2 = f64::NAN.to_bits() ^ NAN_MASK2; assert!(f64::from_bits(masked_nan1).is_nan()); assert!(f64::from_bits(masked_nan2).is_nan());