-
Notifications
You must be signed in to change notification settings - Fork 12
/
kvm-all.c
2062 lines (1727 loc) · 52.6 KB
/
kvm-all.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* QEMU KVM support
*
* Copyright IBM, Corp. 2008
* Red Hat, Inc. 2008
*
* Authors:
* Anthony Liguori <[email protected]>
* Glauber Costa <[email protected]>
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*
*/
#include <sys/types.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <stdarg.h>
#include <linux/kvm.h>
#include "qemu-common.h"
#include "qemu/atomic.h"
#include "qemu/option.h"
#include "qemu/config-file.h"
#include "sysemu/sysemu.h"
#include "hw/hw.h"
#include "hw/pci/msi.h"
#include "exec/gdbstub.h"
#include "sysemu/kvm.h"
#include "qemu/bswap.h"
#include "exec/memory.h"
#include "exec/address-spaces.h"
#include "qemu/event_notifier.h"
#include "trace.h"
/* This check must be after config-host.h is included */
#ifdef CONFIG_EVENTFD
#include <sys/eventfd.h>
#endif
#ifdef CONFIG_VALGRIND_H
#include <valgrind/memcheck.h>
#endif
/* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
#define PAGE_SIZE TARGET_PAGE_SIZE
//#define DEBUG_KVM
#ifdef DEBUG_KVM
#define DPRINTF(fmt, ...) \
do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
#else
#define DPRINTF(fmt, ...) \
do { } while (0)
#endif
#define KVM_MSI_HASHTAB_SIZE 256
typedef struct KVMSlot
{
hwaddr start_addr;
ram_addr_t memory_size;
void *ram;
int slot;
int flags;
} KVMSlot;
typedef struct kvm_dirty_log KVMDirtyLog;
struct KVMState
{
KVMSlot slots[32];
int fd;
int vmfd;
int coalesced_mmio;
struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
bool coalesced_flush_in_progress;
int broken_set_mem_region;
int migration_log;
int vcpu_events;
int robust_singlestep;
int debugregs;
#ifdef KVM_CAP_SET_GUEST_DEBUG
struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
#endif
int pit_state2;
int xsave, xcrs;
int many_ioeventfds;
int intx_set_mask;
/* The man page (and posix) say ioctl numbers are signed int, but
* they're not. Linux, glibc and *BSD all treat ioctl numbers as
* unsigned, and treating them as signed here can break things */
unsigned irq_set_ioctl;
#ifdef KVM_CAP_IRQ_ROUTING
struct kvm_irq_routing *irq_routes;
int nr_allocated_irq_routes;
uint32_t *used_gsi_bitmap;
unsigned int gsi_count;
QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
bool direct_msi;
#endif
};
KVMState *kvm_state;
bool kvm_kernel_irqchip;
bool kvm_async_interrupts_allowed;
bool kvm_halt_in_kernel_allowed;
bool kvm_irqfds_allowed;
bool kvm_msi_via_irqfd_allowed;
bool kvm_gsi_routing_allowed;
bool kvm_gsi_direct_mapping;
bool kvm_allowed;
bool kvm_readonly_mem_allowed;
static const KVMCapabilityInfo kvm_required_capabilites[] = {
KVM_CAP_INFO(USER_MEMORY),
KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
KVM_CAP_LAST_INFO
};
static KVMSlot *kvm_alloc_slot(KVMState *s)
{
int i;
for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
if (s->slots[i].memory_size == 0) {
return &s->slots[i];
}
}
fprintf(stderr, "%s: no free slot available\n", __func__);
abort();
}
static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
hwaddr start_addr,
hwaddr end_addr)
{
int i;
for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
KVMSlot *mem = &s->slots[i];
if (start_addr == mem->start_addr &&
end_addr == mem->start_addr + mem->memory_size) {
return mem;
}
}
return NULL;
}
/*
* Find overlapping slot with lowest start address
*/
static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
hwaddr start_addr,
hwaddr end_addr)
{
KVMSlot *found = NULL;
int i;
for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
KVMSlot *mem = &s->slots[i];
if (mem->memory_size == 0 ||
(found && found->start_addr < mem->start_addr)) {
continue;
}
if (end_addr > mem->start_addr &&
start_addr < mem->start_addr + mem->memory_size) {
found = mem;
}
}
return found;
}
int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
hwaddr *phys_addr)
{
int i;
for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
KVMSlot *mem = &s->slots[i];
if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
*phys_addr = mem->start_addr + (ram - mem->ram);
return 1;
}
}
return 0;
}
static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
{
struct kvm_userspace_memory_region mem;
mem.slot = slot->slot;
mem.guest_phys_addr = slot->start_addr;
mem.userspace_addr = (unsigned long)slot->ram;
mem.flags = slot->flags;
if (s->migration_log) {
mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
}
if (slot->memory_size && mem.flags & KVM_MEM_READONLY) {
/* Set the slot size to 0 before setting the slot to the desired
* value. This is needed based on KVM commit 75d61fbc. */
mem.memory_size = 0;
kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
}
mem.memory_size = slot->memory_size;
return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
}
static void kvm_reset_vcpu(void *opaque)
{
CPUState *cpu = opaque;
kvm_arch_reset_vcpu(cpu);
}
int kvm_init_vcpu(CPUState *cpu)
{
KVMState *s = kvm_state;
long mmap_size;
int ret;
DPRINTF("kvm_init_vcpu\n");
ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)kvm_arch_vcpu_id(cpu));
if (ret < 0) {
DPRINTF("kvm_create_vcpu failed\n");
goto err;
}
cpu->kvm_fd = ret;
cpu->kvm_state = s;
cpu->kvm_vcpu_dirty = true;
mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
if (mmap_size < 0) {
ret = mmap_size;
DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
goto err;
}
cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
cpu->kvm_fd, 0);
if (cpu->kvm_run == MAP_FAILED) {
ret = -errno;
DPRINTF("mmap'ing vcpu state failed\n");
goto err;
}
if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
s->coalesced_mmio_ring =
(void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
}
ret = kvm_arch_init_vcpu(cpu);
if (ret == 0) {
qemu_register_reset(kvm_reset_vcpu, cpu);
kvm_arch_reset_vcpu(cpu);
}
err:
return ret;
}
/*
* dirty pages logging control
*/
static int kvm_mem_flags(KVMState *s, bool log_dirty, bool readonly)
{
int flags = 0;
flags = log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
if (readonly && kvm_readonly_mem_allowed) {
flags |= KVM_MEM_READONLY;
}
return flags;
}
static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
{
KVMState *s = kvm_state;
int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
int old_flags;
old_flags = mem->flags;
flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty, false);
mem->flags = flags;
/* If nothing changed effectively, no need to issue ioctl */
if (s->migration_log) {
flags |= KVM_MEM_LOG_DIRTY_PAGES;
}
if (flags == old_flags) {
return 0;
}
return kvm_set_user_memory_region(s, mem);
}
static int kvm_dirty_pages_log_change(hwaddr phys_addr,
ram_addr_t size, bool log_dirty)
{
KVMState *s = kvm_state;
KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
if (mem == NULL) {
fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
TARGET_FMT_plx "\n", __func__, phys_addr,
(hwaddr)(phys_addr + size - 1));
return -EINVAL;
}
return kvm_slot_dirty_pages_log_change(mem, log_dirty);
}
static void kvm_log_start(MemoryListener *listener,
MemoryRegionSection *section)
{
int r;
r = kvm_dirty_pages_log_change(section->offset_within_address_space,
int128_get64(section->size), true);
if (r < 0) {
abort();
}
}
static void kvm_log_stop(MemoryListener *listener,
MemoryRegionSection *section)
{
int r;
r = kvm_dirty_pages_log_change(section->offset_within_address_space,
int128_get64(section->size), false);
if (r < 0) {
abort();
}
}
static int kvm_set_migration_log(int enable)
{
KVMState *s = kvm_state;
KVMSlot *mem;
int i, err;
s->migration_log = enable;
for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
mem = &s->slots[i];
if (!mem->memory_size) {
continue;
}
if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
continue;
}
err = kvm_set_user_memory_region(s, mem);
if (err) {
return err;
}
}
return 0;
}
/* get kvm's dirty pages bitmap and update qemu's */
static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
unsigned long *bitmap)
{
unsigned int i, j;
unsigned long page_number, c;
hwaddr addr, addr1;
unsigned int pages = int128_get64(section->size) / getpagesize();
unsigned int len = (pages + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE;
/*
* bitmap-traveling is faster than memory-traveling (for addr...)
* especially when most of the memory is not dirty.
*/
for (i = 0; i < len; i++) {
if (bitmap[i] != 0) {
c = leul_to_cpu(bitmap[i]);
do {
j = ffsl(c) - 1;
c &= ~(1ul << j);
page_number = (i * HOST_LONG_BITS + j) * hpratio;
addr1 = page_number * TARGET_PAGE_SIZE;
addr = section->offset_within_region + addr1;
memory_region_set_dirty(section->mr, addr,
TARGET_PAGE_SIZE * hpratio);
} while (c != 0);
}
}
return 0;
}
#define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
/**
* kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
* This function updates qemu's dirty bitmap using
* memory_region_set_dirty(). This means all bits are set
* to dirty.
*
* @start_add: start of logged region.
* @end_addr: end of logged region.
*/
static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
{
KVMState *s = kvm_state;
unsigned long size, allocated_size = 0;
KVMDirtyLog d;
KVMSlot *mem;
int ret = 0;
hwaddr start_addr = section->offset_within_address_space;
hwaddr end_addr = start_addr + int128_get64(section->size);
d.dirty_bitmap = NULL;
while (start_addr < end_addr) {
mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
if (mem == NULL) {
break;
}
/* XXX bad kernel interface alert
* For dirty bitmap, kernel allocates array of size aligned to
* bits-per-long. But for case when the kernel is 64bits and
* the userspace is 32bits, userspace can't align to the same
* bits-per-long, since sizeof(long) is different between kernel
* and user space. This way, userspace will provide buffer which
* may be 4 bytes less than the kernel will use, resulting in
* userspace memory corruption (which is not detectable by valgrind
* too, in most cases).
* So for now, let's align to 64 instead of HOST_LONG_BITS here, in
* a hope that sizeof(long) wont become >8 any time soon.
*/
size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
/*HOST_LONG_BITS*/ 64) / 8;
if (!d.dirty_bitmap) {
d.dirty_bitmap = g_malloc(size);
} else if (size > allocated_size) {
d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
}
allocated_size = size;
memset(d.dirty_bitmap, 0, allocated_size);
d.slot = mem->slot;
if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
DPRINTF("ioctl failed %d\n", errno);
ret = -1;
break;
}
kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
start_addr = mem->start_addr + mem->memory_size;
}
g_free(d.dirty_bitmap);
return ret;
}
static void kvm_coalesce_mmio_region(MemoryListener *listener,
MemoryRegionSection *secion,
hwaddr start, hwaddr size)
{
KVMState *s = kvm_state;
if (s->coalesced_mmio) {
struct kvm_coalesced_mmio_zone zone;
zone.addr = start;
zone.size = size;
zone.pad = 0;
(void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
}
}
static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
MemoryRegionSection *secion,
hwaddr start, hwaddr size)
{
KVMState *s = kvm_state;
if (s->coalesced_mmio) {
struct kvm_coalesced_mmio_zone zone;
zone.addr = start;
zone.size = size;
zone.pad = 0;
(void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
}
}
int kvm_check_extension(KVMState *s, unsigned int extension)
{
int ret;
ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
if (ret < 0) {
ret = 0;
}
return ret;
}
static int kvm_set_ioeventfd_mmio(int fd, uint32_t addr, uint32_t val,
bool assign, uint32_t size, bool datamatch)
{
int ret;
struct kvm_ioeventfd iofd;
iofd.datamatch = datamatch ? val : 0;
iofd.addr = addr;
iofd.len = size;
iofd.flags = 0;
iofd.fd = fd;
if (!kvm_enabled()) {
return -ENOSYS;
}
if (datamatch) {
iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
}
if (!assign) {
iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
}
ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
if (ret < 0) {
return -errno;
}
return 0;
}
static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
bool assign, uint32_t size, bool datamatch)
{
struct kvm_ioeventfd kick = {
.datamatch = datamatch ? val : 0,
.addr = addr,
.flags = KVM_IOEVENTFD_FLAG_PIO,
.len = size,
.fd = fd,
};
int r;
if (!kvm_enabled()) {
return -ENOSYS;
}
if (datamatch) {
kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
}
if (!assign) {
kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
}
r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
if (r < 0) {
return r;
}
return 0;
}
static int kvm_check_many_ioeventfds(void)
{
/* Userspace can use ioeventfd for io notification. This requires a host
* that supports eventfd(2) and an I/O thread; since eventfd does not
* support SIGIO it cannot interrupt the vcpu.
*
* Older kernels have a 6 device limit on the KVM io bus. Find out so we
* can avoid creating too many ioeventfds.
*/
#if defined(CONFIG_EVENTFD)
int ioeventfds[7];
int i, ret = 0;
for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
if (ioeventfds[i] < 0) {
break;
}
ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
if (ret < 0) {
close(ioeventfds[i]);
break;
}
}
/* Decide whether many devices are supported or not */
ret = i == ARRAY_SIZE(ioeventfds);
while (i-- > 0) {
kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
close(ioeventfds[i]);
}
return ret;
#else
return 0;
#endif
}
static const KVMCapabilityInfo *
kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
{
while (list->name) {
if (!kvm_check_extension(s, list->value)) {
return list;
}
list++;
}
return NULL;
}
static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
{
KVMState *s = kvm_state;
KVMSlot *mem, old;
int err;
MemoryRegion *mr = section->mr;
bool log_dirty = memory_region_is_logging(mr);
bool writeable = !mr->readonly && !mr->rom_device;
bool readonly_flag = mr->readonly || memory_region_is_romd(mr);
hwaddr start_addr = section->offset_within_address_space;
ram_addr_t size = int128_get64(section->size);
void *ram = NULL;
unsigned delta;
/* kvm works in page size chunks, but the function may be called
with sub-page size and unaligned start address. */
delta = TARGET_PAGE_ALIGN(size) - size;
if (delta > size) {
return;
}
start_addr += delta;
size -= delta;
size &= TARGET_PAGE_MASK;
if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
return;
}
if (!memory_region_is_ram(mr)) {
if (writeable || !kvm_readonly_mem_allowed) {
return;
} else if (!mr->romd_mode) {
/* If the memory device is not in romd_mode, then we actually want
* to remove the kvm memory slot so all accesses will trap. */
add = false;
}
}
ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
while (1) {
mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
if (!mem) {
break;
}
if (add && start_addr >= mem->start_addr &&
(start_addr + size <= mem->start_addr + mem->memory_size) &&
(ram - start_addr == mem->ram - mem->start_addr)) {
/* The new slot fits into the existing one and comes with
* identical parameters - update flags and done. */
kvm_slot_dirty_pages_log_change(mem, log_dirty);
return;
}
old = *mem;
if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
kvm_physical_sync_dirty_bitmap(section);
}
/* unregister the overlapping slot */
mem->memory_size = 0;
err = kvm_set_user_memory_region(s, mem);
if (err) {
fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
__func__, strerror(-err));
abort();
}
/* Workaround for older KVM versions: we can't join slots, even not by
* unregistering the previous ones and then registering the larger
* slot. We have to maintain the existing fragmentation. Sigh.
*
* This workaround assumes that the new slot starts at the same
* address as the first existing one. If not or if some overlapping
* slot comes around later, we will fail (not seen in practice so far)
* - and actually require a recent KVM version. */
if (s->broken_set_mem_region &&
old.start_addr == start_addr && old.memory_size < size && add) {
mem = kvm_alloc_slot(s);
mem->memory_size = old.memory_size;
mem->start_addr = old.start_addr;
mem->ram = old.ram;
mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
err = kvm_set_user_memory_region(s, mem);
if (err) {
fprintf(stderr, "%s: error updating slot: %s\n", __func__,
strerror(-err));
abort();
}
start_addr += old.memory_size;
ram += old.memory_size;
size -= old.memory_size;
continue;
}
/* register prefix slot */
if (old.start_addr < start_addr) {
mem = kvm_alloc_slot(s);
mem->memory_size = start_addr - old.start_addr;
mem->start_addr = old.start_addr;
mem->ram = old.ram;
mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
err = kvm_set_user_memory_region(s, mem);
if (err) {
fprintf(stderr, "%s: error registering prefix slot: %s\n",
__func__, strerror(-err));
#ifdef TARGET_PPC
fprintf(stderr, "%s: This is probably because your kernel's " \
"PAGE_SIZE is too big. Please try to use 4k " \
"PAGE_SIZE!\n", __func__);
#endif
abort();
}
}
/* register suffix slot */
if (old.start_addr + old.memory_size > start_addr + size) {
ram_addr_t size_delta;
mem = kvm_alloc_slot(s);
mem->start_addr = start_addr + size;
size_delta = mem->start_addr - old.start_addr;
mem->memory_size = old.memory_size - size_delta;
mem->ram = old.ram + size_delta;
mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
err = kvm_set_user_memory_region(s, mem);
if (err) {
fprintf(stderr, "%s: error registering suffix slot: %s\n",
__func__, strerror(-err));
abort();
}
}
}
/* in case the KVM bug workaround already "consumed" the new slot */
if (!size) {
return;
}
if (!add) {
return;
}
mem = kvm_alloc_slot(s);
mem->memory_size = size;
mem->start_addr = start_addr;
mem->ram = ram;
mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
err = kvm_set_user_memory_region(s, mem);
if (err) {
fprintf(stderr, "%s: error registering slot: %s\n", __func__,
strerror(-err));
abort();
}
}
static void kvm_region_add(MemoryListener *listener,
MemoryRegionSection *section)
{
memory_region_ref(section->mr);
kvm_set_phys_mem(section, true);
}
static void kvm_region_del(MemoryListener *listener,
MemoryRegionSection *section)
{
kvm_set_phys_mem(section, false);
memory_region_unref(section->mr);
}
static void kvm_log_sync(MemoryListener *listener,
MemoryRegionSection *section)
{
int r;
r = kvm_physical_sync_dirty_bitmap(section);
if (r < 0) {
abort();
}
}
static void kvm_log_global_start(struct MemoryListener *listener)
{
int r;
r = kvm_set_migration_log(1);
assert(r >= 0);
}
static void kvm_log_global_stop(struct MemoryListener *listener)
{
int r;
r = kvm_set_migration_log(0);
assert(r >= 0);
}
static void kvm_mem_ioeventfd_add(MemoryListener *listener,
MemoryRegionSection *section,
bool match_data, uint64_t data,
EventNotifier *e)
{
int fd = event_notifier_get_fd(e);
int r;
r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
data, true, int128_get64(section->size),
match_data);
if (r < 0) {
fprintf(stderr, "%s: error adding ioeventfd: %s\n",
__func__, strerror(-r));
abort();
}
}
static void kvm_mem_ioeventfd_del(MemoryListener *listener,
MemoryRegionSection *section,
bool match_data, uint64_t data,
EventNotifier *e)
{
int fd = event_notifier_get_fd(e);
int r;
r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
data, false, int128_get64(section->size),
match_data);
if (r < 0) {
abort();
}
}
static void kvm_io_ioeventfd_add(MemoryListener *listener,
MemoryRegionSection *section,
bool match_data, uint64_t data,
EventNotifier *e)
{
int fd = event_notifier_get_fd(e);
int r;
r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
data, true, int128_get64(section->size),
match_data);
if (r < 0) {
fprintf(stderr, "%s: error adding ioeventfd: %s\n",
__func__, strerror(-r));
abort();
}
}
static void kvm_io_ioeventfd_del(MemoryListener *listener,
MemoryRegionSection *section,
bool match_data, uint64_t data,
EventNotifier *e)
{
int fd = event_notifier_get_fd(e);
int r;
r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
data, false, int128_get64(section->size),
match_data);
if (r < 0) {
abort();
}
}
static MemoryListener kvm_memory_listener = {
.region_add = kvm_region_add,
.region_del = kvm_region_del,
.log_start = kvm_log_start,
.log_stop = kvm_log_stop,
.log_sync = kvm_log_sync,
.log_global_start = kvm_log_global_start,
.log_global_stop = kvm_log_global_stop,
.eventfd_add = kvm_mem_ioeventfd_add,
.eventfd_del = kvm_mem_ioeventfd_del,
.coalesced_mmio_add = kvm_coalesce_mmio_region,
.coalesced_mmio_del = kvm_uncoalesce_mmio_region,
.priority = 10,
};
static MemoryListener kvm_io_listener = {
.eventfd_add = kvm_io_ioeventfd_add,
.eventfd_del = kvm_io_ioeventfd_del,
.priority = 10,
};
static void kvm_handle_interrupt(CPUState *cpu, int mask)
{
cpu->interrupt_request |= mask;
if (!qemu_cpu_is_self(cpu)) {
qemu_cpu_kick(cpu);
}
}
int kvm_set_irq(KVMState *s, int irq, int level)
{
struct kvm_irq_level event;
int ret;
assert(kvm_async_interrupts_enabled());
event.level = level;
event.irq = irq;
ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
if (ret < 0) {
perror("kvm_set_irq");
abort();
}
return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
}
#ifdef KVM_CAP_IRQ_ROUTING
typedef struct KVMMSIRoute {
struct kvm_irq_routing_entry kroute;
QTAILQ_ENTRY(KVMMSIRoute) entry;
} KVMMSIRoute;
static void set_gsi(KVMState *s, unsigned int gsi)
{
s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
}
static void clear_gsi(KVMState *s, unsigned int gsi)
{
s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32));
}
void kvm_init_irq_routing(KVMState *s)
{
int gsi_count, i;
gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING);
if (gsi_count > 0) {
unsigned int gsi_bits, i;
/* Round up so we can search ints using ffs */
gsi_bits = ALIGN(gsi_count, 32);
s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
s->gsi_count = gsi_count;
/* Mark any over-allocated bits as already in use */
for (i = gsi_count; i < gsi_bits; i++) {
set_gsi(s, i);
}
}
s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
s->nr_allocated_irq_routes = 0;
if (!s->direct_msi) {
for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
QTAILQ_INIT(&s->msi_hashtab[i]);
}
}
kvm_arch_init_irq_routing(s);
}
void kvm_irqchip_commit_routes(KVMState *s)
{
int ret;
s->irq_routes->flags = 0;
ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);