-
Notifications
You must be signed in to change notification settings - Fork 209
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
mAPs of some networks are much lower than expected. #100
Comments
Hi @chjej202 |
Hi, I changed a confidence threshold (conf_threshold) in DetectionNN.h from 0.3 to 0.05. Do you have any reference results tested by map_demo to check my results are correct or not? =========================================================================== yolov3tiny (416x416, conf_threshold = 0.05) mobilenetv2ssd512 (512x512, conf_threshold = 0.05) resnet101_cnet (512x512, conf_threshold = 0.05) dla34_cnet (512x512, conf_threshold = 0.05) yolov4tiny (416x416, conf_threshold = 0.05) yolov4 (416x416, conf_threshold = 0.05) yolov3 (416x416, conf_threshold = 0.05) csresnext50-panet-spp (416x416, conf_threshold = 0.05) |
HI @chjej202, No idea why. I will check all of them tomorrow and will give you a proper answer |
Thank you. I will wait for your answer. |
Hi @chjej202, sorry for the wait. It actually took me till today to find out and solve the issue. The results are now coherent to darknet :) Also, tkDNN mAP computation is a bit pessimistic wrt the one by CodaLab, but I still don't know why. |
Thank you for your reply. :) |
Hello,
I tested multiple pre-trained weights provided by tkDNN with "map_demo."
However, mAP of some networks are lower than expected.
(mobilenetv2ssd512, yolo3tiny, dla34_cnet, resnet101_cnet)
mAP of yolo3tiny is too small. (mAP 0.5 : 0.12)
mAP of mobilenetv2ssd512 is too small even though input image is larger (512x512) than yolo (416x416) variants.
mAP of dla34_cnet and resnet101_cnet is not competitive to yolov3 which is an old network compared to cnet.
Do you have mAP results of all the networks which can run with "map_demo"?
I ran the program on Nvidia Jetson AGX Xavier with Jetpack 4.3
I used coco 2017 valid set with 4952 images to check the accuracy of each network.
All models are built with FP16 mode.
The below results shows the mAP of each network.
cspresnext50-panet-spp
Classes: 80 mAP 0.5: 0.638923
Classes: 80 mAP 0.55: 0.620606
Classes: 80 mAP 0.6: 0.598838
Classes: 80 mAP 0.65: 0.567956
Classes: 80 mAP 0.7: 0.524836
Classes: 80 mAP 0.75: 0.47366
Classes: 80 mAP 0.8: 0.393327
Classes: 80 mAP 0.85: 0.270965
Classes: 80 mAP 0.9: 0.128609
Classes: 80 mAP 0.95: 0.0145363
mAP 0.5:0.95 = 0.423226
avg precision: 0.80101 avg recall: 0.669992 avg f1 score:0.729667
yolo4tiny
Classes: 80 mAP 0.5: 0.276675
Classes: 80 mAP 0.55: 0.262956
Classes: 80 mAP 0.6: 0.245394
Classes: 80 mAP 0.65: 0.220419
Classes: 80 mAP 0.7: 0.188917
Classes: 80 mAP 0.75: 0.145544
Classes: 80 mAP 0.8: 0.0963829
Classes: 80 mAP 0.85: 0.0461462
Classes: 80 mAP 0.9: 0.0122035
Classes: 80 mAP 0.95: 0.000870022
mAP 0.5:0.95 = 0.149551
avg precision: 0.661997 avg recall: 0.307922 avg f1 score:0.420331
yolov4
Classes: 80 mAP 0.5: 0.59428
Classes: 80 mAP 0.55: 0.576454
Classes: 80 mAP 0.6: 0.556307
Classes: 80 mAP 0.65: 0.524986
Classes: 80 mAP 0.7: 0.487346
Classes: 80 mAP 0.75: 0.434977
Classes: 80 mAP 0.8: 0.364772
Classes: 80 mAP 0.85: 0.262967
Classes: 80 mAP 0.9: 0.139866
Classes: 80 mAP 0.95: 0.0178965
mAP 0.5:0.95 = 0.395985
avg precision: 0.757215 avg recall: 0.633702 avg f1 score:0.689974
yolo3tiny
Classes: 80 mAP 0.5: 0.120749
Classes: 80 mAP 0.55: 0.115145
Classes: 80 mAP 0.6: 0.108731
Classes: 80 mAP 0.65: 0.0975029
Classes: 80 mAP 0.7: 0.0819545
Classes: 80 mAP 0.75: 0.0617638
Classes: 80 mAP 0.8: 0.0400224
Classes: 80 mAP 0.85: 0.0181904
Classes: 80 mAP 0.9: 0.00465814
Classes: 80 mAP 0.95: 0.0005046
mAP 0.5:0.95 = 0.0649222
avg precision: 0.438526 avg recall: 0.168005 avg f1 score:0.242937
yolo3
Classes: 80 mAP 0.5: 0.53915
Classes: 80 mAP 0.55: 0.518971
Classes: 80 mAP 0.6: 0.49056
Classes: 80 mAP 0.65: 0.450069
Classes: 80 mAP 0.7: 0.400232
Classes: 80 mAP 0.75: 0.324907
Classes: 80 mAP 0.8: 0.227801
Classes: 80 mAP 0.85: 0.118608
Classes: 80 mAP 0.9: 0.0299095
Classes: 80 mAP 0.95: 0.00156115
mAP 0.5:0.95 = 0.310177
avg precision: 0.734336 avg recall: 0.573578 avg f1 score:0.644077
mobilentv2ssd512
Classes: 80 mAP 0.5: 0.298511
Classes: 80 mAP 0.55: 0.289307
Classes: 80 mAP 0.6: 0.274653
Classes: 80 mAP 0.65: 0.256511
Classes: 80 mAP 0.7: 0.232621
Classes: 80 mAP 0.75: 0.204093
Classes: 80 mAP 0.8: 0.164697
Classes: 80 mAP 0.85: 0.112635
Classes: 80 mAP 0.9: 0.0504613
Classes: 80 mAP 0.95: 0.00523403
mAP 0.5:0.95 = 0.188872
avg precision: 0.640366 avg recall: 0.334324 avg f1 score:0.439298
resnet101_cnet
Classes: 80 mAP 0.5: 0.438912
Classes: 80 mAP 0.55: 0.424819
Classes: 80 mAP 0.6: 0.406554
Classes: 80 mAP 0.65: 0.384212
Classes: 80 mAP 0.7: 0.354354
Classes: 80 mAP 0.75: 0.312488
Classes: 80 mAP 0.8: 0.262612
Classes: 80 mAP 0.85: 0.199722
Classes: 80 mAP 0.9: 0.116854
Classes: 80 mAP 0.95: 0.0265936
mAP 0.5:0.95 = 0.292712
avg precision: 0.606124 avg recall: 0.494776 avg f1 score:0.544819
dla34_cnet
Classes: 80 mAP 0.5: 0.463488
Classes: 80 mAP 0.55: 0.449222
Classes: 80 mAP 0.6: 0.42911
Classes: 80 mAP 0.65: 0.408078
Classes: 80 mAP 0.7: 0.379758
Classes: 80 mAP 0.75: 0.341952
Classes: 80 mAP 0.8: 0.293338
Classes: 80 mAP 0.85: 0.226469
Classes: 80 mAP 0.9: 0.138922
Classes: 80 mAP 0.95: 0.032453
mAP 0.5:0.95 = 0.316279
avg precision: 0.569139 avg recall: 0.536718 avg f1 score:0.552453
The text was updated successfully, but these errors were encountered: