-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcompete.py
74 lines (58 loc) · 1.97 KB
/
compete.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import multiprocessing
import os
import random
import time
from carrom_env.carrom_env import CarromEnv
import agents.geometric
NUMBER_OF_GAMES = 10
env = CarromEnv(render_mode=None)
agent_functions = {
"random": lambda _, agent: env.action_space(agent).sample(),
"center-of-mass": lambda observation, agent: agents.geometric.com(observation),
"random-coin": lambda observation, agent: agents.geometric.random_coin(observation),
"queen": lambda observation, agent: agents.geometric.queen(observation),
}
def play_game(players):
random.seed((os.getpid() * int(time.time())) % 123456789)
env.reset()
winner = -1
moves = 0
for agent in env.agent_iter():
observation, reward, termination, truncation, info = env.last()
if termination or truncation:
action = None
if (agent == "0" and reward == 1) or (agent == "1" and reward == 0):
winner = 0
else:
winner = 1
else:
if agent == "0":
action = agent_functions[players[0]](observation, agent)
else:
action = agent_functions[players[1]](observation, agent)
moves += 1
env.step(action)
return (winner, moves)
def multiprocessed(players):
p = multiprocessing.Pool()
data = p.map(play_game, [players for _ in range(NUMBER_OF_GAMES)])
p.close()
p.join()
white_wins = 0
black_wins = 0
moves = 0
for i in data:
if i[0] == 0:
white_wins += 1
else:
black_wins += 1
moves += i[1]
return (white_wins, black_wins, moves / NUMBER_OF_GAMES)
if __name__ == '__main__':
for i in agent_functions:
for j in agent_functions:
# write to results.txt
with open("results.txt", "a") as f:
f.write(i + " vs " + j + "\n")
f.write(str(multiprocessed([i, j])) + "\n")
# print(multiprocessed(["queen", "queen"]))