forked from tyler-hayes/REMIND
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
198 lines (167 loc) · 7.2 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import torch
import os
import json
import random
import math
import torch.utils.data
from image_classification_experiments.resnet_models import *
class Counter:
"""
A counter to track number of updates.
"""
def __init__(self):
self.count = 0
def update(self):
self.count += 1
class CMA(object):
"""
A continual moving average for tracking loss updates.
"""
def __init__(self):
self.N = 0
self.avg = 0.0
def update(self, X):
self.avg = (X + self.N * self.avg) / (self.N + 1)
self.N = self.N + 1
def accuracy(output, target, topk=(1,), output_has_class_ids=False):
"""Computes the accuracy over the k top predictions for the specified values of k"""
if not output_has_class_ids:
output = torch.Tensor(output)
else:
output = torch.LongTensor(output)
target = torch.LongTensor(target)
with torch.no_grad():
maxk = max(topk)
batch_size = output.shape[0]
if not output_has_class_ids:
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
else:
pred = output[:, :maxk].t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size).item())
return res
def save_predictions(y_pred, min_class_trained, max_class_trained, save_path, suffix='', order=None):
if order is not None:
name = 'core50_' + order + '_preds_min_trained_' + str(min_class_trained) + '_max_trained_' + str(
max_class_trained)
else:
name = 'preds_min_trained_' + str(min_class_trained) + '_max_trained_' + str(max_class_trained) + suffix
torch.save(y_pred, save_path + '/' + name + '.pth')
def save_accuracies(accuracies, min_class_trained, max_class_trained, save_path, suffix='', order=None):
if order is not None:
name = 'core50_' + order + '_accuracies_min_trained_' + str(min_class_trained) + '_max_trained_' + str(
max_class_trained) + '.json'
else:
name = 'accuracies_min_trained_' + str(min_class_trained) + '_max_trained_' + str(
max_class_trained) + suffix + '.json'
json.dump(accuracies, open(os.path.join(save_path, name), 'w'))
def safe_load_dict(model, new_model_state, should_resume_all_params=False):
old_model_state = model.state_dict()
c = 0
if should_resume_all_params:
for old_name, old_param in old_model_state.items():
assert old_name in list(new_model_state.keys()), "{} parameter is not present in resumed checkpoint".format(
old_name)
for name, param in new_model_state.items():
n = name.split('.')
beg = n[0]
end = n[1:]
if beg == 'module':
name = '.'.join(end)
if name not in old_model_state:
# print('%s not found in old model.' % name)
continue
if isinstance(param, nn.Parameter):
# backwards compatibility for serialized parameters
param = param.data
c += 1
if old_model_state[name].shape != param.shape:
print('Shape mismatch...ignoring %s' % name)
continue
else:
old_model_state[name].copy_(param)
if c == 0:
raise AssertionError('No previous ckpt names matched and the ckpt was not loaded properly.')
def build_classifier(classifier, classifier_ckpt, num_classes):
classifier = eval(classifier)(num_classes=num_classes)
if classifier_ckpt is None:
print("Will not resume any checkpoints!")
else:
resumed = torch.load(classifier_ckpt)
if 'state_dict' in resumed:
state_dict_key = 'state_dict'
else:
state_dict_key = 'model_state'
print("Resuming with {}".format(classifier_ckpt))
safe_load_dict(classifier, resumed[state_dict_key], should_resume_all_params=True)
return classifier
class RandomResizeCrop(object):
"""Randomly crops tensor then resizes uniformly between given bounds
Args:
size (sequence): Bounds of desired output sizes.
scale (sequence): Range of size of the origin size cropped
ratio (sequence): Range of aspect ratio of the origin aspect ratio cropped
interpolation (int, optional): Desired interpolation. Default is 'bilinear'
"""
def __init__(self, size, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), interpolation='bilinear'):
# assert (isinstance(size, Iterable) and len(size) == 2)
self.size = size
self.scale = scale
self.ratio = ratio
self.interpolation = interpolation
def get_params(self, img, scale, ratio):
"""Get parameters for ``crop`` for a random sized crop.
Args:
img (3-d tensor (C,H,W)): Tensor to be cropped.
scale (tuple): range of size of the origin size cropped
ratio (tuple): range of aspect ratio of the origin aspect ratio cropped
Returns:
tuple: params (i, j, h, w) to be passed to ``crop`` for a random
sized crop.
"""
area = img.size(1) * img.size(2)
for attempt in range(10):
target_area = random.uniform(*scale) * area
log_ratio = (math.log(ratio[0]), math.log(ratio[1]))
aspect_ratio = math.exp(random.uniform(*log_ratio))
w = int(round(math.sqrt(target_area * aspect_ratio)))
h = int(round(math.sqrt(target_area / aspect_ratio)))
if w <= img.size(1) and h <= img.size(2):
i = random.randint(0, img.size(2) - h)
j = random.randint(0, img.size(1) - w)
return i, j, h, w
# Fallback to central crop
in_ratio = img.size(1) / img.size(2)
if (in_ratio < min(ratio)):
w = img.size(1)
h = int(w / min(ratio))
elif (in_ratio > max(ratio)):
h = img.size(2)
w = int(h * max(ratio))
else: # whole image
w = img.size(1)
h = img.size(2)
i = int((img.size(2) - h) // 2)
j = int((img.size(1) - w) // 2)
return i, j, h, w
def __call__(self, img):
"""
Args:
img (3-D tensor (C,H,W)): Tensor to be cropped and resized.
Returns:
Tensor: Randomly cropped and resized Tensor.
"""
i, j, h, w = self.get_params(img, self.scale, self.ratio)
img = img[:, i:i + h, j:j + w] ##crop
return torch.nn.functional.interpolate(img.unsqueeze(0), self.size, mode=self.interpolation,
align_corners=False).squeeze(0)
def __repr__(self):
interpolate_str = self.interpolation
return self.__class__.__name__ + '(size={0}, scale={1}, ratio={2}, interpolation={3})'.format(self.size,
self.scale,
self.ratio,
interpolate_str)