forked from scikit-tda/kepler-mapper
-
Notifications
You must be signed in to change notification settings - Fork 0
/
setup.py
82 lines (77 loc) · 2.8 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
#!/usr/bin/env python
from setuptools import setup
import re
VERSIONFILE = "kmapper/_version.py"
verstrline = open(VERSIONFILE, "rt").read()
VSRE = r"^__version__ = ['\"]([^'\"]*)['\"]"
mo = re.search(VSRE, verstrline, re.M)
if mo:
verstr = mo.group(1)
else:
raise RuntimeError("Unable to find version string in %s." % (VERSIONFILE,))
with open("README.md") as f:
long_description = f.read()
setup(
name="kmapper",
version=verstr,
description="Python implementation of Mapper algorithm for Topological Data Analysis.",
long_description=long_description,
long_description_content_type="text/markdown",
author="HJ van Veen, Nathaniel Saul, David Eargle, Sam Mangham",
author_email="[email protected], [email protected]",
url="http://kepler-mapper.scikit-tda.org",
license="MIT",
packages=["kmapper"],
include_package_data=True,
extras_require={
"testing": [ # `pip install -e ".[testing]"``
"pytest", # ~=6.2.5",
"networkx", # ~=2.5.1",
"matplotlib", # ~=3.3.4",
"igraph",
"plotly", # ~=5.3.1",
"ipywidgets", # ~=7.6.5",
],
"docs": [ # `pip install -e ".[docs]"``
"sktda_docs_config", # latest
"sphinx", # ~=4.2.0",
"pandas", # ~=1.1.5",
"sphinx-gallery", # ~=0.10.0",
# for building docs for plotlyviz stuff
"networkx", # ~=2.5.1",
"matplotlib", # ~=3.3.4",
"igraph",
"plotly", # ~=5.3.1",
"ipykernel",
"ipywidgets", # ~=7.6.5",
"ipython", # ~=7.16.1",
"nbsphinx", # ~=0.8.7",
# required for building some jupyter notebooks.
# uncomment if rebuilding the notebooks.
## Plotly-Demo.ipynb
# "cmocean~=2.0",
# "kaleido~=0.2.1",
## Confidence-Graphs.ipynb
# "tensorflow~=2.2.0",
# "pillow",
# "xgboost",
# "scikit-image"
],
},
install_requires=["scikit-learn", "numpy", "scipy", "Jinja2"],
python_requires=">=3.6",
classifiers=[
"Development Status :: 4 - Beta",
"Intended Audience :: Science/Research",
"Intended Audience :: Education",
"Intended Audience :: Financial and Insurance Industry",
"Intended Audience :: Healthcare Industry",
"Topic :: Scientific/Engineering :: Information Analysis",
"Topic :: Scientific/Engineering :: Mathematics",
"License :: OSI Approved :: MIT License",
"Programming Language :: Python :: 3.6",
"Programming Language :: Python :: 3.7",
"Programming Language :: Python :: 3.8",
],
keywords="mapper, topology data analysis, algebraic topology, unsupervised learning",
)