-
Notifications
You must be signed in to change notification settings - Fork 215
/
gemv.py
197 lines (172 loc) · 6.41 KB
/
gemv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import torch
import warnings
import torch.nn as nn
from awq.utils.module import try_import
awq_ext, msg = try_import("awq_ext")
def make_divisible(c, divisor):
return (c + divisor - 1) // divisor
def calculate_zeros_width(in_features, group_size=128, pack_num=8):
if group_size >= 128:
size_multiplier = 1
elif group_size == 64:
size_multiplier = 2
elif group_size == 32:
size_multiplier = 4
else:
raise NotImplementedError
base_width = make_divisible(in_features // group_size, pack_num)
base_width = make_divisible(base_width, size_multiplier) * size_multiplier
return base_width
class WQLinear_GEMV(nn.Module):
def __init__(self, w_bit, group_size, in_features, out_features, bias, dev):
super().__init__()
if w_bit not in [4]:
raise NotImplementedError("Only 4-bit are supported for now.")
self.in_features = in_features
self.out_features = out_features
self.w_bit = w_bit
self.group_size = group_size if group_size != -1 else in_features
self.split_k_iters = 8
# quick sanity check (make sure aligment)
assert self.in_features % self.group_size == 0
assert out_features % (32 // self.w_bit) == 0
pack_num = 32 // self.w_bit
self.register_buffer(
"qweight",
torch.zeros(
(out_features, in_features // pack_num), dtype=torch.int32, device=dev
),
)
self.register_buffer(
"qzeros",
torch.zeros(
(out_features, calculate_zeros_width(in_features, self.group_size)),
dtype=torch.int32,
device=dev,
),
)
self.register_buffer(
"scales",
torch.zeros(
(
out_features,
calculate_zeros_width(in_features, self.group_size) * pack_num,
),
dtype=torch.float16,
device=dev,
),
)
if bias:
self.register_buffer(
"bias", torch.zeros((out_features), dtype=torch.float16, device=dev)
)
else:
self.bias = None
@classmethod
def from_linear(
cls, linear, w_bit, group_size, init_only=False, scales=None, zeros=None
):
awq_linear = cls(
w_bit,
group_size,
linear.in_features,
linear.out_features,
linear.bias is not None,
linear.weight.device,
)
if init_only: # just prepare for loading sd
return awq_linear
# need scales and zeros info for real quantization
assert scales is not None and zeros is not None
scale_zeros = zeros * scales
pack_num = 32 // awq_linear.w_bit
qscales = torch.zeros(
(
scales.shape[0],
calculate_zeros_width(linear.in_features, group_size) * pack_num,
),
dtype=torch.float16,
device=scales.device,
)
qscales[:, : scales.shape[1]] = scales
awq_linear.scales = qscales
if linear.bias is not None:
awq_linear.bias = linear.bias.clone().half()
intweight = []
for idx in range(awq_linear.in_features):
intweight.append(
torch.round(
(linear.weight.data[:, idx] + scale_zeros[:, idx // group_size])
/ awq_linear.scales[:, idx // group_size]
).to(torch.int)[:, None]
)
intweight = torch.cat(intweight, dim=1)
intweight = intweight.to(dtype=torch.int32)
qweight = torch.zeros(
(intweight.shape[0], intweight.shape[1] // 32 * awq_linear.w_bit),
dtype=torch.int32,
device=intweight.device,
)
for col in range(intweight.shape[1] // pack_num):
if awq_linear.w_bit == 4:
order_map = [0, 1, 2, 3, 4, 5, 6, 7]
else:
raise NotImplementedError("Only 4-bit are supported for now.")
for i in range(pack_num):
qweight_col = intweight[:, col * pack_num + order_map[i]]
qweight[:, col] |= qweight_col << (i * awq_linear.w_bit)
awq_linear.qweight = qweight
zeros = zeros.to(dtype=torch.int32)
qzeros = torch.zeros(
(zeros.shape[0], calculate_zeros_width(linear.in_features, group_size)),
dtype=torch.int32,
device=zeros.device,
)
for col in range((zeros.shape[1] + pack_num - 1) // pack_num):
if awq_linear.w_bit == 4:
order_map = [0, 1, 2, 3, 4, 5, 6, 7]
else:
raise NotImplementedError("Only 4-bit are supported for now.")
for i in range(pack_num):
if col * pack_num + order_map[i] >= zeros.shape[1]:
continue
qzero_col = zeros[:, col * pack_num + order_map[i]]
qzeros[:, col] |= qzero_col << (i * awq_linear.w_bit)
awq_linear.qzeros = qzeros
return awq_linear
@torch.no_grad()
def forward(self, x):
if awq_ext is None:
raise ModuleNotFoundError("External AWQ kernels are not properly installed." + msg)
out_shape = x.shape[:-1] + (self.out_features,)
inputs = x.reshape(-1, x.shape[-1])
input_dtype = inputs.dtype
if input_dtype != torch.float16:
inputs = inputs.half()
if inputs.shape[0] > 8:
out = awq_ext.gemmv2_forward_cuda(
inputs,
self.qweight,
self.scales,
self.qzeros,
self.group_size,
self.split_k_iters,
)
else:
out = awq_ext.gemv_forward_cuda(
inputs, self.qweight, self.scales, self.qzeros, self.group_size
)
if input_dtype != torch.float16:
out = out.to(dtype=input_dtype)
out = out + self.bias if self.bias is not None else out
return out.reshape(out_shape)
def extra_repr(self) -> str:
return (
"in_features={}, out_features={}, bias={}, w_bit={}, group_size={}".format(
self.in_features,
self.out_features,
self.bias is not None,
self.w_bit,
self.group_size,
)
)