An implementation of GhostNet for Tensorflow 2.0+ (From the paper "GhostNet: More Features from Cheap Operations")
Link to paper: https://arxiv.org/pdf/1911.11907.pdf
This implementation is a normal Keras Model object. You initialize it, build or compile it and it is ready to fit!
Dummy example:
from ghost_model import GhostNet
# Initialize model with 10 classes
model = GhostNet(10)
# Compile and fit
model.compile(loss='categorical_crossentropy',
optimizer='adam', metrics=['accuracy'])
model.fit(data)
Check out the Jupyter notebook "mnist_example.ipynb" in this repository for an example of using this implementation on a real dataset.