-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.py
110 lines (81 loc) · 3.29 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import os
import cv2
import torch
import json
import numpy as np
import argparse
import time
import torch.nn.functional as F
from data.LoadDataSeg import val_loader
from utils import NoteEvaluation
from networks import *
from utils.Restore import restore
from config import settings
K_SHOT = 1
DATASET = 'voc'
SNAPSHOT_DIR =settings.SNAPSHOT_DIR
if DATASET =='coco':
SNAPSHOT_DIR = SNAPSHOT_DIR+'/coco'
GPU_ID = '0'
os.environ["CUDA_VISIBLE_DEVICES"] = GPU_ID
def get_arguments():
parser = argparse.ArgumentParser(description='OneShot')
parser.add_argument("--arch", type=str,default='FRPMMs')
parser.add_argument("--disp_interval", type=int, default=100)
parser.add_argument("--snapshot_dir", type=str, default=SNAPSHOT_DIR)
parser.add_argument("--group", type=int, default=0)
parser.add_argument('--num_folds', type=int, default=4)
parser.add_argument('--restore_step', type=int, default=100000)
parser.add_argument('--batch_size', type=int, default=1)
parser.add_argument('--mode', type=str, default='val')
parser.add_argument('--dataset', type=str, default=DATASET)
return parser.parse_args()
def get_model(args):
model = eval(args.arch).OneModel(args)
model = model.cuda()
return model
def val(args):
model = get_model(args)
model.eval()
evaluations = NoteEvaluation.Evaluation(args)
for group in range(0,1):
print("-------------GROUP %d-------------" % (group))
args.group = group
evaluations.group =args.group
val_dataloader = val_loader(args,k_shot = K_SHOT)
restore(args, model)
it = 0
for data in val_dataloader:
begin_time = time.time()
it = it+1
query_img, query_mask, support_img, support_mask, idx, size = data
query_img, query_mask, support_img, support_mask, idx \
= query_img.cuda(), query_mask.cuda(), support_img.cuda(), support_mask.cuda(), idx.cuda()
with torch.no_grad():
logits = model(query_img,query_mask,support_img, support_mask)
query_img = F.upsample(query_img, size=(size[0], size[1]), mode='bilinear')
query_mask = F.upsample(query_mask, size=(size[0], size[1]), mode='nearest')
values, pred = model.get_pred(logits, query_img)
evaluations.update_evl(idx, query_mask, pred, 0)
end_time = time.time()
ImgPerSec = 1/(end_time-begin_time)
print("It has tested %d, %.2f images/s" %(it,ImgPerSec), end="\r")
print("Group %d: %.4f " %(args.group, evaluations.group_mean_iou[args.group]))
iou = evaluations.iou_list
# print('IOU:', iou)
mIoU = np.mean(iou)
# print('mIoU: ', mIoU)
print("group0_mIou", evaluations.group_mean_iou[0])
print("group1_mIou", evaluations.group_mean_iou[1])
print("group2_mIou", evaluations.group_mean_iou[2])
print("group3_mIou", evaluations.group_mean_iou[3])
print(evaluations.group_mean_iou)
#print(evaluations.iou_list)
return mIoU, iou, evaluations
if __name__ == '__main__':
args = get_arguments()
print('Running parameters:\n')
print(json.dumps(vars(args), indent=4, separators=(',', ':')))
if not os.path.exists(args.snapshot_dir):
os.mkdir(args.snapshot_dir)
val(args)