-
Notifications
You must be signed in to change notification settings - Fork 1
/
run.m
105 lines (101 loc) · 5.03 KB
/
run.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
%-------------------------------------------------------------------------%
%-------------------------------------------------------------------------%
%-------------------------------------------------------------------------%
% ------ Two-Tier Tissue Decomposition for Histopathological Image ------ %
% ------------------ Representation and Classification ------------------ %
%-------------------------------------------------------------------------%
%
% In this work, aim is to design a classification system for histopatholo-
% gical images. Towards this end, we present a new model for effective
% representation of these images that will be used by the classification
% system. The contributions of this model are twofold. First, it introduces
% a new two-tier tissue decomposition method for defining a set of multi-
% typed objects in an image. Different than the previous studies, these
% objects are defined combining texture, shape, and size information and
% they may correspond to individual histological tissue components as well
% as local tissue subregions of different characteristics. As its second
% contribution, it defines a new metric, which we call dominant blob scale,
% to characterize the shape and size of an object with a single scalar
% value. Our experiments on colon tissue images reveal that this new object
% definition and characterization provides distinguishing representation of
% normal and cancerous histopathological images, which is effective to
% obtain more accurate classification results compared to its counterparts.
%
% NOTE: The following source codes are provided for research purposes only.
% The authors have no responsibility for any consequences of use of these
% source codes. If you use any part of the codes, please cite the following
% paper.
%
% T. Gultekin, C. Koyuncu, C. Sokmensuer, and C. Gunduz-Demir, "Two-tier
% tissue decomposition for histopathological image representation and
% classification," IEEE Trans. Med. Imag., vol.34, no.1, pp.275–283, Jan.
% 2015.
%
% Model parameters to be adjusted ():
% K : cluster number
% sizeThr : area threshold
% cPercent : covered pixel percentage
% edgeThr : edge threshold
% C : SVM optimization parameter
%
% Before run this program, create two txt files containing filenames of
% images together with their class labels, for the training and test sets.
% After that, assign the name of the created filenames to the variables
% trainFilename and testFilename in lines 59 and 60.
%
% To improve the efficiency, the "for" loop in line 5 of "src/getDataset.m"
% can be executed in parallel using "parfor".
%
% Each line should have the following format:
% [image_file_name_with_its_path] [class_label]
%
% For further questions feel free to email me at [email protected]
%-------------------------------------------------------------------------%
%-------------------------------------------------------------------------%
%-------------------------------------------------------------------------%
K = 6;
cPercent = 0.05;
sizeThr = 40;
edgeThr = 20;
C = 0.01;
trainFilename = 'train_imgs.txt';
testFilename = 'test_imgs.txt';
if exist(trainFilename, 'file') ~= 2
error(['Couldn''t locate the file : ' trainFilename]);
end
if exist(testFilename, 'file') ~= 2
error(['Couldn''t locate the file : ' testFilename]);
end
addpath(genpath('libsvm_3.22/'));
addpath('src/');
[trainImgFilenames, trainLabels] = processFile(trainFilename);
[testImgFilenames, testLabels] = processFile(testFilename);
uTriIndices = triu(true(K*3, K*3));
textFilters = makeSfilters;
diskFilters = getDiskFilters;
%% creatining texton vocabularies
vocabulary = createTextonVocabulary(trainImgFilenames, trainLabels, K, textFilters);
save('__vocabulary.mat', 'vocabulary');
%% obtaining datasets
load __vocabulary;
train = getDataset(trainImgFilenames, vocabulary, sizeThr, K, cPercent, uTriIndices, textFilters, diskFilters);
test = getDataset(testImgFilenames, vocabulary, sizeThr, K, cPercent, uTriIndices, textFilters, diskFilters);
save('__rawData.mat', 'train', 'trainLabels', 'test', 'testLabels');
%% eliminating less frequently occured edges
load '__rawData.mat';
elimColIds = max(train,[],1) <= edgeThr;
train(:, elimColIds) = [];
test(:, elimColIds) = [];
save('__elimData.mat', 'train', 'trainLabels', 'test', 'testLabels', 'elimColIds');
%% normalizing datasets
load '__elimData';
trMean = mean(train);
trStd = std(train);
train = (train - repmat(trMean, size(train,1), 1))./ repmat(trStd, size(train,1), 1);
test = (test - repmat(trMean, size(test,1), 1)) ./ repmat(trStd, size(test,1), 1);
save('__normData.mat', 'train', 'trainLabels', 'test', 'testLabels', 'trMean', 'trStd');
%% classifying test data
load '__normData';
[train, trainLabels] = balanceSet(train, trainLabels);
svmModel = svmtrain(trainLabels, train, [' -t 0 -c ' num2str(C) ' -b 1']);
[predicted_label, accuracy, prob_estimates] = svmpredict(testLabels, test, svmModel,' -b 1');