forked from fishercoder1534/Leetcode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_980.java
97 lines (91 loc) · 3.56 KB
/
_980.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
package com.fishercoder.solutions;
/**
* 980. Unique Paths III
*
* On a 2-dimensional grid, there are 4 types of squares:
* 1 represents the starting square. There is exactly one starting square.
* 2 represents the ending square. There is exactly one ending square.
* 0 represents empty squares we can walk over.
* -1 represents obstacles that we cannot walk over.
* Return the number of 4-directional walks from the starting square to the ending square, that walk over every non-obstacle square exactly once.
*
* Example 1:
* Input: [[1,0,0,0],[0,0,0,0],[0,0,2,-1]]
* Output: 2
* Explanation: We have the following two paths:
* 1. (0,0),(0,1),(0,2),(0,3),(1,3),(1,2),(1,1),(1,0),(2,0),(2,1),(2,2)
* 2. (0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(0,3),(1,3),(1,2),(2,2)
*
* Example 2:
* Input: [[1,0,0,0],[0,0,0,0],[0,0,0,2]]
* Output: 4
* Explanation: We have the following four paths:
* 1. (0,0),(0,1),(0,2),(0,3),(1,3),(1,2),(1,1),(1,0),(2,0),(2,1),(2,2),(2,3)
* 2. (0,0),(0,1),(1,1),(1,0),(2,0),(2,1),(2,2),(1,2),(0,2),(0,3),(1,3),(2,3)
* 3. (0,0),(1,0),(2,0),(2,1),(2,2),(1,2),(1,1),(0,1),(0,2),(0,3),(1,3),(2,3)
* 4. (0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(0,3),(1,3),(1,2),(2,2),(2,3)
*
* Example 3:
* Input: [[0,1],[2,0]]
* Output: 0
* Explanation:
* There is no path that walks over every empty square exactly once.
* Note that the starting and ending square can be anywhere in the grid.
*
* Note:
* 1 <= grid.length * grid[0].length <= 20
* */
public class _980 {
public static class Solution1 {
int[] directions = new int[]{0, 1, 0, -1, 0};
int paths = 0;
public int uniquePathsIII(int[][] grid) {
int[] start = findStart(grid);
int m = grid.length;
int n = grid[0].length;
boolean[][] visited = new boolean[m][n];
visited[start[0]][start[1]] = true;
return backtracking(grid, m, n, visited, start);
}
private int backtracking(int[][] grid, int m, int n, boolean[][] visited, int[] start) {
for (int i = 0; i < directions.length - 1; i++) {
int nextX = directions[i] + start[0];
int nextY = directions[i + 1] + start[1];
if (nextX >= 0 && nextX < m && nextY >= 0 && nextY < n && grid[nextX][nextY] != -1 && !visited[nextX][nextY]) {
if (grid[nextX][nextY] == 2) {
if (allZeroesVisited(visited, grid)) {
paths++;
return paths;
} else {
continue;
}
}
visited[nextX][nextY] = true;
backtracking(grid, m, n, visited, new int[]{nextX, nextY});
visited[nextX][nextY] = false;
}
}
return paths;
}
private boolean allZeroesVisited(boolean[][] visited, int[][] grid) {
for (int i = 0; i < grid.length; i++) {
for (int j = 0; j < grid[0].length; j++) {
if (grid[i][j] == 0 && !visited[i][j]) {
return false;
}
}
}
return true;
}
private int[] findStart(int[][] grid) {
for (int i = 0; i < grid.length; i++) {
for (int j = 0; j < grid[0].length; j++) {
if (grid[i][j] == 1) {
return new int[]{i, j};
}
}
}
return null;
}
}
}