forked from fishercoder1534/Leetcode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_840.java
81 lines (75 loc) · 2.48 KB
/
_840.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
package com.fishercoder.solutions;
import java.util.HashSet;
import java.util.Set;
/**
* 840. Magic Squares In Grid
*
* A 3 x 3 magic square is a 3 x 3 grid filled with distinct numbers from 1 to 9 such that each row,
* column, and both diagonals all have the same sum.
*
* Given an grid of integers, how many 3 x 3 "magic square" subgrids are there? (Each subgrid is contiguous).
*
* Example 1:
*
* Input: [[4,3,8,4],
* [9,5,1,9],
* [2,7,6,2]]
*
* Output: 1
*
* Explanation:
* The following subgrid is a 3 x 3 magic square:
* 438
* 951
* 276
*
* while this one is not:
* 384
* 519
* 762
*
* In total, there is only one magic square inside the given grid.
* Note:
*
* 1 <= grid.length <= 10
* 1 <= grid[0].length <= 10
* 0 <= grid[i][j] <= 15
*/
public class _840 {
public static class Solution1 {
public int numMagicSquaresInside(int[][] grid) {
int m = grid.length;
int n = grid[0].length;
int count = 0;
for (int i = 0; i < m - 2; i++) {
for (int j = 0; j < n - 2; j++) {
Set<Integer> set = new HashSet<>();
int sum = grid[i][j] + grid[i][j + 1] + grid[i][j + 2];
if (sum == grid[i + 1][j] + grid[i + 1][j + 1] + grid[i + 1][j + 2]
&& sum == grid[i + 2][j] + grid[i + 2][j + 1] + grid[i + 2][j + 2]
&& sum == grid[i][j] + grid[i + 1][j] + grid[i + 2][j]
&& sum == grid[i][j + 1] + grid[i + 1][j + 1] + grid[i + 2][j + 1]
&& sum == grid[i][j + 2] + grid[i + 1][j + 2] + grid[i + 2][j + 2]
&& sum == grid[i][j] + grid[i + 1][j + 1] + grid[i + 2][j + 2]
&& sum == grid[i][j + 2] + grid[i + 1][j + 1] + grid[i + 2][j]
&& set.add(grid[i][j]) && isLegit(grid[i][j])
&& set.add(grid[i][j + 1]) && isLegit(grid[i][j + 1])
&& set.add(grid[i][j + 2]) && isLegit(grid[i][j + 2])
&& set.add(grid[i + 1][j]) && isLegit(grid[i + 1][j])
&& set.add(grid[i + 1][j + 1]) && isLegit(grid[i + 1][j + 1])
&& set.add(grid[i + 1][j + 2]) && isLegit(grid[i + 1][j + 2])
&& set.add(grid[i + 2][j]) && isLegit(grid[i + 2][j])
&& set.add(grid[i + 2][j + 1]) && isLegit(grid[i + 2][j + 1])
&& set.add(grid[i + 2][j + 2]) && isLegit(grid[i + 2][j + 2])
) {
count++;
}
}
}
return count;
}
private boolean isLegit(int num) {
return num <= 9 && num >= 1;
}
}
}