forked from fishercoder1534/Leetcode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_483.java
69 lines (57 loc) · 1.87 KB
/
_483.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
package com.fishercoder.solutions;
import java.math.BigInteger;
/**
* 483. Smallest Good Base
*
* For an integer n, we call k>=2 a good base of n, if all digits of n base k are 1.
Now given a string representing n, you should return the smallest good base of n in string format.
Example 1:
Input: "13"
Output: "3"
Explanation: 13 base 3 is 111.
Example 2:
Input: "4681"
Output: "8"
Explanation: 4681 base 8 is 11111.
Example 3:
Input: "1000000000000000000"
Output: "999999999999999999"
Explanation: 1000000000000000000 base 999999999999999999 is 11.
Note:
The range of n is [3, 10^18].
The string representing n is always valid and will not have leading zeros.
*/
public class _483 {
public static class Solution1 {
/**
* credit: https://discuss.leetcode.com/topic/82130/java-solution-with-hand-writing-explain
*/
public String smallestGoodBase(String n) {
long nn = Long.parseLong(n);
long res = 0;
for (int k = 60; k >= 2; k--) {
long start = 2;
long end = nn;
while (start < end) {
long m = start + (end - start) / 2;
BigInteger left = BigInteger.valueOf(m);
left = left.pow(k).subtract(BigInteger.ONE);
BigInteger right = BigInteger.valueOf(nn).multiply(BigInteger.valueOf(m).subtract(BigInteger.ONE));
int cmr = left.compareTo(right);
if (cmr == 0) {
res = m;
break;
} else if (cmr < 0) {
start = m + 1;
} else {
end = m;
}
}
if (res != 0) {
break;
}
}
return "" + res;
}
}
}