forked from fishercoder1534/Leetcode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_110.java
89 lines (74 loc) · 2.15 KB
/
_110.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
package com.fishercoder.solutions;
import com.fishercoder.common.classes.TreeNode;
/**
* 110. Balanced Binary Tree
*
* Given a binary tree, determine if it is height-balanced.
* For this problem, a height-balanced binary tree is defined as a binary tree in which
* the depth of the two subtrees of every node never differ by more than 1.
Example 1:
Given the following tree [3,9,20,null,null,15,7]:
3
/ \
9 20
/ \
15 7
Return true.
Example 2:
Given the following tree [1,2,2,3,3,null,null,4,4]:
1
/ \
2 2
/ \
3 3
/ \
4 4
Return false.
*/
public class _110 {
public static class Solution1 {
//recursively get the height of each subtree of each node, compare their difference, if greater than 1, then return false
//although this is working, but it's not efficient, since it repeatedly computes the heights of each node every time
//Its time complexity is O(n^2).
public boolean isBalanced(TreeNode root) {
if (root == null) {
return true;
}
if (Math.abs(getH(root.left) - getH(root.right)) > 1) {
return false;
} else {
return isBalanced(root.left) && isBalanced(root.right);
}
}
private int getH(TreeNode root) {
if (root == null) {
return 0;//base case
}
int leftH = getH(root.left);
int rightH = getH(root.right);
return Math.max(leftH, rightH) + 1;
}
}
public static class Solution2 {
public boolean isBalanced(TreeNode root) {
return getH(root) != -1;
}
private int getH(TreeNode root) {
if (root == null) {
return 0;
}
int leftH = getH(root.left);
if (leftH == -1) {
return -1;
}
int rightH = getH(root.right);
if (rightH == -1) {
return -1;
}
if (Math.abs(leftH - rightH) > 1) {
return -1;
}
return Math.max(leftH, rightH) + 1;
}
}
}