-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathmain.py
executable file
·149 lines (120 loc) · 7.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# import needed libraries
import click
import glob
import pandas as pd
import pickle
from datetime import date, datetime
from typing import Tuple
from omop2obo import ConceptAnnotator, OntologyDownloader, OntologyInfoExtractor, SimilarStringFinder
from omop2obo.utils import aggregates_mapping_results
@click.command()
@click.option('--ont_file', type=click.Path(exists=True), required=True, default='resources/ontology_source_list.txt')
@click.option('--tfidf_mapping', required=True, default='no')
@click.option('--clinical_domain', required=True)
@click.option('--merge', required=True, multiple=True, default='True or False - UMLS Expanded Merge')
@click.option('--onts', required=True, multiple=True, default=['List'])
@click.option('--clinical_data', type=click.Path(exists=True), required=True)
@click.option('--primary_key', required=True, default='CONCEPT_ID')
@click.option('--concept_codes', required=True, multiple=True, default=['CONCEPT_SOURCE_CODE'])
@click.option('--concept_strings', multiple=True, default=['CONCEPT_LABEL', 'CONCEPT_SYNONYM'])
@click.option('--ancestor_codes', multiple=True, default=['ANCESTOR_SOURCE_CODE'])
@click.option('--ancestor_strings', multiple=True, default=['ANCESTOR_LABEL', 'ANCESTOR_SYNONYM'])
@click.option('--outfile', required=True, default='./resources/mapping/OMOP2OBO_MAPPED_')
def main(ont_file: str, tfidf_mapping: str, clinical_domain: str, onts: list, clinical_data: str, primary_key: str,
concept_codes: Tuple, concept_strings: Tuple, ancestor_codes: Tuple, ancestor_strings: Tuple,
merge: bool, outfile: str):
"""The OMOP2OBO package provides functionality to assist with mapping OMOP standard clinical terminology concepts to
OBO terms. Successfully running this program requires several input parameters, which are specified below:
PARAMETERS:
ont_file: 'resources/oontology_source_list.txt'
tfidf_mapping: "yes" if want to perform cosine similarity mapping using a TF-IDF matrix.
clinical_domain: clinical domain of input data (i.e. "conditions", "drugs", or "measurements").
onts: A comma-separated list of ontology prefixes that matches 'resources/oontology_source_list.txt'.
clinical_data: The filepath to the clinical data needing mapping.
primary_key: The name of the file to use as the primary key.
concept_codes: A comma-separated list of concept-level codes to use for DbXRef mapping.
concept_strings: A comma-separated list of concept-level strings to map to use for exact string mapping.
ancestor_codes: A comma-separated list of ancestor-level codes to use for DbXRef mapping.
ancestor_strings: A comma-separated list of ancestor-level strings to map to use for exact string mapping.
merge: A bool specifying whether to merge UMLS SAB codes with OMOP source codes once or twice.
Merging once will only align OMOP source codes to UMLS SAB, twice with take the CUIs from the first merge
and merge them again with the full UMLS SAB set resulting in a larger set of matches. The default value
is True, which means that the merge will be performed twice.
outfile: The filepath for where to write output data to.
Several dependencies must be addressed before running this file. Please see the README for instructions.
"""
######################
# PROCESS ONTOLOGIES #
######################
# download ontologies
ont = OntologyDownloader(ont_file)
ont.downloads_data_from_url()
# process ontologies
ont_explorer = OntologyInfoExtractor('resources/ontologies', ont.data_files)
ont_explorer.ontology_processor()
# create master dictionary of processed ontologies
ont_explorer.ontology_loader()
# read in ontology data
with open('resources/ontologies/master_ontology_dictionary.pickle', 'rb') as handle:
ont_data = pickle.load(handle)
handle.close()
#########################
# PROCESS CLINICAL DATA #
########################
date_today = '_' + datetime.strftime(datetime.strptime(str(date.today()), '%Y-%m-%d'), '%d%b%Y').upper()
mapper = ConceptAnnotator(clinical_file=clinical_data,
ontology_dictionary={k: v for k, v in ont_data.items() if k in onts},
umls_expand=merge,
primary_key=primary_key,
concept_codes=concept_codes,
concept_strings=concept_strings,
ancestor_codes=ancestor_codes,
ancestor_strings=ancestor_strings,
umls_mrconso_file=glob.glob('resources/mappings/*MRCONSO*')[0]
if len(glob.glob('resources/mappings/*MRCONSO*')) > 0 else None,
umls_mrsty_file=glob.glob('resources/mappings/*MRSTY*')[0]
if len(glob.glob('resources/mappings/*MRSTY*')) > 0 else None)
mappings = mapper.clinical_concept_mapper()
# get column names -- used later to organize output
start_cols = [i for i in mappings.columns if not any(j for j in ['STR', 'DBXREF', 'EVIDENCE'] if j in i)]
exact_cols = [i for i in mappings.columns if i not in start_cols]
print('\nSaving Results: {}'.format('Exact Match'))
mappings.to_csv(outfile + clinical_domain.upper() + date_today + '.csv', sep=',', index=False, header=True)
# STEP 4: TF-IDF SIMILARITY MAPPING
# searches top 10 highest results and currently keeps the top 75th percentile among scores >=0.25
if tfidf_mapping is not None:
sim = SimilarStringFinder(clinical_file=clinical_data,
ontology_dictionary={k: v for k, v in ont_data.items() if k in onts},
primary_key=primary_key,
concept_strings=concept_strings)
sim_mappings = sim.performs_similarity_search()
# get column names -- used later to organize output
sim_mappings = sim_mappings[[primary_key] + [x for x in sim_mappings.columns if 'SIM' in x]].drop_duplicates()
sim_cols = [i for i in sim_mappings.columns if not any(j for j in start_cols if j in i)]
# merge dbXref, exact string, and TF-IDF similarity results
merged_scores = pd.merge(mappings, sim_mappings, how='left', on=primary_key)
mappings = merged_scores[start_cols + exact_cols + sim_cols]
print('\nSaving Results: {}'.format('TF-IDF Cosine Similarity'))
mappings.to_csv(outfile + clinical_domain.upper() + date_today + '.csv', sep=',', index=False, header=True)
# clean up output
if clinical_domain == 'LABS':
result_type_idx, updated_data = list(mappings.columns).index('RESULT_TYPE'), []
for idx, row in mappings.iterrows():
if row['RESULT_TYPE'] == 'Normal/Low/High' or row['RESULT_TYPE'] == 'Negative/Positive':
for x in row['RESULT_TYPE'].split('/'):
updated = list(row)
updated[result_type_idx] = x
updated_data.append(updated)
else:
updated_data.append(list(row))
# replace values
data_expanded = pd.DataFrame(updated_data, columns=list(mappings.columns))
else:
data_expanded = mappings.copy()
data_expanded.fillna('', inplace=True)
updated_maps = aggregates_mapping_results(data_expanded, onts, ont_data, mapper.source_code_map, 0.25)
updated_maps.to_csv(outfile + clinical_domain.upper() + date_today + '.csv', sep=',', index=False, header=True)
if __name__ == '__main__':
main()