-
Notifications
You must be signed in to change notification settings - Fork 37
/
main.py
1031 lines (864 loc) · 47 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import cv2
import numpy as np
import time
import json
from flask import Flask, render_template, request, Response
from flask_cors import CORS, cross_origin
from threading import Timer, Lock, Event, Thread
import os
import shutil
import mediapipe as mp
from collections import deque
import _thread
import logging
import serial
import queue
import statistics
from PIL import Image
from dotenv import load_dotenv
import dotenv
# from cast_service import CastSoundService
from http.server import HTTPServer, SimpleHTTPRequestHandler
from helpers import check_eyes_open, set_hatch, check_mouth_open, maintain_aspect_ratio_resize, gamma_correction
import matplotlib.pyplot as plt
import skimage
from skimage import measure, io, color, data
from skimage.filters import meijering, sato, frangi, hessian
from scipy import ndimage as ndi
from skimage.util import random_noise
from skimage import feature
from skimage.color import rgb2gray
from skimage.filters import gaussian, threshold_otsu, threshold_niblack, threshold_sauvola, threshold_multiotsu
from skimage.segmentation import active_contour, chan_vese, random_walker
from skimage.feature import hog
from skimage import data, exposure, img_as_float
from skimage.feature import shape_index
from skimage.draw import disk
from skimage.data import page, binary_blobs
from skimage.exposure import rescale_intensity
from sklearn import svm
import pickle
import requests
import datetime
load_dotenv()
dotenv_file = dotenv.find_dotenv()
logfile = os.getenv("APP_DIR") + '/sleepy_logs.log'
logging.basicConfig(filename=logfile,
filemode='a+',
format='%(asctime)s,%(msecs)d %(name)s %(levelname)s %(message)s',
datefmt='%H:%M:%S',
level=logging.INFO)
# Queue shared between the frame publishing thread and the consuming thread
# This is to get around an underlying bug, described at end of this file.
frame_q = deque(maxlen=20)
cropped_raw_frame_q = deque(maxlen=3)
debug_frame_q = deque(maxlen=3)
model_proba = ",,"
allow_model_movement_votes = False
vote_reasons = []
model_sees_baby = None
body_found = False
focus_bounding_box = (None, None, None, None)
classifier_resolution = 256
with open(os.getenv("APP_DIR") + '/user_defined_crop_area.txt', 'r', encoding="utf-8") as f:
crop_area = f.read()
focusRegionArr = crop_area.split(',')
print('reading focusRegionArr: ', focusRegionArr)
if focusRegionArr[0] is '':
focus_bounding_box = (None,None,None,None)
else:
x = int(float(focusRegionArr[0]))
y = int(float(focusRegionArr[1]))
w = int(float(focusRegionArr[2]))
h = int(float(focusRegionArr[3]))
focus_bounding_box = (x,y,w,h)
# load model that finds babies under blankets
lock_model_use = False
creepy_baby_model = None
try:
with open(os.getenv("APP_DIR") + '/blanket_model/creepy_baby_model.pkl', 'rb') as f:
creepy_baby_model = pickle.load(f)
except Exception as e:
print("No blanket model found at startup: ", e)
class SleepyBaby():
# General high level heuristics:
# 1) no eyes -> no body found -> blanket creeper model: BABY -> baby is asleep
# 1) no eyes -> no body found -> blanket creeper model: NO_BABY -> baby is awake
# 1) no eyes -> no body found -> baby is awake
# 2) no eyes -> body found -> moving -> baby is awake
# 3) no eyes -> body found -> not moving -> baby is sleeping
# 4) eyes -> eyes open -> baby is awake (disregard body movement)
# 5) eyes -> eyes closed -> movement -> baby is awake
# 6) eyes -> eyes closed -> no movement -> baby is asleep
# 7) eyes -> eyes closed -> mouth open -> baby is awake
def __init__(self, creepy_baby_model):
self.creepy_baby_model = creepy_baby_model
self.frame_dim = (1920,1080)
self.next_frame = 0
# self.fps = 30
self.fps = 30 # for testing recorded
self.mpPose = mp.solutions.pose
self.mpFace = mp.solutions.face_mesh
self.pose = self.mpPose.Pose(min_detection_confidence=0.3, min_tracking_confidence=0.3)
# TODO: try turning off refine_landmarks for performance, might not be needed
self.face = self.mpFace.FaceMesh(max_num_faces=1, refine_landmarks=True, min_detection_confidence=0.3, min_tracking_confidence=0.3)
self.mpDraw = mp.solutions.drawing_utils
self.mpDrawStyles = mp.solutions.drawing_styles
self.eyes_open_q = deque(maxlen=30)
self.awake_q = deque(maxlen=15)
self.awake_q.append(0)
self.movement_q = deque(maxlen=10)
# self.fd_q = deque(maxlen=2)
self.image_comparison_q = deque(maxlen=2)
self.eyes_open_state = False
self.multi_face_landmarks = []
self.is_awake = False
self.ser = None # serial connection to arduino for controlling demon owl
# If demon owl mode, setup connection to arduino and cast service for playing audio
if os.getenv("OWL", 'False').lower() in ('true', '1'):
print("\nCAWWWWWW\n")
self.cast_service = CastSoundService()
self.ser = serial.Serial('/dev/ttyACM0', 9600, timeout=0)
self.top_lip = frozenset([
(324, 308), (78, 191), (191, 80), (80, 81), (81, 82),
(82, 13), (13, 312), (312, 311), (311, 310),
(310, 415), (415, 308),
(375, 291), (61, 185), (185, 40), (40, 39), (39, 37),
(37, 0), (0, 267),
(267, 269), (269, 270), (270, 409), (409, 291),
])
self.bottom_lip = frozenset([
(61, 146), (146, 91), (91, 181), (181, 84), (84, 17),
(17, 314), (314, 405), (405, 321), (321, 375),
(78, 95), (95, 88), (88, 178), (178, 87), (87, 14),
(14, 317), (317, 402), (402, 318), (318, 324),
])
# Decorator ensures function that can only be called once every `s` seconds.
def debounce(s):
def decorate(f):
t = None
def wrapped(*args, **kwargs):
nonlocal t
t_ = time.time()
if t is None or t_ - t >= s:
result = f(*args, **kwargs)
t = time.time()
return result
return wrapped
return decorate
@debounce(1)
def throttled_handle_no_eyes_found(self):
if(len(self.eyes_open_q) > 0):
logging.info('No face found, depreciate queue')
print('No face found, depreciate queue')
self.eyes_open_q.popleft()
@debounce(1)
def throttled_handle_no_body_found(self):
# TODO: Exploring use of HOG image diffs over time to infer movement
pass
# logging.info('No body found, vote awake')
# print('No body found, vote awake')
# self.awake_q.append(1)
def process_baby_image_models(self, img, debug_img):
results = self.face.process(img)
results_pose = self.pose.process(img)
global body_found
if results_pose.pose_landmarks:
body_found = True
# print("\BODYYYYY\n")
# 15 left-wrist, 16 right-wrist
shape = img.shape
left_wrist_coords = (shape[1] * results_pose.pose_landmarks.landmark[15].x, shape[0] * results_pose.pose_landmarks.landmark[15].y)
right_wrist_coords = (shape[1] * results_pose.pose_landmarks.landmark[16].x, shape[0] * results_pose.pose_landmarks.landmark[16].y)
# print('left wrist: ', left_wrist_coords)
# print('right wrist: ', right_wrist_coords)
self.movement_q.append((left_wrist_coords, right_wrist_coords))
# debug_img = cv2.putText(debug_img, "Left wrist", (int(left_wrist_coords[0]), int(left_wrist_coords[1])), 2, .5, (255,0,0), 2, 2)
# debug_img = cv2.putText(debug_img, "Right wrist", (int(right_wrist_coords[0]), int(right_wrist_coords[1])), 2, .5, (255,0,0), 2, 2)
# if os.getenv("DEBUG", 'False').lower() in ('true', '1'):
CUTOFF_THRESHOLD = 10 # head and face
MY_CONNECTIONS = frozenset([t for t in self.mpPose.POSE_CONNECTIONS if t[0] > CUTOFF_THRESHOLD and t[1] > CUTOFF_THRESHOLD])
# if results_pose.pose_landmarks: # if it finds the points
# for landmark_id, landmark in enumerate(results_pose.pose_landmarks):
# if landmark_id <= CUTOFF_THRESHOLD:
# landmark.visibility = 0
# self.mpDraw.draw_landmarks(debug_img, results_pose.pose_landmarks, MY_CONNECTIONS)
for id, lm in enumerate(results_pose.pose_landmarks.landmark):
if id <= CUTOFF_THRESHOLD:
lm.visibility = 0
continue
h, w,c = debug_img.shape
# print(id, lm)
cx, cy = int(lm.x*w), int(lm.y*h)
cv2.circle(debug_img, (cx, cy), 5, (255,0,0), cv2.FILLED)
self.mpDraw.draw_landmarks(debug_img, results_pose.pose_landmarks, MY_CONNECTIONS, landmark_drawing_spec=self.mpDraw.DrawingSpec(color=(255, 0, 0), thickness=2, circle_radius=2))
# self.mpDraw.draw_landmarks(debug_img, results_pose.pose_landmarks, MY_CONNECTIONS)
# for id, lm in enumerate(results_pose.pose_landmarks.landmark):
# if id < CUTOFF_THRESHOLD:
# continue
# self.mpDraw.draw_landmarks(debug_img, results_pose.pose_landmarks, MY_CONNECTIONS)
# h, w,c = debug_img.shape
# # print(id, lm)
# cx, cy = int(lm.x*w), int(lm.y*h)
# cv2.circle(debug_img, (cx, cy), 5, (255,0,0), cv2.FILLED)
else:
body_found = False
self.throttled_handle_no_body_found()
LEFT_EYE = [362, 382, 381, 380, 374, 373, 390, 249, 263, 466, 388, 387, 386, 385, 384, 398]
RIGHT_EYE = [33, 7, 163, 144, 145, 153, 154, 155, 133, 173, 157, 158, 159, 160, 161, 246]
self.multi_face_landmarks = results.multi_face_landmarks
if results.multi_face_landmarks:
# print("\nEYESSSSS\n")
eyes_are_open = check_eyes_open(results.multi_face_landmarks[0].landmark, img, debug_img, LEFT_EYE, RIGHT_EYE)
# Additionally check if mouth is closed. If not, consider baby crying. Can rely on queue length to ensure
# yawns don't trigger wake
# If mouth is open, override and just consider it, "eyes open", pushing in direction of "wake vote"
if eyes_are_open == 0: # if eyes are closed, then check if mouth is open
mouth_is_open = check_mouth_open(results.multi_face_landmarks[0].landmark)
if mouth_is_open:
logging.info('Eyes closed, mouth open, crying or yawning, consider awake.')
self.eyes_open_q.append(1)
else:
logging.info('Eyes closed, mouth closed, consider sleeping.')
self.eyes_open_q.append(0)
else:
logging.info('Eyes open, consider awake.')
self.eyes_open_q.append(1)
else: # no face results, interpret this as baby is not in crib, i.e. awake
self.throttled_handle_no_eyes_found()
return debug_img, body_found
# This is placeholder until improve sensitivity of transitioning between waking and sleeping.
# Explanation: Sometimes when baby is waking up, he'll open and close his eyes for a couple of minutes...
# TODO: Fine-tune sensitivity of voting, for now, don't allow toggling between wake & sleep within N seconds
@debounce(180)
def write_wakeness_event(self, wake_status, img):
str_timestamp = str(int(time.time()))
sleep_data_base_path = os.getenv("APP_DIR")
p = sleep_data_base_path + '/' + str_timestamp + '.png'
if wake_status: # woke up
log_string = "1," + str_timestamp + "\n"
print(log_string)
logging.info(log_string)
with open(sleep_data_base_path + '/sleep_logs.csv', 'a+', encoding="utf-8") as f:
f.write(log_string)
# cv2.imwrite(p, img) # store off image of when wake/sleep event occurred. Can help with debugging issues
# if daytime, send phone notification if baby woke up
# now = datetime.datetime.now()
# now_time = now.time()
# notifications_enabled = False
# with open(os.getenv("APP_DIR") + '/notifications.txt', 'r', encoding="utf-8") as f:
# notifications_enabled_text = f.read()
# notifications_enabled = notifications_enabled_text == 'true'
# if notifications_enabled and now_time >= datetime.time(7,00) or now_time <= datetime.time(22,00): # day time
# bot_token = os.getenv("TELEGRAM_BOT_TOKEN")
# bot_chat_id = os.getenv("TELEGRAM_BOT_CHAT_ID")
# send_text = 'https://api.telegram.org/bot' + bot_token + '/sendMessage?chat_id=' + bot_chat_id + '&text=' + 'Baby woke up'
# response = requests.get(send_text)
# # Thread(target=telegram_send.send(messages=["Baby woke up."]), daemon=True).start()
self.is_awake = True
if os.getenv("OWL", 'False').lower() in ('true', '1'):
print("MOVE & MAKE NOISE")
logging.info("MOVE & MAKE NOISE")
time.sleep(5)
self.ser.write(bytes(str(999999) + "\n", "utf-8"))
self.cast_service.play_sound()
else: # fell asleep
log_string = "0," + str_timestamp + "\n"
print(log_string)
logging.info(log_string)
with open(sleep_data_base_path + '/sleep_logs.csv', 'a+', encoding="utf-8") as f:
f.write(log_string)
cv2.imwrite(p, img)
self.is_awake = False
# now = datetime.datetime.now()
# now_time = now.time()
# if now_time >= ti(22,00) or now_time <= ti(8,00): # night time
# set_hatch(self.is_awake)
@debounce(10)
def set_wakeness_status(self, img):
if len(self.awake_q):
avg_awake = sum(self.awake_q) / len(self.awake_q)
if avg_awake >= 0.6 and self.is_awake == False:
self.write_wakeness_event(True, img)
elif avg_awake < 0.6 and self.is_awake == True:
self.write_wakeness_event(False, img)
@debounce(1)
def awake_voting_logic(self, debug_img):
if len(self.eyes_open_q) > len(self.eyes_open_q)/2: # dont vote on eyes unless queue is half full
avg = sum(self.eyes_open_q) / len(self.eyes_open_q)
global vote_reasons
if avg > 0.75: # eyes open
self.eyes_open_state = True
print("Eyes open: vote awake")
logging.info("\nvote awake")
self.awake_q.append(3)
vote_reasons.append('Eyes Open')
else: # closed
self.eyes_open_state = False
self.awake_q.append(0)
vote_reasons.append('Eyes Closed')
print("Eyes closed: vote sleeping")
logging.info("\nvote sleeping")
else:
print("Not voting on eyes, eye queue too short.")
@debounce(1)
def movement_voting_logic(self, debug_img, body_found):
if not body_found:
print('No body found, depreciate movement queue.')
if len(self.movement_q):
self.movement_q.popleft()
elif len(self.movement_q) > 5:
left_wrist_list = [c[0] for c in self.movement_q]
left_wrist_x_list = [c[0] for c in left_wrist_list]
left_wrist_y_list = [c[1] for c in left_wrist_list]
right_wrist_list = [c[1] for c in self.movement_q]
right_wrist_x_list = [c[0] for c in right_wrist_list]
right_wrist_y_list = [c[1] for c in right_wrist_list]
std_left_wrist_x = statistics.pstdev(left_wrist_x_list) - 1
std_left_wrist_y = statistics.pstdev(left_wrist_y_list) - 1
std_right_wrist_x = statistics.pstdev(right_wrist_x_list) - 1
std_right_wrist_y = statistics.pstdev(right_wrist_y_list) - 1
# average it all together and compare to movement threshold to determine if moving
avg_std = (((std_left_wrist_x + std_left_wrist_y)/2) + ((std_right_wrist_x + std_right_wrist_y)/2))/2
# print('movement left: ', (std_left_wrist_x + std_left_wrist_y)/2)
# print('movement right: ', (std_right_wrist_x + std_right_wrist_y)/2)
# print('movement value: ', avg_std)
global vote_reasons
if int(avg_std) < 30:
print("No movement, vote sleeping")
logging.info('No movement, vote sleeping')
self.awake_q.append(0)
vote_reasons.append("Not moving")
else:
print("Movement, vote awake")
logging.info("Movement, vote awake")
self.awake_q.append(1)
vote_reasons.append("Moving")
# every N seconds, check if baby is awake & do stuff
@debounce(5)
def periodic_wakeness_check(self):
print('\n', 'Is baby awake:', self.is_awake, '\n')
logging.info('Is baby awake: {}'.format(str(self.is_awake)))
@debounce(1)
def blanket_logic(self, image, body_found, raw_uncropped_image):
# print("Body not found, invoking blanket creeper model.")
# grayscaled = color.rgb2gray(image)
image_gaus = cv2.GaussianBlur(image, (3,3), 0)
# cropped_frame_forced_size = cv2.resize(blurred, (256, 256))
# print('im shape: ', cropped_frame_forced_size.shape)
# fd, hog_image = hog(grayscaled, orientations=8, pixels_per_cell=(16, 16),
# cells_per_block=(1, 1), channel_axis=None, visualize=True)
# hog_image_rescaled = exposure.rescale_intensity(hog_image, out_range=(0, 255)).astype("uint8")
# debug_frame_q.append(hog_image_rescaled)
# self.fd_q.append(fd)
self.image_comparison_q.append(image_gaus)
# print(statistics.pstdev(fd))
global vote_reasons
global allow_model_movement_votes
image_diff = None
if len(self.image_comparison_q) == 2 and allow_model_movement_votes:
allow_model_movement_votes = False
# image_comparison_q
# image_diff = np.linalg.norm(self.image_comparison_q[0] - self.image_comparison_q[1])
try:
image_diff = np.mean(np.abs(self.image_comparison_q[0] - self.image_comparison_q[1]))
except Exception as e:
print("Something went wrong, just bail out on blanket logic this round: ", e)
return
# print('image_diff: ', image_diff)
if image_diff > 75:
print("Movement detected, voting awake.")
print('increase by: ', image_diff/60)
self.awake_q.append(image_diff/60)
vote_reasons.append('Movement')
global model_sees_baby
try:
if not body_found and not lock_model_use:
# y = creepy_baby_model.predict_proba([fd])
y = creepy_baby_model.predict_proba([image_gaus.flatten()])
allow_model_movement_votes = True
print('Model proba: ', y[0])
if y[0][0] > .5:
model_sees_baby = True
print("Blanket creeper found baby, voting asleep.")
self.awake_q.append(0)
vote_reasons.append('Baby present')
if len(self.image_comparison_q) == 2:
if image_diff < 75:
print("Baby not moving.")
self.awake_q.append(0)
vote_reasons.append('Baby not moving')
else:
model_sees_baby = False
print("Blanket creeper doesn't see baby, voting awake.")
self.awake_q.append(1)
vote_reasons.append('No baby present')
global model_proba
proba_string = str(y[0][0]) + ',' + str(y[0][1]) + ',' + str(time.time())
model_proba = proba_string
# with open(os.getenv("APP_DIR") + '/blanket_model/current_output/proba.txt', 'w', encoding="utf-8") as f:
# f.write(proba_string)
# cv2.imwrite(os.getenv("APP_DIR") + '/blanket_model/current_output/raw.png', image)
except Exception as e:
model_sees_baby = None
print("Something went wrong while invoking creepy blanket model: ", e)
cv2.imwrite(os.getenv("APP_DIR") + '/blanket_model/current_output/raw_uncropped.png', raw_uncropped_image)
def frame_logic(self, raw_img, raw_uncropped_image, debug_frame_q):
img = raw_img
debug_img = img.copy()
img.flags.writeable = False
# converted_img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# beef
# res = self.process_baby_image_models(converted_img, debug_img)
res = self.process_baby_image_models(img, debug_img)
debug_img = res[0]
body_found = res[1]
self.awake_voting_logic(debug_img)
self.movement_voting_logic(debug_img, body_found)
self.blanket_logic(img.copy(), body_found, raw_uncropped_image)
self.set_wakeness_status(debug_img)
self.periodic_wakeness_check()
# if os.getenv("DEBUG", 'False').lower() in ('true', '1'):
# # avg_awake = 1
# avg_awake = sum(self.awake_q) / len(self.awake_q)
# # draw progress bar
# bar_y_offset = 0
# bar_y_offset = 0
# bar_width = 200
# w = img.shape[1]
# start_point = (int(w/2 - bar_width/2), 350 + bar_y_offset)
# end_point = (int(w/2 + bar_width/2), 370 + bar_y_offset)
# adj_avg_awake = 1.0 if avg_awake / .6 >= 1.0 else avg_awake / .6
# progress_end_point = (int(w/2 - bar_width/2 + (bar_width*(adj_avg_awake))), 370 + bar_y_offset)
# color = (255, 255, 117)
# progress_color = (0, 0, 255)
# thickness = -1
# debug_img = cv2.rectangle(debug_img, start_point, end_point, color, thickness)
# debug_img = cv2.rectangle(debug_img, start_point, progress_end_point, progress_color, thickness)
# display_perc = int((avg_awake * 100) / 0.6)
# display_perc = 100 if display_perc >= 100 else display_perc
# debug_img = cv2.putText(debug_img, str(display_perc) + "%", (int(w/2 - bar_width/2), 330 + bar_y_offset), 2, 1, (255,0,0), 2, 2)
# debug_img = cv2.putText(debug_img, "Awake", (int(w/2 - bar_width/2 + 85), 330 + bar_y_offset), 2, 1, (255,0,0), 2, 2)
return debug_img
# This basically does the same thing as the live version, but is very useful for testing
def recorded(self, debug_frame_q, cropped_raw_frame_q):
# cap = cv2.VideoCapture(os.getenv("VIDEO_PATH"))
cap = cv2.VideoCapture(os.getenv("APP_DIR") + '/videos/baby-011013-011040.mp4')
# cap = cv2.VideoCapture(os.getenv("APP_DIR") + '/raw_data/babywaking.mp4')
# cap = cv2.VideoCapture(os.getenv("APP_DIR") + '/raw_data/baby_eyes.mp4')
# cap = cv2.VideoCapture(os.getenv("APP_DIR") + '/raw_data/falling_asleep_eyes.mp4')
global focus_bounding_box
global classifier_resolution
success, img = cap.read()
while success:
frame = None
while frame is None:
cur_time = time.time()
if cur_time > self.next_frame:
frame = img
self.next_frame = max(
self.next_frame + 1.0 / self.fps, cur_time + 0.5 / self.fps
)
success, img = cap.read()
if all(e is not None for e in [frame, img]):
# bounds to actual run models/analysis on...no need to look for babies outside of the crib
# x = 550
# y = 250
# h = 700
# w = 550
x = focus_bounding_box[0]
y = focus_bounding_box[1]
w = focus_bounding_box[2]
h = focus_bounding_box[3]
if img.shape[0] > 1080 and img.shape[1] > 1920: # max res 1080p
img, _dim = maintain_aspect_ratio_resize(img, width=self.frame_dim[0], height=self.frame_dim[1])
if x is None:
cropped_raw_frame_q.append(img)
print('Bounds not set, not running AI logic.')
break
img_to_process = img[y:y+h, x:x+w]
# img = maintain_aspect_ratio_resize(img, width=self.frame_dim[0], height=self.frame_dim[1])
img_to_process, dim = maintain_aspect_ratio_resize(img_to_process, width=classifier_resolution)
cropped_raw_frame_q.append(img_to_process)
debug_img = self.frame_logic(img_to_process, img, debug_frame_q)
# reapply cropped and modified/marked up img back to img which is displayed
# img[y:y+h, x:x+w] = debug_img
# global model_sees_baby
# if model_sees_baby is not None:
# if model_sees_baby is None:
# text = 'Pose detected'
# text_color = (255,0,0)
# else:
# text = 'Baby detected' if model_sees_baby else 'Baby not detected'
# text_color = (255,0,0) if model_sees_baby else (0,140,255)
# cv2.putText(debug_img, text, (int(0), int(debug_img.shape[1])), 1, 2, text_color, 2, 2)
# cv2.putText(img, text, (int(img.shape[0]/2) + 250, int(img.shape[1]/2)), 2, 3, text_color, 2, 2)
# cv2.rectangle(img=img, pt1=(x, y), pt2=(x+w, y+h), color=[153,50,204], thickness=2)
# tmp = img[y:y+h, x:x+w]
# img = gamma_correction(img, .4)
if self.multi_face_landmarks:
for face_landmarks in self.multi_face_landmarks:
# INDICIES: https://github.com/tensorflow/tfjs-models/blob/838611c02f51159afdd77469ce67f0e26b7bbb23/face-landmarks-detection/src/mediapipe-facemesh/keypoints.ts
# https://github.com/google/mediapipe/blob/master/mediapipe/python/solutions/face_mesh_connections.py
self.mpDraw.draw_landmarks(
image=debug_img,
landmark_list=face_landmarks,
connections=self.mpFace.FACEMESH_RIGHT_EYE,
landmark_drawing_spec=None,
connection_drawing_spec=self.mpDraw.DrawingSpec(color=(255, 150, 255), thickness=1, circle_radius=1))
# connection_drawing_spec=self.mpDrawStyles
# .get_default_face_mesh_contours_style())
self.mpDraw.draw_landmarks(
image=debug_img,
landmark_list=face_landmarks,
connections=self.mpFace.FACEMESH_LEFT_EYE,
landmark_drawing_spec=None,
connection_drawing_spec=self.mpDraw.DrawingSpec(color=(255, 255, 0), thickness=1, circle_radius=1))
# connection_drawing_spec=self.mpDrawStyles
# .get_default_face_mesh_contours_style())
self.mpDraw.draw_landmarks(
image=debug_img,
landmark_list=face_landmarks,
connections=self.top_lip,
landmark_drawing_spec=None,#self.mpDraw.DrawingSpec(color=(255, 150, 255), thickness=2, circle_radius=2),
connection_drawing_spec=self.mpDraw.DrawingSpec(color=(255, 150, 255), thickness=1, circle_radius=1))
self.mpDraw.draw_landmarks(
image=debug_img,
landmark_list=face_landmarks,
connections=self.bottom_lip,
landmark_drawing_spec=None,
connection_drawing_spec=self.mpDraw.DrawingSpec(color=(255, 255, 0), thickness=1, circle_radius=1))
# img[y:y+h, x:x+w] = tmp
debug_frame_q.append(debug_img)
try:
# img = cv2.resize(img, (960, 540))
# cv2.imshow('baby', img)
cv2.imshow('baby', debug_img)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
except Exception as e:
print("Something went wrong: ", e)
def live(self, consumer_q, debug_frame_q, cropped_raw_frame_q):
img = None
global focus_bounding_box
global classifier_resolution
while True:
if len(consumer_q) > 0:
try:
img = consumer_q.pop() # consume image from queue
except IndexError as e:
print('No images in queue: ', e)
continue
# print('img: ', img)
# bounds to actual run models/analysis on...no need to look for babies outside of the crib
# x = 450
# y = 100
# h = 850
# w = 700
x = focus_bounding_box[0]
y = focus_bounding_box[1]
w = focus_bounding_box[2]
h = focus_bounding_box[3]
if img.shape[0] > 1080 and img.shape[1] > 1920: # max res 1080p
# img = maintain_aspect_ratio_resize(img, width=self.frame_dim[0], height=self.frame_dim[1])
img, _dim = maintain_aspect_ratio_resize(img, width=self.frame_dim[0], height=self.frame_dim[1])
if x is None:
cropped_raw_frame_q.append(img)
print('Bounds not set, not running AI logic.')
continue
img_to_process = img[y:y+h, x:x+w]
og_cropped_dims = img_to_process.shape
# print('og dims: ', og_cropped_dims)
# print('img_to_process: ', img_to_process)
# tmp_img = maintain_aspect_ratio_resize2(img_to_process, .5)
# tmp_img = maintain_aspect_ratio_resize(img_to_process, width=256)
img_to_process, dim = maintain_aspect_ratio_resize(img_to_process, width=classifier_resolution)
# print('shape: ', img_to_process.shape)
# tmp_img = cv2.resize(img_to_process, (256, 256))
cropped_raw_frame_q.append(img_to_process)
# print('len: ', len(cropped_raw_frame_q))
debug_img = self.frame_logic(img_to_process, img, debug_frame_q)
# global model_sees_baby
# global body_found
# if model_sees_baby is not None:
# if model_sees_baby is None:
# text = 'Pose detected'
# text_color = (255,0,0)
# else:
# if not body_found:
# text = 'Baby detected' if model_sees_baby else 'Baby not detected'
# text_color = (255,0,0) if model_sees_baby else (0,140,255)
# cv2.putText(debug_img, text, (int(0), int(debug_img.shape[1]) + 10), 1, 1, text_color, 2, 2)
# cv2.putText(img, text, (int(img.shape[0]/2) + 250, int(img.shape[1]/2)), 2, 3, text_color, 2, 2)
# cv2.rectangle(img=img, pt1=(x, y), pt2=(x+w, y+h), color=[153,50,204], thickness=2)
# tmp = img[y:y+h, x:x+w]
# img = gamma_correction(img, .4)
if self.multi_face_landmarks:
for face_landmarks in self.multi_face_landmarks:
# INDICIES: https://github.com/tensorflow/tfjs-models/blob/838611c02f51159afdd77469ce67f0e26b7bbb23/face-landmarks-detection/src/mediapipe-facemesh/keypoints.ts
# https://github.com/google/mediapipe/blob/master/mediapipe/python/solutions/face_mesh_connections.py
self.mpDraw.draw_landmarks(
image=debug_img,
landmark_list=face_landmarks,
connections=self.mpFace.FACEMESH_RIGHT_EYE,
landmark_drawing_spec=None,
connection_drawing_spec=self.mpDraw.DrawingSpec(color=(255, 150, 255), thickness=1, circle_radius=1))
# connection_drawing_spec=self.mpDrawStyles
# .get_default_face_mesh_contours_style())
self.mpDraw.draw_landmarks(
image=debug_img,
landmark_list=face_landmarks,
connections=self.mpFace.FACEMESH_LEFT_EYE,
landmark_drawing_spec=None,
connection_drawing_spec=self.mpDraw.DrawingSpec(color=(255, 255, 0), thickness=1, circle_radius=1))
# connection_drawing_spec=self.mpDrawStyles
# .get_default_face_mesh_contours_style())
self.mpDraw.draw_landmarks(
image=debug_img,
landmark_list=face_landmarks,
connections=self.top_lip,
landmark_drawing_spec=None,#self.mpDraw.DrawingSpec(color=(255, 150, 255), thickness=2, circle_radius=2),
connection_drawing_spec=self.mpDraw.DrawingSpec(color=(255, 150, 255), thickness=1, circle_radius=1))
self.mpDraw.draw_landmarks(
image=debug_img,
landmark_list=face_landmarks,
connections=self.bottom_lip,
landmark_drawing_spec=None,
connection_drawing_spec=self.mpDraw.DrawingSpec(color=(255, 255, 0), thickness=1, circle_radius=1))
# img[y:y+h, x:x+w] = tmp
debug_frame_q.append(debug_img)
# try:
# # img = cv2.resize(img, (960, 540))
# # cv2.imshow('baby', img)
# cv2.imshow('baby', debug_img)
# if cv2.waitKey(1) & 0xFF == ord('q'):
# break
# except Exception as e:
# print("Something went wrong: ", e)
####################################
# TODO: move out of this file, break it up
print('Initializing...')
sleepy_baby = SleepyBaby(creepy_baby_model)
print('\nInitialization complete.')
# Below http server is used for the web app to request latest sleep data
class CORSRequestHandler(SimpleHTTPRequestHandler):
def end_headers(self):
self.send_header('Access-Control-Allow-Origin', '*')
self.send_header('Access-Control-Allow-Methods', 'GET')
self.send_header('Cache-Control', 'no-store, no-cache, must-revalidate')
return super(CORSRequestHandler, self).end_headers()
def start_server():
httpd = HTTPServer(('0.0.0.0', 8000), CORSRequestHandler)
httpd.serve_forever()
_thread.start_new_thread(start_server, ())
def server(creepy_baby_model, frame_q, debug_frame_q, cropped_raw_frame_q, sleepy_baby):
app = Flask(__name__)
CORS(app)
# # TODO: reuse these, dont hardcode
# x = 450
# y = 100
# h = 850
# w = 700
@app.route('/getClassificationProbabilities')
@cross_origin()
def getClassificationProbabilities():
global model_proba
global body_found
global focus_bounding_box
if focus_bounding_box[0] is None:
print("body_found: ", body_found)
return "Bounds not set." + ',,,' + str(body_found)
return str(model_proba) + ',' + str(body_found)
@app.route('/getResultAndReasons')
@cross_origin()
def getResultAndReasons():
global sleepy_baby
avg_awake = sum(sleepy_baby.awake_q) / len(sleepy_baby.awake_q)
global vote_reasons
return_list = list(set(vote_reasons.copy())) # dedupe
vote_reasons = []
return str(avg_awake) + ',' + ','.join(return_list)
@app.route('/getSleepNotificationsEnabled')
@cross_origin()
def getSleepNotificationsEnabled():
notifications_enabled = None
with open(os.getenv("APP_DIR") + '/notifications.txt', 'r', encoding="utf-8") as f:
notifications_enabled = f.read()
return notifications_enabled
@app.route('/setSleepNotificationsEnabled/<enabled>')
@cross_origin()
def setSleepNotificationsEnabled(enabled):
print('enabled? ', enabled)
with open(os.getenv("APP_DIR") + '/notifications.txt', 'w', encoding="utf-8") as f:
f.write(enabled)
return 'ok'
@app.route('/video_feed/<stream_type>')
@cross_origin()
def video_feed(stream_type):
# if request.method == "OPTIONS": # CORS preflight
# return _build_cors_preflight_response()
global cropped_raw_frame_q
global debug_frame_q
def yield_frame(stream_type):
while True:
ret = False
buffer = None
if stream_type == "processed":
if len(debug_frame_q) > 0:
ret, buffer = cv2.imencode('.jpg', debug_frame_q.popleft())
# debug_frame_q.pop()
else:
if len(cropped_raw_frame_q) > 0:
ret, buffer = cv2.imencode('.jpg', cropped_raw_frame_q.popleft())
# cropped_raw_frame_q.pop()
if ret:
frame = buffer.tobytes()
yield (b'--frame\r\n'
b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n')
print('stream_type: ', stream_type)
return Response(yield_frame(stream_type), mimetype='multipart/x-mixed-replace; boundary=frame')
@app.route('/setAIFocusRegion/<focusRegion>')
@cross_origin()
def setAIFocusRegion(focusRegion):
global focus_bounding_box
global lock_model_use
lock_model_use = True
global creepy_baby_model
global classifier_resolution
if focusRegion == 'reset':
print("RESET")
with open(os.getenv("APP_DIR") + '/user_defined_crop_area.txt', 'w', encoding="utf-8") as f:
f.write(',,,')
focus_bounding_box = (None, None, None, None)
return 'reset ok'
with open(os.getenv("APP_DIR") + '/user_defined_crop_area.txt', 'w', encoding="utf-8") as f:
f.write(focusRegion)
print('focusRegion: ', focusRegion)
focusRegionArr = focusRegion.split(',')
print('focusRegionArr: ', focusRegionArr)
x = int(float(focusRegionArr[0]))
y = int(float(focusRegionArr[1]))
w = int(float(focusRegionArr[2]))
h = int(float(focusRegionArr[3]))
if focus_bounding_box[0] is None:
focus_bounding_box = (x,y,w,h)
else:
curr_x = focus_bounding_box[0]
curr_y = focus_bounding_box[1]
curr_w = focus_bounding_box[2]
curr_h = focus_bounding_box[3]
focus_bounding_box = (curr_x + x, curr_y + y, w, h)
master_image_data_dict = {"baby": [], "no_baby": []}
# large retrain w/ all the raw images, using newly set bounds
# so user doesnt have to restart/recollect from scratch, if updating
input_location = os.getenv("APP_DIR") + '/blanket_model/input'
input_paths = os.listdir(input_location)
for path in input_paths:
all_inputs = os.listdir(f"{input_location}/{path}")
for input in all_inputs:
image_path = f"{input_location}/{path}/{input}"
print('actual file to read: ', image_path)
image = Image.open(image_path)
image_data = np.asarray(image)
if focus_bounding_box[1] is None:
return
cropped_image_data = image_data[focus_bounding_box[1]:focus_bounding_box[1]+focus_bounding_box[3], focus_bounding_box[0]:focus_bounding_box[0]+focus_bounding_box[2]]
cropped_resized_image_data, _dim = maintain_aspect_ratio_resize(cropped_image_data, width=classifier_resolution)
cropped_resized_blurred_image_data = cv2.GaussianBlur(cropped_resized_image_data,(3,3),0)
master_image_data_dict[path].append(cropped_resized_blurred_image_data.flatten().tolist())
cv2.imwrite(f'./tmp/{input}', cropped_resized_blurred_image_data)
with open(os.getenv("APP_DIR") + "/blanket_model/output/image_data.json", "w") as f:
json.dump(master_image_data_dict, f)
# flatten image data for storage
all_images_flat = master_image_data_dict['baby'] + master_image_data_dict['no_baby']
all_labels = (['baby'] * len(master_image_data_dict['baby'])) + (['no_baby'] * len(master_image_data_dict['no_baby']))
# retrain
# final_clf = svm.SVC(probability=True, C=1.0, gamma='auto', kernel='rbf')
final_clf = svm.SVC(probability=True, C=0.1, gamma=0.0001, kernel='poly')
final_clf.fit(all_images_flat, all_labels)
with open(os.getenv("APP_DIR") + '/blanket_model/creepy_baby_model.pkl','wb') as f:
pickle.dump(final_clf,f)
with open(os.getenv("APP_DIR") + '/blanket_model/creepy_baby_model.pkl', 'rb') as f:
creepy_baby_model = pickle.load(f)
lock_model_use = False
print('focus_bounding_box: ', focus_bounding_box)
return 'nice'
@app.route('/retrainWithNewSample/<classification>')
@cross_origin()
def retrainWithNewSample(classification):
try:
global cropped_raw_frame_q
global lock_model_use
lock_model_use = True
global creepy_baby_model
global focus_bounding_box
global classifier_resolution
print("\n\n" + classification + "\n\n")
new_input_location = os.getenv("APP_DIR") + '/blanket_model/input/' + classification + '/' + classification + '_' + str(int(time.time())) + '.png'
# move image indicated by user from current_output dir to input dir
shutil.move(os.getenv("APP_DIR") + "/blanket_model/current_output/raw_uncropped.png", new_input_location)
# read it, move to np
image = Image.open(new_input_location)
image_data = np.asarray(image)
# open & insert into image_data.json, save it off
all_images_dict = {}
with open(os.getenv("APP_DIR") + '/blanket_model/output/image_data.json', "r") as f:
all_images_dict = json.load(f)
cropped_image_data = image_data[focus_bounding_box[1]:focus_bounding_box[1]+focus_bounding_box[3], focus_bounding_box[0]:focus_bounding_box[0]+focus_bounding_box[2]]
cropped_resized_image_data, _dim = maintain_aspect_ratio_resize(cropped_image_data, width=classifier_resolution)
cropped_resized_blurred_image_data = cv2.GaussianBlur(cropped_resized_image_data,(3,3),0)
all_images_dict[classification].append(cropped_resized_blurred_image_data.flatten().tolist())
with open(os.getenv("APP_DIR") + "/blanket_model/output/image_data.json", "w") as f:
json.dump(all_images_dict, f)
# flatten all_fds
all_images_flat = all_images_dict['baby'] + all_images_dict['no_baby']
all_labels = (['baby'] * len(all_images_dict['baby'])) + (['no_baby'] * len(all_images_dict['no_baby']))
# retrain w/ updated all_fds
final_clf = svm.SVC(probability=True, C=0.1, gamma=0.0001, kernel='poly')
# final_clf = svm.SVC(probability=True, C=1.0, gamma='auto', kernel='rbf')
final_clf.fit(all_images_flat, all_labels)
with open(os.getenv("APP_DIR") + '/blanket_model/creepy_baby_model.pkl','wb') as f:
pickle.dump(final_clf,f)
with open(os.getenv("APP_DIR") + '/blanket_model/creepy_baby_model.pkl', 'rb') as f:
creepy_baby_model = pickle.load(f)
except Exception as e:
print("Exception while trying to retrain: ", e)
lock_model_use = False
lock_model_use = False
return "ok"
def _build_cors_preflight_response():
response = make_response()
response.headers.add("Access-Control-Allow-Origin", "*")
response.headers.add('Access-Control-Allow-Headers', "*")
response.headers.add('Access-Control-Allow-Methods', "*")
return response
app.run(debug=True, use_reloader=False, port=8001, host='0.0.0.0')
def receive(producer_q):
print("Start receiving frames.")
cam_url = os.environ['CAM_URL']
print(f"Connecting to camera at: {cam_url}")