-
Notifications
You must be signed in to change notification settings - Fork 110
/
Copy pathdistribution.py
85 lines (74 loc) · 2.89 KB
/
distribution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import matplotlib.pyplot as plt
import numpy as np
import sys
import dataset
import ntpath
from music import autocorrelate, NUM_CLASSES, MIN_CLASS, NOTES_PER_BEAT, NOTE_OFF, NO_EVENT, MIN_NOTE
MIDI_NOTE_RANGE = ['C', 'C#', 'D', 'D#', 'E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B'] * 4 + ['C']
NOTE_LEN_RANGE = ['0', ''] + MIDI_NOTE_RANGE
def plot_note_distribution(melody_list):
for i, (name, melody) in enumerate(melody_list):
fig = plt.figure(figsize=(14, 5))
# Filter out 0's and 1's
# Subtract min class from each note to 0 index the whole list
notes = [x - MIN_CLASS for x in melody if x != 0 and x != 1]
# Plot
plt.hist(notes, bins=np.arange(len(MIDI_NOTE_RANGE) + 1))
plt.ylabel('Note frequency')
plt.xticks(range(len(MIDI_NOTE_RANGE)), MIDI_NOTE_RANGE)
# plt.show()
plt.savefig('out/' + ntpath.basename(name) + ' (note dist).png')
def plot_note_length(melody_list):
for i, (name, melody) in enumerate(melody_list):
# Dict that stores notes and their lengths
note_len_dict = {}
# Initialize keys/values in dict
for i in range(len(NOTE_LEN_RANGE)):
note_len_dict[i] = 0
prev_note = 0
for m in melody:
# Note off
if m == 0:
note_len_dict[0] += 1
# No event
elif m == 1:
note_len_dict[prev_note] += 1
# Note
else:
note_len_dict[m] += 1
prev_note = m
# Convert dict into a list that can be put into histogram
note_lens = []
for k in note_len_dict.keys():
for i in range(note_len_dict[k]):
note_lens.append(k)
# Plot
fig = plt.figure(figsize=(14, 5))
plt.hist(note_lens, bins=np.arange(len(NOTE_LEN_RANGE) + 1))
plt.xlabel('0 represents a rest')
plt.ylabel('Duration in eigth notes')
plt.xticks(range(len(NOTE_LEN_RANGE)), NOTE_LEN_RANGE)
# plt.show()
plt.savefig('out/' + ntpath.basename(name) + ' (note length).png')
def calculate_correlation(melody_list):
correlations = []
for name, melody in melody_list:
correlation = np.sum([autocorrelate(melody, i) ** 2 for i in range(1, 4)])
correlations.append(correlation)
print('Correlation Coefficient (r^2 for 1, 2, 3): ', name, correlation)
print('Mean: ', np.mean(correlations))
print('Std: ', np.std(correlations))
def distributions(paths):
melody_list = dataset.load_melodies(paths, shuffle=False, named=True)
plot_note_distribution(melody_list)
plot_note_length(melody_list)
calculate_correlation(melody_list)
distributions(sys.argv)
"""
NOTES:
2 maps to midi note 36 (MIN_NOTE)
8 numbers in arr forms a bar
2 elements in arr are quarter note
1 element is a half a quarter note, or an eigth note
output a png of plot with plotpy save
"""