-
Notifications
You must be signed in to change notification settings - Fork 2.4k
/
script.go
561 lines (499 loc) · 20.1 KB
/
script.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
// Copyright (c) 2013-2017 The btcsuite developers
// Copyright (c) 2015-2019 The Decred developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package txscript
import (
"bytes"
"fmt"
"strings"
"time"
"github.com/btcsuite/btcd/wire"
)
// Bip16Activation is the timestamp where BIP0016 is valid to use in the
// blockchain. To be used to determine if BIP0016 should be called for or not.
// This timestamp corresponds to Sun Apr 1 00:00:00 UTC 2012.
var Bip16Activation = time.Unix(1333238400, 0)
const (
// TaprootAnnexTag is the tag for an annex. This value is used to
// identify the annex during tapscript spends. If there're at least two
// elements in the taproot witness stack, and the first byte of the
// last element matches this tag, then we'll extract this as a distinct
// item.
TaprootAnnexTag = 0x50
// TaprootLeafMask is the mask applied to the control block to extract
// the leaf version and parity of the y-coordinate of the output key if
// the taproot script leaf being spent.
TaprootLeafMask = 0xfe
)
// These are the constants specified for maximums in individual scripts.
const (
MaxOpsPerScript = 201 // Max number of non-push operations.
MaxPubKeysPerMultiSig = 20 // Multisig can't have more sigs than this.
MaxScriptElementSize = 520 // Max bytes pushable to the stack.
)
// IsSmallInt returns whether or not the opcode is considered a small integer,
// which is an OP_0, or OP_1 through OP_16.
//
// NOTE: This function is only valid for version 0 opcodes. Since the function
// does not accept a script version, the results are undefined for other script
// versions.
func IsSmallInt(op byte) bool {
return op == OP_0 || (op >= OP_1 && op <= OP_16)
}
// IsPayToPubKey returns true if the script is in the standard pay-to-pubkey
// (P2PK) format, false otherwise.
func IsPayToPubKey(script []byte) bool {
return isPubKeyScript(script)
}
// IsPayToPubKeyHash returns true if the script is in the standard
// pay-to-pubkey-hash (P2PKH) format, false otherwise.
func IsPayToPubKeyHash(script []byte) bool {
return isPubKeyHashScript(script)
}
// IsPayToScriptHash returns true if the script is in the standard
// pay-to-script-hash (P2SH) format, false otherwise.
//
// WARNING: This function always treats the passed script as version 0. Great
// care must be taken if introducing a new script version because it is used in
// consensus which, unfortunately as of the time of this writing, does not check
// script versions before determining if the script is a P2SH which means nodes
// on existing rules will analyze new version scripts as if they were version 0.
func IsPayToScriptHash(script []byte) bool {
return isScriptHashScript(script)
}
// IsPayToWitnessScriptHash returns true if the script is in the standard
// pay-to-witness-script-hash (P2WSH) format, false otherwise.
func IsPayToWitnessScriptHash(script []byte) bool {
return isWitnessScriptHashScript(script)
}
// IsPayToWitnessPubKeyHash returns true if the script is in the standard
// pay-to-witness-pubkey-hash (P2WKH) format, false otherwise.
func IsPayToWitnessPubKeyHash(script []byte) bool {
return isWitnessPubKeyHashScript(script)
}
// IsPayToTaproot returns true if the passed script is a standard
// pay-to-taproot (PTTR) scripts, and false otherwise.
func IsPayToTaproot(script []byte) bool {
return isWitnessTaprootScript(script)
}
// IsWitnessProgram returns true if the passed script is a valid witness
// program which is encoded according to the passed witness program version. A
// witness program must be a small integer (from 0-16), followed by 2-40 bytes
// of pushed data.
func IsWitnessProgram(script []byte) bool {
return isWitnessProgramScript(script)
}
// IsNullData returns true if the passed script is a null data script, false
// otherwise.
func IsNullData(script []byte) bool {
const scriptVersion = 0
return isNullDataScript(scriptVersion, script)
}
// ExtractWitnessProgramInfo attempts to extract the witness program version,
// as well as the witness program itself from the passed script.
func ExtractWitnessProgramInfo(script []byte) (int, []byte, error) {
// If at this point, the scripts doesn't resemble a witness program,
// then we'll exit early as there isn't a valid version or program to
// extract.
version, program, valid := extractWitnessProgramInfo(script)
if !valid {
return 0, nil, fmt.Errorf("script is not a witness program, " +
"unable to extract version or witness program")
}
return version, program, nil
}
// IsPushOnlyScript returns whether or not the passed script only pushes data
// according to the consensus definition of pushing data.
//
// WARNING: This function always treats the passed script as version 0. Great
// care must be taken if introducing a new script version because it is used in
// consensus which, unfortunately as of the time of this writing, does not check
// script versions before checking if it is a push only script which means nodes
// on existing rules will treat new version scripts as if they were version 0.
func IsPushOnlyScript(script []byte) bool {
const scriptVersion = 0
tokenizer := MakeScriptTokenizer(scriptVersion, script)
for tokenizer.Next() {
// All opcodes up to OP_16 are data push instructions.
// NOTE: This does consider OP_RESERVED to be a data push instruction,
// but execution of OP_RESERVED will fail anyway and matches the
// behavior required by consensus.
if tokenizer.Opcode() > OP_16 {
return false
}
}
return tokenizer.Err() == nil
}
// DisasmString formats a disassembled script for one line printing. When the
// script fails to parse, the returned string will contain the disassembled
// script up to the point the failure occurred along with the string '[error]'
// appended. In addition, the reason the script failed to parse is returned
// if the caller wants more information about the failure.
//
// NOTE: This function is only valid for version 0 scripts. Since the function
// does not accept a script version, the results are undefined for other script
// versions.
func DisasmString(script []byte) (string, error) {
const scriptVersion = 0
var disbuf strings.Builder
tokenizer := MakeScriptTokenizer(scriptVersion, script)
if tokenizer.Next() {
disasmOpcode(&disbuf, tokenizer.op, tokenizer.Data(), true)
}
for tokenizer.Next() {
disbuf.WriteByte(' ')
disasmOpcode(&disbuf, tokenizer.op, tokenizer.Data(), true)
}
if tokenizer.Err() != nil {
if tokenizer.ByteIndex() != 0 {
disbuf.WriteByte(' ')
}
disbuf.WriteString("[error]")
}
return disbuf.String(), tokenizer.Err()
}
// removeOpcodeRaw will return the script after removing any opcodes that match
// `opcode`. If the opcode does not appear in script, the original script will
// be returned unmodified. Otherwise, a new script will be allocated to contain
// the filtered script. This method assumes that the script parses
// successfully.
//
// NOTE: This function is only valid for version 0 scripts. Since the function
// does not accept a script version, the results are undefined for other script
// versions.
func removeOpcodeRaw(script []byte, opcode byte) []byte {
// Avoid work when possible.
if len(script) == 0 {
return script
}
const scriptVersion = 0
var result []byte
var prevOffset int32
tokenizer := MakeScriptTokenizer(scriptVersion, script)
for tokenizer.Next() {
if tokenizer.Opcode() == opcode {
if result == nil {
result = make([]byte, 0, len(script))
result = append(result, script[:prevOffset]...)
}
} else if result != nil {
result = append(result, script[prevOffset:tokenizer.ByteIndex()]...)
}
prevOffset = tokenizer.ByteIndex()
}
if result == nil {
return script
}
return result
}
// isCanonicalPush returns true if the opcode is either not a push instruction
// or the data associated with the push instruction uses the smallest
// instruction to do the job. False otherwise.
//
// For example, it is possible to push a value of 1 to the stack as "OP_1",
// "OP_DATA_1 0x01", "OP_PUSHDATA1 0x01 0x01", and others, however, the first
// only takes a single byte, while the rest take more. Only the first is
// considered canonical.
func isCanonicalPush(opcode byte, data []byte) bool {
dataLen := len(data)
if opcode > OP_16 {
return true
}
if opcode < OP_PUSHDATA1 && opcode > OP_0 && (dataLen == 1 && data[0] <= 16) {
return false
}
if opcode == OP_PUSHDATA1 && dataLen < OP_PUSHDATA1 {
return false
}
if opcode == OP_PUSHDATA2 && dataLen <= 0xff {
return false
}
if opcode == OP_PUSHDATA4 && dataLen <= 0xffff {
return false
}
return true
}
// removeOpcodeByData will return the script minus any opcodes that perform a
// canonical push of data that contains the passed data to remove. This
// function assumes it is provided a version 0 script as any future version of
// script should avoid this functionality since it is unnecessary due to the
// signature scripts not being part of the witness-free transaction hash.
//
// WARNING: This will return the passed script unmodified unless a modification
// is necessary in which case the modified script is returned. This implies
// callers may NOT rely on being able to safely mutate either the passed or
// returned script without potentially modifying the same data.
//
// NOTE: This function is only valid for version 0 scripts. Since the function
// does not accept a script version, the results are undefined for other script
// versions.
func removeOpcodeByData(script []byte, dataToRemove []byte) ([]byte, bool) {
// Avoid work when possible.
if len(script) == 0 || len(dataToRemove) == 0 {
return script, false
}
// Parse through the script looking for a canonical data push that contains
// the data to remove.
const scriptVersion = 0
var result []byte
var prevOffset int32
var match bool
tokenizer := MakeScriptTokenizer(scriptVersion, script)
for tokenizer.Next() {
var found bool
result, prevOffset, found = removeOpcodeCanonical(
&tokenizer, script, dataToRemove, prevOffset, result,
)
if found {
match = true
}
}
if result == nil {
result = script
}
return result, match
}
func removeOpcodeCanonical(t *ScriptTokenizer, script, dataToRemove []byte,
prevOffset int32, result []byte) ([]byte, int32, bool) {
var found bool
// In practice, the script will basically never actually contain the
// data since this function is only used during signature verification
// to remove the signature itself which would require some incredibly
// non-standard code to create.
//
// Thus, as an optimization, avoid allocating a new script unless there
// is actually a match that needs to be removed.
op, data := t.Opcode(), t.Data()
if isCanonicalPush(op, data) && bytes.Equal(data, dataToRemove) {
if result == nil {
fullPushLen := t.ByteIndex() - prevOffset
result = make([]byte, 0, int32(len(script))-fullPushLen)
result = append(result, script[0:prevOffset]...)
}
found = true
} else if result != nil {
result = append(result, script[prevOffset:t.ByteIndex()]...)
}
return result, t.ByteIndex(), found
}
// AsSmallInt returns the passed opcode, which must be true according to
// IsSmallInt(), as an integer.
func AsSmallInt(op byte) int {
if op == OP_0 {
return 0
}
return int(op - (OP_1 - 1))
}
// countSigOpsV0 returns the number of signature operations in the provided
// script up to the point of the first parse failure or the entire script when
// there are no parse failures. The precise flag attempts to accurately count
// the number of operations for a multisig operation versus using the maximum
// allowed.
//
// WARNING: This function always treats the passed script as version 0. Great
// care must be taken if introducing a new script version because it is used in
// consensus which, unfortunately as of the time of this writing, does not check
// script versions before counting their signature operations which means nodes
// on existing rules will count new version scripts as if they were version 0.
func countSigOpsV0(script []byte, precise bool) int {
const scriptVersion = 0
numSigOps := 0
tokenizer := MakeScriptTokenizer(scriptVersion, script)
prevOp := byte(OP_INVALIDOPCODE)
for tokenizer.Next() {
switch tokenizer.Opcode() {
case OP_CHECKSIG, OP_CHECKSIGVERIFY:
numSigOps++
case OP_CHECKMULTISIG, OP_CHECKMULTISIGVERIFY:
// Note that OP_0 is treated as the max number of sigops here in
// precise mode despite it being a valid small integer in order to
// highly discourage multisigs with zero pubkeys.
//
// Also, even though this is referred to as "precise" counting, it's
// not really precise at all due to the small int opcodes only
// covering 1 through 16 pubkeys, which means this will count any
// more than that value (e.g. 17, 18 19) as the maximum number of
// allowed pubkeys. This is, unfortunately, now part of
// the Bitcoin consensus rules, due to historical
// reasons. This could be made more correct with a new
// script version, however, ideally all multisignaure
// operations in new script versions should move to
// aggregated schemes such as Schnorr instead.
if precise && prevOp >= OP_1 && prevOp <= OP_16 {
numSigOps += AsSmallInt(prevOp)
} else {
numSigOps += MaxPubKeysPerMultiSig
}
default:
// Not a sigop.
}
prevOp = tokenizer.Opcode()
}
return numSigOps
}
// GetSigOpCount provides a quick count of the number of signature operations
// in a script. a CHECKSIG operations counts for 1, and a CHECK_MULTISIG for 20.
// If the script fails to parse, then the count up to the point of failure is
// returned.
//
// WARNING: This function always treats the passed script as version 0. Great
// care must be taken if introducing a new script version because it is used in
// consensus which, unfortunately as of the time of this writing, does not check
// script versions before counting their signature operations which means nodes
// on existing rules will count new version scripts as if they were version 0.
func GetSigOpCount(script []byte) int {
return countSigOpsV0(script, false)
}
// finalOpcodeData returns the data associated with the final opcode in the
// script. It will return nil if the script fails to parse.
func finalOpcodeData(scriptVersion uint16, script []byte) []byte {
// Avoid unnecessary work.
if len(script) == 0 {
return nil
}
var data []byte
tokenizer := MakeScriptTokenizer(scriptVersion, script)
for tokenizer.Next() {
data = tokenizer.Data()
}
if tokenizer.Err() != nil {
return nil
}
return data
}
// GetPreciseSigOpCount returns the number of signature operations in
// scriptPubKey. If bip16 is true then scriptSig may be searched for the
// Pay-To-Script-Hash script in order to find the precise number of signature
// operations in the transaction. If the script fails to parse, then the count
// up to the point of failure is returned.
//
// WARNING: This function always treats the passed script as version 0. Great
// care must be taken if introducing a new script version because it is used in
// consensus which, unfortunately as of the time of this writing, does not check
// script versions before counting their signature operations which means nodes
// on existing rules will count new version scripts as if they were version 0.
//
// The third parameter is DEPRECATED and is unused.
func GetPreciseSigOpCount(scriptSig, scriptPubKey []byte, _ bool) int {
const scriptVersion = 0
// Treat non P2SH transactions as normal. Note that signature operation
// counting includes all operations up to the first parse failure.
if !isScriptHashScript(scriptPubKey) {
return countSigOpsV0(scriptPubKey, true)
}
// The signature script must only push data to the stack for P2SH to be
// a valid pair, so the signature operation count is 0 when that is not
// the case.
if len(scriptSig) == 0 || !IsPushOnlyScript(scriptSig) {
return 0
}
// The P2SH script is the last item the signature script pushes to the
// stack. When the script is empty, there are no signature operations.
//
// Notice that signature scripts that fail to fully parse count as 0
// signature operations unlike public key and redeem scripts.
redeemScript := finalOpcodeData(scriptVersion, scriptSig)
if len(redeemScript) == 0 {
return 0
}
// Return the more precise sigops count for the redeem script. Note that
// signature operation counting includes all operations up to the first
// parse failure.
return countSigOpsV0(redeemScript, true)
}
// GetWitnessSigOpCount returns the number of signature operations generated by
// spending the passed pkScript with the specified witness, or sigScript.
// Unlike GetPreciseSigOpCount, this function is able to accurately count the
// number of signature operations generated by spending witness programs, and
// nested p2sh witness programs. If the script fails to parse, then the count
// up to the point of failure is returned.
func GetWitnessSigOpCount(sigScript, pkScript []byte, witness wire.TxWitness) int {
// If this is a regular witness program, then we can proceed directly
// to counting its signature operations without any further processing.
if isWitnessProgramScript(pkScript) {
return getWitnessSigOps(pkScript, witness)
}
// Next, we'll check the sigScript to see if this is a nested p2sh
// witness program. This is a case wherein the sigScript is actually a
// datapush of a p2wsh witness program.
if isScriptHashScript(pkScript) && IsPushOnlyScript(sigScript) &&
len(sigScript) > 0 && isWitnessProgramScript(sigScript[1:]) {
return getWitnessSigOps(sigScript[1:], witness)
}
return 0
}
// getWitnessSigOps returns the number of signature operations generated by
// spending the passed witness program wit the passed witness. The exact
// signature counting heuristic is modified by the version of the passed
// witness program. If the version of the witness program is unable to be
// extracted, then 0 is returned for the sig op count.
func getWitnessSigOps(pkScript []byte, witness wire.TxWitness) int {
// Attempt to extract the witness program version.
witnessVersion, witnessProgram, err := ExtractWitnessProgramInfo(
pkScript,
)
if err != nil {
return 0
}
switch witnessVersion {
case BaseSegwitWitnessVersion:
switch {
case len(witnessProgram) == payToWitnessPubKeyHashDataSize:
return 1
case len(witnessProgram) == payToWitnessScriptHashDataSize &&
len(witness) > 0:
witnessScript := witness[len(witness)-1]
return countSigOpsV0(witnessScript, true)
}
// Taproot signature operations don't count towards the block-wide sig
// op limit, instead a distinct weight-based accounting method is used.
case TaprootWitnessVersion:
return 0
}
return 0
}
// checkScriptParses returns an error if the provided script fails to parse.
func checkScriptParses(scriptVersion uint16, script []byte) error {
tokenizer := MakeScriptTokenizer(scriptVersion, script)
for tokenizer.Next() {
// Nothing to do.
}
return tokenizer.Err()
}
// IsUnspendable returns whether the passed public key script is unspendable, or
// guaranteed to fail at execution. This allows outputs to be pruned instantly
// when entering the UTXO set.
//
// NOTE: This function is only valid for version 0 scripts. Since the function
// does not accept a script version, the results are undefined for other script
// versions.
func IsUnspendable(pkScript []byte) bool {
// The script is unspendable if starts with OP_RETURN or is guaranteed
// to fail at execution due to being larger than the max allowed script
// size.
switch {
case len(pkScript) > 0 && pkScript[0] == OP_RETURN:
return true
case len(pkScript) > MaxScriptSize:
return true
}
// The script is unspendable if it is guaranteed to fail at execution.
const scriptVersion = 0
return checkScriptParses(scriptVersion, pkScript) != nil
}
// ScriptHasOpSuccess returns true if any op codes in the script contain an
// OP_SUCCESS op code.
func ScriptHasOpSuccess(witnessScript []byte) bool {
// First, create a new script tokenizer so we can run through all the
// elements.
tokenizer := MakeScriptTokenizer(0, witnessScript)
// Run through all the op codes, returning true if we find anything
// that is marked as a new op success.
for tokenizer.Next() {
if _, ok := successOpcodes[tokenizer.Opcode()]; ok {
return true
}
}
return false
}