-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path2020-03-19-new-cases.Rmd
346 lines (289 loc) · 10.4 KB
/
2020-03-19-new-cases.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
---
title: "New Cases"
description: |
New Cases. Written 3/18, 4:20pm.
site: distill::distill_website
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = FALSE)
install.load::install_load(c('distill','dplyr', 'tidyverse', 'ggplot2', 'plotly', 'rmarkdown', 'magrittr', 'RCurl', 'lubridate', 'DT', 'ggthemes', 'zoo', 'rvest', 'patchwork'))
ggplot2::theme_set(theme_minimal())
read_data <- function(type='Deaths') {
fp_data = paste0('https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_19-covid-', type ,'.csv')
# Read in data
df = read_csv(fp_data) %>%
select(-Lat, -Long) %>%
gather(date_raw, stat,
-`Province/State`, -`Country/Region`) %>%
mutate(date = mdy(date_raw))
df[[type]] = df$stat
# Clean column names
colnames(df) %<>%
tolower() %>%
str_replace_all(fixed('/'), '_') %>%
str_replace_all(fixed(' '), '_')
# Re-label states
states = tibble(state_abb = state.abb, province_state=state.name)
# Join states together
df %<>%
left_join(states, by='province_state') %>%
mutate(us_state = str_extract(province_state, '[A-Z][A-Z]$'),
us_state = ifelse(!is.na(us_state), us_state, state_abb))
# Assert us_state is NA for non-US country_region
stopifnot(is.na(df %>% filter(country_region != 'US') %>% pull(us_state) %>% unique()))
df %>%
select(-stat, -date_raw, -state_abb) %>%
select(country_region, province_state, us_state, date, everything()) %>%
arrange(country_region, province_state, us_state, date) %>%
return()
}
get_df_population <- function(){
df_html = xml2::read_html('http://www.worldometers.info/world-population/population-by-country/') %>%
html_nodes('table') %>%
html_table()
df_pop = df_html[[1]]
colnames(df_pop) %<>%
tolower() %>%
str_replace_all(' ', '_') %>%
str_replace_all('\\(', '_') %>%
str_replace_all('\\)', '_') %>%
str_replace_all(fixed('__'), '_') %>%
str_replace_all('\\_$', '')
df_pop %>%
select(country_or_dependency, population_2020) %>%
rename(pop = population_2020,
country_region = country_or_dependency) %>%
mutate(country_region = ifelse(country_region == 'United States', 'US', country_region),
pop = readr::parse_number(pop))
}
dfd <- read_data(type='Deaths')
dfc <- read_data(type='Confirmed')
dfr <- read_data(type='Recovered')
# join all dataframes together with population
df <- dfd %>%
left_join(dfc) %>%
left_join(dfr) %>%
left_join(get_df_population())
```
```{r}
countries = c('US', 'Spain', 'Italy', 'Germany', 'Iran', 'China')
df_new = df %>%
filter(country_region %in% countries) %>%
group_by(country_region, date) %>%
summarize(deaths = sum(deaths),
confirmed = sum(confirmed),
recovered = sum(recovered),
pop = max(pop)) %>%
mutate(
deaths_pop = deaths/pop,
confirmed_pop = confirmed/pop,
cfr = deaths/confirmed,
cfr2 = deaths/(deaths + recovered),
new_deaths = deaths - lag(deaths),
new_confirmed = confirmed - lag(confirmed),
new_recovered = recovered - lag(recovered),
deaths_ma = zoo::rollmean(new_deaths, k=5, fill=NA),
confirmed_ma = zoo::rollmean(new_confirmed, k=5, fill=NA),
deaths_ma_pop = zoo::rollmean(new_deaths/pop, k=5, fill=NA),
confirmed_ma_pop = zoo::rollmean(new_confirmed/pop, k=5, fill=NA),
confirmed_2daypct = (new_confirmed - lag(new_confirmed, 2))/lag(new_confirmed, 2)
)
#plot_line(v = 'confirmed_2daypct', 'hi', 'lag2 confirmed')
```
## New Cases, Deaths, and CFR
### Confirmed
```{r}
df_new %>%
ggplot(aes(x = date, y = new_confirmed, color = country_region)) +
geom_line() +
scale_color_pander(name='Country') +
labs(title = 'Daily Confirmed Cases by Country',
y = 'Deaths',
x = '',
caption = '\nData Source: github.com/CSSEGISandData/COVID-19\nAnalysis: github.com/bryanwhiting/covid19')
```
### Deaths
```{r}
df_new %>%
ggplot(aes(x = date, y = new_deaths, color = country_region)) +
geom_line() +
scale_color_pander(name='Country') +
theme(legend.position = 'top') +
labs(title = 'Daily Deaths by Country',
y = 'Deaths',
x = '',
caption = '\nData Source: github.com/CSSEGISandData/COVID-19\nAnalysis: github.com/bryanwhiting/covid19')
```
### Deaths (Scaled by Population)
```{r}
df_new %>%
ggplot(aes(x = date, y = deaths_pop, color = country_region)) +
geom_line() +
scale_y_continuous(labels = scales::percent) +
scale_color_pander(name='Country') +
theme(legend.position = 'top') +
labs(title = 'Daily Deaths by Country, Scaled by Population',
y = 'Deaths/Population Size',
x = '',
caption = '\nData Source: github.com/CSSEGISandData/COVID-19\nAnalysis: github.com/bryanwhiting/covid19')
```
### Recovered
```{r}
df_new %>%
ggplot(aes(x = date, y = new_recovered, color = country_region)) +
geom_line() +
scale_color_pander(name='Country') +
theme(legend.position = 'top') +
labs(title = 'Daily Recovered by Country',
y = 'Recovered',
x = '',
caption = '\nData Source: github.com/CSSEGISandData/COVID-19\nAnalysis: github.com/bryanwhiting/covid19')
```
## Cumulative Confirmed, Deaths, Recovered
```{r cumulative, results='asis'}
plot_line <- function(v, title, ytitle, ...) {
p <- df_new %>%
ggplot(aes_string(x = 'date', y = v, color = 'country_region')) +
geom_line() +
scale_color_pander(name='Country') +
theme(legend.position = 'top') +
labs(title = title,
y = ytitle,
x = '',
caption = '\nData Source: github.com/CSSEGISandData/COVID-19\nAnalysis: github.com/bryanwhiting/covid19',
...)
if (str_detect(v, 'pop')){
p <- p + scale_y_continuous(labels = scales::percent)
}
return(p)
}
```
## New Confirmed Cases, Deaths, and Recovered
```{r}
p1 = plot_line(v='new_confirmed',
title = 'Daily Confirmed Cases',
ytitle = '')
p2 = plot_line(v='new_deaths',
title = 'Daily Deaths',
ytitle = '')
p3 = plot_line(v='new_recovered',
title = 'Daily Recovered',
ytitle = '')
p1
p2
p3
```
## Cumulative Confirmed Cases, Deaths, and Recovered
```{r, "l-screen-inset shaded"}
p1 = plot_line(v='confirmed',
title = 'Confirmed',
ytitle = '')
p2 = plot_line(v='deaths',
title = 'Deaths',
ytitle = '')
p3 = plot_line(v='recovered',
title = 'Recovered',
ytitle = '')
combined <- p1 + p2 + p3 & theme(legend.position = "bottom")
combined + plot_layout(guides = "collect") +
plot_annotation(
title='Cumulative Confirmed Cases, Deaths, and Recovered',
caption = '\nData Source: github.com/CSSEGISandData/COVID-19\nAnalysis: github.com/bryanwhiting/covid19'
)
```
```{r}
plot_line(v='deaths',
title = 'Cumulative Daily Deaths',
ytitle = 'Cumulative Deaths')
```
```{r}
plot_line(v='confirmed',
title = 'Cumulative Daily Confirmed Cases',
ytitle = 'Confirmed Cases',
subtitle = 'Moving Average = (5-day sum)/5')
```
## Preliminary Case Fatality Rate
True case fatality rate is unreliable so early in a pandemic because
1. Testing is frequently limited to those who are most ill
2. Testing is not widely available
3. Reporting is not widely reliable
### CFR: Deaths/Confirmed
```{r}
df_new %>%
ggplot(aes(x = date, y = cfr, color = country_region)) +
geom_line() +
theme(legend.position = 'top') +
scale_y_continuous(labels = scales::percent, limits = c(0, 0.1)) +
scale_color_pander(name='Country') +
labs(title = 'Preliminary* Case Fatality Rate by Country as of a Given Date',
subtitle = 'Where CFR = cumulative deaths/cumulative confirmed',
y = 'CFR',
x = '',
caption = '\n*CFR is known to be unreliable so early in a pandemic\nData Source: github.com/CSSEGISandData/COVID-19\nAnalysis: github.com/bryanwhiting/covid19')
```
### CFR: Deaths/(Deaths + Recovered)
```{r}
df_new %>%
filter(recovered > 0) %>%
ggplot(aes(x = date, y = cfr2, color = country_region)) +
geom_line() +
theme(legend.position = 'top') +
scale_y_continuous(labels = scales::percent) +
scale_color_pander(name='Country') +
labs(title = 'Preliminary* Case Fatality Rate by Country as of a Given Date',
subtitle = 'Where CFR = cumulative deaths/(cum. deaths + cum. recovered)',
y = 'CFR',
x = '',
caption = '\n*CFR is known to be unreliable so early in a pandemic\nData Source: github.com/CSSEGISandData/COVID-19\nAnalysis: github.com/bryanwhiting/covid19')
```
## Moving Averages
### Confirmed
```{r}
df_new %>%
ggplot(aes(x = date, y = confirmed_ma, color = country_region)) +
geom_line() +
scale_color_pander(name='Country') +
labs(title = 'Moving Average of Confirmed Cases',
subtitle = '*MA = (sum of prior 5 days) / 5',
y = ' MA of New Confirmed Cases*',
x = '',
caption = '\nData Source: github.com/CSSEGISandData/COVID-19\nAnalysis: github.com/bryanwhiting/covid19')
```
### Confirmed (Scaled by Population)
```{r}
df_new %>%
ggplot(aes(x = date, y = confirmed_ma_pop, color = country_region)) +
geom_line() +
scale_color_pander(name='Country') +
scale_y_continuous(labels = scales::percent) +
labs(title = 'Moving Average of Confirmed Cases, Scaled by Population',
subtitle = '*MA = (sum of prior 5 days) / 5',
y = ' MA of New Confirmed Cases*',
x = '',
caption = '\nData Source: github.com/CSSEGISandData/COVID-19\nAnalysis: github.com/bryanwhiting/covid19')
```
### Deaths
```{r}
df_new %>%
ggplot(aes(x = date, y = confirmed_ma, color = country_region)) +
geom_line() +
scale_color_pander(name='Country') +
labs(title = 'Moving Average of Deaths',
subtitle = '*MA = (sum of prior 5 days) / 5',
y = ' MA of Deaths*',
x = '',
caption = '\nData Source: github.com/CSSEGISandData/COVID-19\nAnalysis: github.com/bryanwhiting/covid19')
```
### Deaths (Scaled by Population)
```{r}
df_new %>%
ggplot(aes(x = date, y = deaths_ma_pop, color = country_region)) +
geom_line() +
scale_color_pander(name='Country') +
scale_y_continuous(labels = scales::percent) +
labs(title = 'Moving Average of Deaths, Scaled by Population',
subtitle = '*MA = (sum of prior 5 days) / 5',
y = ' MA of Deaths*',
x = '',
caption = '\nData Source: github.com/CSSEGISandData/COVID-19\nAnalysis: github.com/bryanwhiting/covid19')
```