forked from Project-MONAI/MONAI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dist.py
206 lines (162 loc) · 8.44 KB
/
dist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import sys
import warnings
from collections.abc import Callable
from logging import Filter
if sys.version_info >= (3, 8):
from typing import Literal
from typing import overload
import torch
import torch.distributed as dist
from monai.config import IgniteInfo
from monai.utils.module import min_version, optional_import
idist, has_ignite = optional_import("ignite", IgniteInfo.OPT_IMPORT_VERSION, min_version, "distributed")
__all__ = ["get_dist_device", "evenly_divisible_all_gather", "string_list_all_gather", "RankFilter"]
def get_dist_device():
"""
Get the expected target device in the native PyTorch distributed data parallel.
For NCCL backend, return GPU device of current process.
For GLOO backend, return CPU.
For any other backends, return None as the default, tensor.to(None) will not change the device.
"""
if dist.is_initialized():
backend = dist.get_backend()
if backend == "nccl" and torch.cuda.is_available():
return torch.device(f"cuda:{torch.cuda.current_device()}")
if backend == "gloo":
return torch.device("cpu")
return None
@overload
def evenly_divisible_all_gather(data: torch.Tensor, concat: Literal[True]) -> torch.Tensor: ...
@overload
def evenly_divisible_all_gather(data: torch.Tensor, concat: Literal[False]) -> list[torch.Tensor]: ...
@overload
def evenly_divisible_all_gather(data: torch.Tensor, concat: bool) -> torch.Tensor | list[torch.Tensor]: ...
def evenly_divisible_all_gather(data: torch.Tensor, concat: bool = True) -> torch.Tensor | list[torch.Tensor]:
"""
Utility function for distributed data parallel to pad at first dim to make it evenly divisible and all_gather.
The input data of every rank should have the same number of dimensions, only the first dim can be different.
Note: If has ignite installed, will execute based on ignite distributed APIs, otherwise, if the native
PyTorch distributed group initialized, will execute based on native PyTorch distributed APIs.
Args:
data: source tensor to pad and execute all_gather in distributed data parallel.
concat: whether to concat the gathered list to be a Tensor, if False, return a list
of Tensors, similar behavior as torch.distributed.all_gather(). default to True.
Note:
The input data on different ranks must have exactly same `dtype`.
"""
if not isinstance(data, torch.Tensor):
raise ValueError("input data must be PyTorch Tensor.")
# data of all the ranks must have same number of dimensions
ndims = data.ndimension()
length: int = data.shape[0] if ndims > 0 else 1
def _torch_all_gather(data: torch.Tensor) -> list[torch.Tensor]:
"""
Implementation based on native PyTorch distributed data parallel APIs.
"""
device = get_dist_device()
orig_device = data.device
data = data.to(device)
data = data.unsqueeze(0) if ndims == 0 else data
# make sure the data is evenly-divisible on multi-GPUs
length_tensor = torch.as_tensor([length], device=device)
all_lens = [torch.zeros_like(length_tensor) for _ in range(dist.get_world_size())]
dist.all_gather(all_lens, length_tensor)
all_lens_: list[int] = [int(i.item()) for i in all_lens]
max_len: int = max(all_lens_)
if length < max_len:
size = [max_len - length] + list(data.shape[1:])
data = torch.cat([data, data.new_full(size, 0)], dim=0)
# all gather across all processes
output = [torch.zeros_like(data) for _ in range(dist.get_world_size())]
dist.all_gather(output, data)
# remove the padding items, if all the input data doesn't have batch dim, squeeze the first dim
return [(o.squeeze(0) if ndims == 0 else o[:l, ...]).to(orig_device) for o, l in zip(output, all_lens_)]
def _ignite_all_gather(data: torch.Tensor) -> list[torch.Tensor]:
"""
Implementation based on PyTorch ignite package, it can support more kinds of backends.
"""
data = data.unsqueeze(0) if ndims == 0 else data
# make sure the data is evenly-divisible on multi-GPUs
all_lens: list[int] = idist.all_gather(length)
max_len: int = max(all_lens)
if length < max_len:
size = [max_len - length] + list(data.shape[1:])
data = torch.cat([data, data.new_full(size, 0)], dim=0)
# all gather across all processes
output = idist.all_gather(data)
# delete the padding NaN items
if ndims == 0:
# if all the input data doesn't have batch dim, unbind to a list of 0-dim Tensors
return list(torch.unbind(output, dim=0))
return [output[i * max_len : i * max_len + l, ...] for i, l in enumerate(all_lens)]
output: list[torch.Tensor]
if has_ignite:
if idist.get_world_size() <= 1:
return data
output = _ignite_all_gather(data=data)
elif dist.is_available() and dist.is_initialized():
if dist.get_world_size() <= 1:
return data
output = _torch_all_gather(data=data)
else:
return data
return torch.cat(output, dim=0) if concat else output
def string_list_all_gather(strings: list[str], delimiter: str = "\t") -> list[str]:
"""
Utility function for distributed data parallel to all gather a list of strings.
Refer to the idea of ignite `all_gather(string)`:
https://pytorch.org/ignite/v0.4.5/distributed.html#ignite.distributed.utils.all_gather.
Note: If has ignite installed, will execute based on ignite distributed APIs, otherwise, if the native
PyTorch distributed group initialized, will execute based on native PyTorch distributed APIs.
Args:
strings: a list of strings to all gather.
delimiter: use the delimiter to join the string list to be a long string,
then all gather across ranks and split to a list. default to "\t".
"""
world_size: int = 1
if has_ignite:
world_size = idist.get_world_size()
elif dist.is_available() and dist.is_initialized():
world_size = dist.get_world_size()
if world_size <= 1:
return strings
joined = delimiter.join(strings)
gathered = evenly_divisible_all_gather(torch.tensor(bytearray(joined, "utf-8"), dtype=torch.long), concat=False)
_gathered = [bytearray(g.tolist()).decode("utf-8").split(delimiter) for g in gathered]
return [i for k in _gathered for i in k]
class RankFilter(Filter):
"""
The RankFilter class is a convenient filter that extends the Filter class in the Python logging module.
The purpose is to control which log records are processed based on the rank in a distributed environment.
Args:
rank: the rank of the process in the torch.distributed. Default is None and then it will use dist.get_rank().
filter_fn: an optional lambda function used as the filtering criteria.
The default function logs only if the rank of the process is 0,
but the user can define their own function to implement custom filtering logic.
"""
def __init__(self, rank: int | None = None, filter_fn: Callable = lambda rank: rank == 0):
super().__init__()
self.filter_fn: Callable = filter_fn
if dist.is_available() and dist.is_initialized():
self.rank: int = rank if rank is not None else dist.get_rank()
else:
if torch.cuda.is_available() and torch.cuda.device_count() > 1:
warnings.warn(
"The torch.distributed is either unavailable and uninitiated when RankFilter is instantiated.\n"
"If torch.distributed is used, please ensure that the RankFilter() is called\n"
"after torch.distributed.init_process_group() in the script.\n"
)
self.rank = 0
def filter(self, *_args):
return self.filter_fn(self.rank)