forked from simonlevine/clinical-longformer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
results.rtf
89 lines (83 loc) · 3 KB
/
results.rtf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
{\rtf1\ansi\ansicpg1252\cocoartf2513
\cocoatextscaling0\cocoaplatform0{\fonttbl\f0\fnil\fcharset0 HelveticaNeue-Bold;\f1\fnil\fcharset0 HelveticaNeue;}
{\colortbl;\red255\green255\blue255;}
{\*\expandedcolortbl;;}
\margl1440\margr1440\vieww35640\viewh20980\viewkind0
\deftab560
\pard\pardeftab560\slleading20\partightenfactor0
\f0\b\fs24 \cf0 Base-BERT:\
\
DATALOADER:0 TEST RESULTS\
\{'gpu_id: 0/memory.used (MB)': 12553.0,\
'loss': tensor(0.0819, device='cuda:0'),\
\
'test_batch_f1': tensor(0.6556, device='cuda:0'),\
'test_batch_prec': tensor(0.6789, device='cuda:0'),\
'test_batch_recall': tensor(0.6586, device='cuda:0'),\
'test_batch_weighted_acc': tensor(0.6586, device='cuda:0'),\
'test_loss': tensor(1.3429, device='cuda:0'),\
\
'val_acc_weighted': tensor(0.6563, device='cuda:0'),\
'val_f1': tensor(0.6560, device='cuda:0'),\
'val_loss': tensor(1.3842, device='cuda:0'),\
'val_prec': tensor(0.6817, device='cuda:0'),\
'val_recall': tensor(0.6563, device='cuda:0')\}\
\pard\pardeftab560\slleading20\partightenfactor0
\f1\b0 \cf0 \
\pard\pardeftab560\slleading20\partightenfactor0
\f0\b \cf0 clinicalBERT
\f1\b0 :\
\
DATALOADER:0 TEST RESULTS\
\{'gpu_id: 0/memory.used (MB)': 12533.0,\
'loss': tensor(0.1431, device='cuda:0'),\
\
'test_batch_f1': tensor(0.6636, device='cuda:0'),\
'test_batch_prec': tensor(0.6900, device='cuda:0'),\
'test_batch_recall': tensor(0.6655, device='cuda:0'),\
'test_batch_weighted_acc': tensor(0.6655, device='cuda:0'),\
'test_loss': tensor(1.3401, device='cuda:0'),\
\
\
'val_acc_weighted': tensor(0.6733, device='cuda:0'),\
'val_f1': tensor(0.6710, device='cuda:0'),\
'val_loss': tensor(1.3450, device='cuda:0'),\
'val_prec': tensor(0.6941, device='cuda:0'),\
'val_recall': tensor(0.6733, device='cuda:0')\}\
\
\f0\b biomedroBERTa
\f1\b0 :\
\
'gpu_id: 0/memory.used (MB)': 12775.0,\
'loss': tensor(0.1482, device='cuda:0'),\
\
'test_batch_f1': tensor(0.6784, device='cuda:0'),\
'test_batch_prec': tensor(0.7050, device='cuda:0'),\
'test_batch_recall': tensor(0.6773, device='cuda:0'),\
'test_batch_weighted_acc': tensor(0.6773, device='cuda:0'),\
'test_loss': tensor(1.2950, device='cuda:0'),\
\
'val_acc_weighted': tensor(0.6791, device='cuda:0'),\
'val_f1': tensor(0.6824, device='cuda:0'),\
'val_loss': tensor(1.3297, device='cuda:0'),\
'val_prec': tensor(0.7114, device='cuda:0'),\
'val_recall': tensor(0.6791, device='cuda:0')\}\
\
\
\f0\b clincal_roberta_long:\
\
\
\pard\pardeftab560\slleading20\partightenfactor0
\f1\b0 \cf0 'test_batch_f1': tensor(0.7219184, device='cuda:0'),\
'test_batch_prec': tensor(0.72602022, device='cuda:0'),\
'test_batch_recall': tensor(0.72149771, device='cuda:0'),\
'test_batch_weighted_acc': tensor(0.72149771, device='cuda:0'),\
'test_loss': tensor(1.19271946, device='cuda:0'),\
\
'val_acc_weighted': tensor(0.71830386, device='cuda:0'),\
'val_f1': tensor(0.71844596, device='cuda:0'),\
'val_loss': tensor(1.21896386, device='cuda:0'),\
'val_prec': tensor(0.72160667, device='cuda:0'),\
'val_recall': tensor(0.71830386, device='cuda:0')\}
\f0\b \
}