Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Error in step 15 #677

Open
dipingxian431 opened this issue Oct 3, 2024 · 1 comment
Open

Error in step 15 #677

dipingxian431 opened this issue Oct 3, 2024 · 1 comment

Comments

@dipingxian431
Copy link

Hi infercnv team,

I am running infercnv with the following command:

infercnv_obj = infercnv::run(infercnv_obj,
                             cutoff=0.1, # cutoff=1 works well for Smart-seq2, and cutoff=0.1 works well for 10x Genomics
                             out_dir=tempfile(), 
                             cluster_by_groups=FALSE, 
                             denoise=TRUE,
                             HMM=TRUE,
                             analysis_mode="subclusters")

infercnv_obj = infercnv::run(infercnv_obj,
                             cutoff=0.1, # cutoff=1 works well for Smart-seq2, and cutoff=0.1 works well for 10x Genomics
                             out_dir=tempfile(), 
                             cluster_by_groups=TRUE, 
                             denoise=TRUE,
                             HMM=TRUE)

However, I am stuck at step 15 and got the following error:

STEP 15: computing tumor subclusters via leiden

INFO [2024-10-02 19:18:41] define_signif_tumor_subclusters(p_val=0.1
INFO [2024-10-02 19:18:43] define_signif_tumor_subclusters(), tumor: WTcon
INFO [2024-10-02 19:18:43] Setting auto leiden resolution for WTcon to 0.0036674
Warning: Data is of class matrix. Coercing to dgCMatrix.
Finding variable features for layer counts
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Centering and scaling data matrix
  |=========================================================================================| 100%
PC_ 1 
Positive:  ATP13A1, ZNF91, UQCRFS1, NDUFA13, DPY19L3, MAU2, PDCD5, LSM4, FKBP8, TMEM161A 
	   JUND, KXD1, ANKRD27, PIK3R2, UBA52, ARMC6, MAP1S, DDX49, NUDT19, ANO8 
	   MAST3, COPE, SUGP2, RPL18A, DDA1, MRPL34, CRTC1, BABAM1, CEBPG, MYO9B 
Negative:  TBC1D23, TFG, CMSS1, PCNP, CLDND1, ZBTB11, CRYBG3, RPL24, PROS1, CEP97 
	   C3orf38, NFKBIZ, ZNF654, ALCAM, CGGBP1, CBLB, CHMP2B, BBX, GBE1, CD47 
	   ROBO1, ATG3, PPP4R2, SLC35A5, SHQ1, NAA50, ATP6V1A, FOXP1, ZBTB20, ARL6IP5 
PC_ 2 
Positive:  NUP54, SCARB2, CCNI, SDAD1, CNOT6L, PAQR3, USO1, G3BP2, HNRNPD, EPGN 
	   ENOPH1, ANKRD17, MOB1B, SCD5, GRSF1, SEC31A, RUFY3, COPS4, YTHDC1, UBA6 
	   WDFY3, POLR2B, ARHGAP24, NOA1, MAPK10, SRP72, PTPN13, PAICS, KLHL8, PPAT 
Negative:  POGLUT1, ARHGAP31, ZBTB20, TMEM39A, TIMMDC1, ATP6V1A, GSK3B, NAA50, SLC35A5, LRRC58 
	   ATG3, RABL3, CD47, GOLGB1, BBX, IQCB1, CBLB, FAM162A, ALCAM, KPNA1 
	   DTX3L, NFKBIZ, UMPS, CEP97, SLC12A8, RPL24, ZNF148, SNX4, ZBTB11, SLC41A3 
PC_ 3 
Positive:  ADAM10, RNF111, SLTM, POLR2M, GTF2A2, TCF12, ZNF280D, BNIP2, RFX7, VPS13C 
	   CCPG1, TPM1, RSL24D1, CA12, USP3, FAM214A, HERC1, ARPP19, SNX1, SNX22 
	   MYO5A, PPIB, GNB5, OAZ2, MAPK6, SPG21, LEO1, PDCD7, DMXL2, CLPX 
Negative:  LRRC58, RABL3, IQCB1, GSK3B, GOLGB1, FAM162A, TIMMDC1, POGLUT1, KPNA1, TMEM39A 
	   ARHGAP31, DTX3L, UMPS, ZBTB20, SLC12A8, ATP6V1A, ZNF148, NAA50, SNX4, SLC35A5 
	   ATG3, SLC41A3, CD47, ZXDC, BBX, CBLB, CHCHD6, ALCAM, NFKBIZ, PLXNA1 
PC_ 4 
Positive:  POLR2M, TCF12, ADAM10, ZNF280D, RNF111, RFX7, SLTM, GTF2A2, CCPG1, BNIP2 
	   RSL24D1, VPS13C, FAM214A, TPM1, CA12, ARPP19, USP3, MYO5A, HERC1, GNB5 
	   SNX1, SNX22, MAPK6, PPIB, OAZ2, LEO1, SPG21, DMXL2, PDCD7, SPPL2A 
Negative:  JKAMP, KIAA0586, RTN1, ARID4A, DHRS7, PPM1A, PSMA3, AP5M1, MNAT1, EXOC5 
	   TRMT5, KTN1, HIF1A, FBXO34, PPP2R5E, SYNE2, MAPK1IP1L, MTHFD1, SOCS4, ZBTB1 
	   PLEKHG3, GMFB, CHURC1, DDHD1, MAX, FUT8, FERMT2, GPHN, GNPNAT1, MPP5 
PC_ 5 
Positive:  GFM2, HEXB, UTP15, NSA2, BTF3, HMGCR, FCHO2, POLK, TNPO1, F2R 
	   MRPS27, MAP1B, AGGF1, MCCC2, WDR41, BDP1, TBCA, TAF9, AP3B1, CDK7 
	   SCAMP1, SLC30A5, LHFPL2, PIK3R1, SREK1, ARSB, NLN, JMY, CWC27, IPO11 
Negative:  DDX49, COPE, CRTC1, SUGP2, UBA52, ARMC6, KXD1, TMEM161A, FKBP8, MAU2 
	   LSM4, NDUFA13, JUND, ATP13A1, PIK3R2, ZNF91, MAST3, UQCRFS1, RPL18A, DPY19L3 
	   MAP1S, PDCD5, ANO8, ANKRD27, DDA1, NUDT19, MRPL34, CEBPG, BABAM1, LSM14A 
Computing nearest neighbor graph
Computing SNN
INFO [2024-10-02 19:19:16] -mirroring for hspike
INFO [2024-10-02 19:19:16] define_signif_tumor_subclusters(p_val=0.1
INFO [2024-10-02 19:19:16] define_signif_tumor_subclusters(), tumor: spike_tumor_cell_WTcon
INFO [2024-10-02 19:19:16] cut tree into: 1 groups
INFO [2024-10-02 19:19:16] -processing spike_tumor_cell_WTcon,spike_tumor_cell_WTcon_s1
INFO [2024-10-02 19:19:16] define_signif_tumor_subclusters(), tumor: simnorm_cell_WTcon
INFO [2024-10-02 19:19:16] cut tree into: 1 groups
INFO [2024-10-02 19:19:16] -processing simnorm_cell_WTcon,simnorm_cell_WTcon_s1
INFO [2024-10-02 19:19:38] ::plot_cnv:Start
INFO [2024-10-02 19:19:38] ::plot_cnv:Current data dimensions (r,c)=4971,8241 Total=41018945.4841801 Min=0.805509530861034 Max=1.96281771526343.
INFO [2024-10-02 19:19:38] ::plot_cnv:Depending on the size of the matrix this may take a moment.
INFO [2024-10-02 19:19:39] plot_cnv(): auto thresholding at: (0.858213 , 1.144371)
INFO [2024-10-02 19:20:13] plot_cnv_observation:Start
INFO [2024-10-02 19:20:14] Observation data size: Cells= 0 Genes= 4971
INFO [2024-10-02 19:20:14] clustering observations via method: ward.D
Error in seq_len(max(obs_annotations_groups)) : 
  argument must be coercible to non-negative integer
In addition: Warning messages:
1: In max(nchar(obs_annotations_names)) :
  no non-missing arguments to max; returning -Inf
2: In max(obs_annotations_groups) :
  no non-missing arguments to max; returning -Inf

my infercnv version is 1.21.0.
I am very puzzled about the error message. Is there something wrong with my command?
Thanks,
Mingchao

@xiaoli-gg
Copy link

Hi infercnv team,
I am running infercnv with the following command:

if (!requireNamespace("BiocManager", quietly = TRUE))
  install.packages("BiocManager")
BiocManager::install("infercnv")
library(infercnv)

infercnv_obj = CreateInfercnvObject(raw_counts_matrix=system.file("extdata", "oligodendroglioma_expression_downsampled.counts.matrix.gz", package = "infercnv"),
                                    annotations_file=system.file("extdata", "oligodendroglioma_annotations_downsampled.txt", package = "infercnv"),
                                    delim="\t",
                                    gene_order_file=system.file("extdata", "gencode_downsampled.EXAMPLE_ONLY_DONT_REUSE.txt", package = "infercnv"),
                                    ref_group_names=c("Microglia/Macrophage","Oligodendrocytes (non-malignant)")) 

infercnv_obj = infercnv::run(infercnv_obj,
                             cutoff=1, # cutoff=1 works well for Smart-seq2, and cutoff=0.1 works well for 10x Genomics
                             out_dir=tempfile(), 
                             cluster_by_groups=TRUE, 
                             denoise=F,
                             HMM=TRUE)

I am also stuck at step 15 and got the following error:

STEP 15: computing tumor subclusters via leiden###

INFO [2024-10-04 07:11:19] define_signif_tumor_subclusters(p_val=0.1
INFO [2024-10-04 07:11:19] define_signif_tumor_subclusters(), tumor: malignant_93
Warning: Data is of class matrix. Coercing to dgCMatrix.
Finding variable features for layer counts
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Warning: No layers found matching search pattern provided
Error in `ScaleData()`:
! No layer matching pattern 'data' found. Please run NormalizeData and retry
Run `rlang::last_trace()` to see where the error occurred.

My infercnv version is 1.20.0
Am I having problems with which configurations?
Thanks
Mengpan Li

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants