表中模型准确率均为在ImageNet数据集上测试所得,表中符号
-
表示相关指标暂未测试,预测速度测试环境如下所示:
- CPU的评估是在骁龙855(SD855)上完成。
- GPU评估是在FP32+TensorRT配置下运行500次测得(去除前10次的warmup时间)。
Model | Top-1 Acc | Top-5 Acc | SD855 time(ms) bs=1 |
Flops(G) | Params(M) | Model storage size(M) | Download Address |
---|---|---|---|---|---|---|---|
MobileNetV1_ x0_25 |
0.5143 | 0.7546 | 3.21985 | 0.07 | 0.46 | 1.9 | Download link |
MobileNetV1_ x0_5 |
0.6352 | 0.8473 | 9.579599 | 0.28 | 1.31 | 5.2 | Download link |
MobileNetV1_ x0_75 |
0.6881 | 0.8823 | 19.436399 | 0.63 | 2.55 | 10 | Download link |
MobileNetV1 | 0.7099 | 0.8968 | 32.523048 | 1.11 | 4.19 | 16 | Download link |
MobileNetV2_ x0_25 |
0.5321 | 0.7652 | 3.79925 | 0.05 | 1.5 | 6.1 | Download link |
MobileNetV2_ x0_5 |
0.6503 | 0.8572 | 8.7021 | 0.17 | 1.93 | 7.8 | Download link |
MobileNetV2_ x0_75 |
0.6983 | 0.8901 | 15.531351 | 0.35 | 2.58 | 10 | Download link |
MobileNetV2 | 0.7215 | 0.9065 | 23.317699 | 0.6 | 3.44 | 14 | Download link |
MobileNetV2_ x1_5 |
0.7412 | 0.9167 | 45.623848 | 1.32 | 6.76 | 26 | Download link |
MobileNetV2_ x2_0 |
0.7523 | 0.9258 | 74.291649 | 2.32 | 11.13 | 43 | Download link |
MobileNetV3_ large_x1_25 |
0.7641 | 0.9295 | 28.217701 | 0.714 | 7.44 | 29 | Download link |
MobileNetV3_ large_x1_0 |
0.7532 | 0.9231 | 19.30835 | 0.45 | 5.47 | 21 | Download link |
MobileNetV3_ large_x0_75 |
0.7314 | 0.9108 | 13.5646 | 0.296 | 3.91 | 16 | Download link |
MobileNetV3_ large_x0_5 |
0.6924 | 0.8852 | 7.49315 | 0.138 | 2.67 | 11 | Download link |
MobileNetV3_ large_x0_35 |
0.6432 | 0.8546 | 5.13695 | 0.077 | 2.1 | 8.6 | Download link |
MobileNetV3_ small_x1_25 |
0.7067 | 0.8951 | 9.2745 | 0.195 | 3.62 | 14 | Download link |
MobileNetV3_ small_x1_0 |
0.6824 | 0.8806 | 6.5463 | 0.123 | 2.94 | 12 | Download link |
MobileNetV3_ small_x0_75 |
0.6602 | 0.8633 | 5.28435 | 0.088 | 2.37 | 9.6 | Download link |
MobileNetV3_ small_x0_5 |
0.5921 | 0.8152 | 3.35165 | 0.043 | 1.9 | 7.8 | Download link |
MobileNetV3_ small_x0_35 |
0.5303 | 0.7637 | 2.6352 | 0.026 | 1.66 | 6.9 | Download link |
MobileNetV3_ small_x0_35_ssld |
0.5555 | 0.7771 | 2.6352 | 0.026 | 1.66 | 6.9 | Download link |
MobileNetV3_ large_x1_0_ssld |
0.7896 | 0.9448 | 19.30835 | 0.45 | 5.47 | 21 | Download link |
MobileNetV3_small_ x1_0_ssld |
0.7129 | 0.9010 | 6.5463 | 0.123 | 2.94 | 12 | Download link |
ShuffleNetV2 | 0.6880 | 0.8845 | 10.941 | 0.28 | 2.26 | 9 | Download link |
ShuffleNetV2_ x0_25 |
0.4990 | 0.7379 | 2.329 | 0.03 | 0.6 | 2.7 | Download link |
ShuffleNetV2_ x0_33 |
0.5373 | 0.7705 | 2.64335 | 0.04 | 0.64 | 2.8 | Download link |
ShuffleNetV2_ x0_5 |
0.6032 | 0.8226 | 4.2613 | 0.08 | 1.36 | 5.6 | Download link |
ShuffleNetV2_ x1_5 |
0.7163 | 0.9015 | 19.3522 | 0.58 | 3.47 | 14 | Download link |
ShuffleNetV2_ x2_0 |
0.7315 | 0.9120 | 34.770149 | 1.12 | 7.32 | 28 | Download link |
ShuffleNetV2_ swish |
0.7003 | 0.8917 | 16.023151 | 0.29 | 2.26 | 9.1 | Download link |
Model | Top-1 Acc | Top-5 Acc | time(ms) bs=1 |
time(ms) bs=4 |
Flops(G) | Params(M) | Download Address |
---|---|---|---|---|---|---|---|
ResNet18 | 0.7098 | 0.8992 | 1.45606 | 3.56305 | 3.66 | 11.69 | Download link |
ResNet18_vd | 0.7226 | 0.9080 | 1.54557 | 3.85363 | 4.14 | 11.71 | Download link |
ResNet34 | 0.7457 | 0.9214 | 2.34957 | 5.89821 | 7.36 | 21.8 | Download link |
ResNet34_vd | 0.7598 | 0.9298 | 2.43427 | 6.22257 | 7.39 | 21.82 | Download link |
ResNet50 | 0.7650 | 0.9300 | 3.47712 | 7.84421 | 8.19 | 25.56 | Download link |
ResNet50_vd | 0.7912 | 0.9444 | 3.53131 | 8.09057 | 8.67 | 25.58 | Download link |
ResNet101 | 0.7756 | 0.9364 | 6.07125 | 13.40573 | 15.52 | 44.55 | Download link |
ResNet101_vd | 0.8017 | 0.9497 | 6.11704 | 13.76222 | 16.1 | 44.57 | Download link |
ResNet152 | 0.7826 | 0.9396 | 8.50198 | 19.17073 | 23.05 | 60.19 | Download link |
ResNet152_vd | 0.8059 | 0.9530 | 8.54376 | 19.52157 | 23.53 | 60.21 | Download link |
ResNet200_vd | 0.8093 | 0.9533 | 10.80619 | 25.01731 | 30.53 | 74.74 | Download link |
ResNet50_vd_ ssld |
0.8239 | 0.9610 | 3.53131 | 8.09057 | 8.67 | 25.58 | Download link |
ResNet101_vd_ ssld |
0.8373 | 0.9669 | 6.11704 | 13.76222 | 16.1 | 44.57 | Download link |
AlexNet | 0.567 | 0.792 | 1.44993 | 2.46696 | 1.370 | 61.090 | Download link |
DarkNet53 | 0.780 | 0.941 | 4.10829 | 12.1714 | 18.580 | 41.600 | Download link |
DenseNet121 | 0.7566 | 0.9258 | 4.40447 | 9.32623 | 5.69 | 7.98 | Download link |
DenseNet161 | 0.7857 | 0.9414 | 10.39152 | 22.15555 | 15.49 | 28.68 | Download link |
DenseNet169 | 0.7681 | 0.9331 | 6.43598 | 12.98832 | 6.74 | 14.15 | Download link |
DenseNet201 | 0.7763 | 0.9366 | 8.20652 | 17.45838 | 8.61 | 20.01 | Download link |
DenseNet264 | 0.7796 | 0.9385 | 12.14722 | 26.27707 | 11.54 | 33.37 | Download link |
HRNet_W18_C | 0.7692 | 0.9339 | 7.40636 | 13.29752 | 4.14 | 21.29 | Download link |
HRNet_W30_C | 0.7804 | 0.9402 | 9.57594 | 17.35485 | 16.23 | 37.71 | Download link |
HRNet_W32_C | 0.7828 | 0.9424 | 9.49807 | 17.72921 | 17.86 | 41.23 | Download link |
HRNet_W40_C | 0.7877 | 0.9447 | 12.12202 | 25.68184 | 25.41 | 57.55 | Download link |
HRNet_W44_C | 0.7900 | 0.9451 | 13.19858 | 32.25202 | 29.79 | 67.06 | Download link |
HRNet_W48_C | 0.7895 | 0.9442 | 13.70761 | 34.43572 | 34.58 | 77.47 | Download link |
HRNet_W64_C | 0.7930 | 0.9461 | 17.57527 | 47.9533 | 57.83 | 128.06 | Download link |
Xception41 | 0.7930 | 0.9453 | 4.96939 | 17.01361 | 16.74 | 22.69 | Download link |
Xception65 | 0.8100 | 0.9549 | 7.26158 | 25.88778 | 25.95 | 35.48 | Download link |
Xception71 | 0.8111 | 0.9545 | 8.72457 | 31.55549 | 31.77 | 37.28 | Download link |
- 所有模型均在COCO17数据集中训练和测试。
- 除非特殊说明,所有ResNet骨干网络采用ResNet-B结构。
- 推理时间(fps): 推理时间是在一张Tesla V100的GPU上测试所有验证集得到,单位是fps(图片数/秒), cuDNN版本是7.5,包括数据加载、网络前向执行和后处理, batch size是1。
骨架网络 | 网络类型 | 推理时间(fps) | Box AP | 下载 |
---|---|---|---|---|
ResNet50 | Faster | ---- | 36.7 | 下载链接 |
ResNet50-vd | Faster | ---- | 37.6 | 下载链接 |
ResNet101 | Faster | ---- | 39.0 | 下载链接 |
ResNet34-FPN | Faster | ---- | 37.8 | 下载链接 |
ResNet34-vd-FPN | Faster | ---- | 38.5 | 下载链接 |
ResNet50-FPN | Faster | ---- | 38.4 | 下载链接 |
ResNet50-vd-FPN | Faster | ---- | 39.5 | 下载链接 |
ResNet101-vd-FPN | Faster | ---- | 42.0 | 下载链接 |
ResNeXt101-vd-FPN | Faster | ---- | 43.4 | 下载链接 |
ResNet50-vd-SSLDv2-FPN | Faster | ---- | 41.4 | 下载链接 |
骨架网络 | 输入尺寸 | 推理时间(fps) | Box AP | 下载 |
---|---|---|---|---|
DarkNet53 | 608 | ---- | 39.0 | 下载链接 |
ResNet50_vd | 608 | ---- | 39.1 | 下载链接 |
ResNet34 | 608 | ---- | 36.2 | 下载链接 |
MobileNet-V1 | 608 | ---- | 29.4 | 下载链接 |
MobileNet-V3 | 608 | ---- | 31.4 | 下载链接 |
MobileNet-V1-SSLD | 608 | ---- | 31.0 | 下载链接 |
骨架网络 | 输入尺寸 | 推理时间(fps) | Box AP | 下载 |
---|---|---|---|---|
MobileNet-V1 | 608 | - | 75.2 | 下载链接 |
MobileNet-V3 | 608 | - | 79.6 | 下载链接 |
MobileNet-V1-SSLD | 608 | - | 78.3 | 下载链接 |
MobileNet-V3-SSLD | 608 | - | 80.4 | 下载链接 |
模型 | 骨干网络 | 输入尺寸 | Box APval | Box APtest | V100 FP32(FPS) | V100 TensorRT FP16(FPS) | 模型下载 |
---|---|---|---|---|---|---|---|
PP-YOLO | ResNet50vd | 608 | 44.8 | 45.2 | 72.9 | 155.6 | model |
PP-YOLOv2 | ResNet50vd | 640 | 49.1 | 49.5 | 68.9 | 106.5 | model |
PP-YOLOv2 | ResNet101vd | 640 | 49.7 | 50.3 | 49.5 | 87.0 | model |
注意:
- PP-YOLO模型推理速度测试采用单卡V100,batch size=1进行测试,使用CUDA 10.2, CUDNN 7.5.1,TensorRT推理速度测试使用TensorRT 5.1.2.2。
- PP-YOLO模型FP32的推理速度是使用Paddle预测库进行推理速度benchmark测试结果, 且测试的均为不包含数据预处理和模型输出后处理(NMS)的数据(与YOLOv4(AlexyAB)测试方法一致)。
- TensorRT FP16的速度测试相比于FP32去除了
yolo_box
(bbox解码)部分耗时,即不包含数据预处理,bbox解码和NMS(与YOLOv4(AlexyAB)测试方法一致)。
模型 | 骨干网络 | 输入尺寸 | Box AP50val | 模型下载 |
---|---|---|---|---|
PP-YOLO | ResNet50vd | 608 | 84.9 | model |
模型 | 模型体积 | 后量化模型体积 | 输入尺寸 | Box APval | Kirin 990 1xCore (FPS) | 模型下载 | 量化后模型 |
---|---|---|---|---|---|---|---|
PP-YOLO tiny | 4.2MB | 1.3M | 416 | 22.7 | 65.4 | model | 预测模型 |
- PP-YOLO-tiny 模型推理速度测试环境配置为麒麟990芯片4线程,arm8架构。
- 我们也提供的PP-YOLO-tiny的后量化压缩模型,将模型体积压缩到1.3M,对精度和预测速度基本无影响
- 所有模型均在COCO17数据集中训练和测试。
- 除非特殊说明,所有ResNet骨干网络采用ResNet-B结构。
- 推理时间(fps): 推理时间是在一张Tesla V100的GPU上测试所有验证集得到,单位是fps(图片数/秒), cuDNN版本是7.5,包括数据加载、网络前向执行和后处理, batch size是1。
骨架网络 | 网络类型 | 推理时间(fps) | Box AP | Mask AP | 下载 |
---|---|---|---|---|---|
ResNet50 | Mask | ---- | 37.4 | 32.8 | 下载链接 |
ResNet50 | Mask | ---- | 39.7 | 34.5 | 下载链接 |
ResNet50-FPN | Mask | ---- | 39.2 | 35.6 | 下载链接 |
ResNet50-FPN | Mask | ---- | 40.5 | 36.7 | 下载链接 |
ResNet50-vd-FPN | Mask | ---- | 40.3 | 36.4 | 下载链接 |
ResNet50-vd-FPN | Mask | ---- | 41.4 | 37.5 | 下载链接 |
ResNet101-FPN | Mask | ---- | 40.6 | 36.6 | 下载链接 |
ResNet101-vd-FPN | Mask | ---- | 42.4 | 38.1 | 下载链接 |
ResNeXt101-vd-FPN | Mask | ---- | 44.0 | 39.5 | 下载链接 |
ResNeXt101-vd-FPN | Mask | ---- | 44.6 | 39.8 | 下载链接 |
ResNet50-vd-SSLDv2-FPN | Mask | ---- | 42.0 | 38.2 | 下载链接 |
ResNet50-vd-SSLDv2-FPN | Mask | ---- | 42.7 | 38.9 | 下载链接 |
以下指标均在Pascal VOC验证集上测试得到,表中符号
-
表示相关指标暂未测试。
Model | Backbone | Resolution | mIoU | Links |
---|---|---|---|---|
DeepLabV3P | ResNet50_vd | 512x512 | 80.66% | model |
DeepLabV3P | ResNet101_vd | 512x512 | 80.60% | model |
以下指标均在Cityscapes验证集上测试得到,表中符号
-
表示相关指标暂未测试。
Model | Backbone | Resolution | mIoU | Links |
---|---|---|---|---|
UNet | - | 1024x512 | 65.00% | model |
DeepLabV3P | ResNet50_vd | 1024x512 | 80.36% | model |
DeepLabV3P | ResNet101_vd | 1024x512 | 81.10% | model |
Fast SCNN | - | 1024x1024 | 69.31% | model |
HRNet_W18 | - | 1024x512 | 78.97% | model |
HRNet_W48 | - | 1024x512 | 80.70% | model |
BiSeNetv2 | - | 1024x1024 | 73.19% | model |