forked from Computational-Periscopy/Ordinary-Camera
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfig4_column_c.m
154 lines (121 loc) · 6.35 KB
/
fig4_column_c.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
%% Scene reconstruction using differencing method (Fig4 column c)
%
% ------------------------------Pseudo-code------------------------------
% 1. Simulate light transport matrix A given scene geometry parameters.
%
% 2. Solve TV regularized optimization problem to reconstruct scene
% (FISTA).
% -----------------------------------------------------------------------
% Last Modified by Charles Saunders at Boston University
% 09-Nov-2018 (Clean-up and commented for sharing)
% Manuscript:
% Saunders, C. and Murray-Bruce, J and Goyal, V.K., 'Computational
% Periscopy with and Ordinary Digital Camera', Nature, 2018.
%%
% Functions
addpath('Functions')
clear variables;
TestLetter = 'D11'; % Picks the test data to use
numPixels = 1008; % Number of pixels in camera measurement
% Parameters
Ndiscr_mon = 6; %Discretization of each scene patch
downsamp_factor = 3; %Downsampling of measurements 2^downsamp_factor
viewAngleCorrection = 1; %True/False
useEstimatedOccPos = true; %Use estimated occluder position or not
load_experiment_config_data_reconstruction
% Data path
if ismac
calibParams.filepath = './Data/TestPosD11/';
elseif ispc
calibParams.filepath = '.\Data\TestPosD11\';
end
%%%%%%% Setup %%%%%%%% (Nothing to manually set here)
% Wall/imaging plane
wall_point = [FOV_LLCorner(1) + FOV_size(1)/2,D,FOV_LLCorner(2)+FOV_size(2)/2]; %Point on plane
wall_vector_1 = [FOV_size(1)/2,0,0]; %Vector defining one direction of FOV (and extent)
wall_vector_2 = [0,0,FOV_size(2)/2]; %Vector defining the orthogonal direction (and extent)
wall_normal = cross(wall_vector_1,wall_vector_2);
wall_normal = wall_normal./norm(wall_normal);
walln_points = floor(numPixels/(2^downsamp_factor)); %Number of points to render in each direction
% Discretize imaging plane
f_imageplane = gpuArray((zeros(walln_points)));
wall_vec = (-1:2/(walln_points-1):1);
wall_matr(1,:) = gpuArray((wall_point(1) + wall_vec*wall_vector_1(1) + wall_vec*wall_vector_2(1)));
wall_matr(2,:) = gpuArray((wall_point(2) + wall_vec*wall_vector_1(2) + wall_vec*wall_vector_2(2)));
wall_matr(3,:) = gpuArray((wall_point(3) + wall_vec*wall_vector_1(3) + wall_vec*wall_vector_2(3)));
Monitor_xlim = [0 NumBlocks_col]*IlluminationBlock_Size(1) + Mon_Offset(1);
Monitor_y = 0;
Monitor_zlim = [0 NumBlocks_row]*IlluminationBlock_Size(2) + Mon_Offset(2);
Mon_xdiscr = (linspace(Monitor_xlim(1),Monitor_xlim(2),NumBlocks_col));
Mon_zdiscr = (linspace(Monitor_zlim(2),Monitor_zlim(1),NumBlocks_row));
wallparam.wall_matr = wall_matr;
wallparam.wall_point = wall_point;
wallparam.wall_vector_1 = wall_vector_1;
wallparam.wall_vector_2 = wall_vector_2;
wallparam.wall_normal = wall_normal;
wallparam.walln_points = walln_points;
numPixels = floor(numPixels/(2^downsamp_factor));
%% Load data
% Available hidden test scenes data choose one [scene name: 'key']
% * RGB bars scene: 'rgb'
% * Text 'BU' scene: 'bu'
% * Mushroom scene: 'mushroom'
% * Tommy scene: 'tommy'
scene = 'bu';
switch scene
case 'mushroom'
[test_image1,ground_truth1]=load_image1('image_test_mushroom20.mat',calibParams.filepath,downsamp_factor);
Occ_LLcorner = [0.4583 0.5408 0.2026]; %Estimated occluder position from localization script
tv_reg_param = 1e08 * [0.51 0.561 2.448]; %TV regularization parameter
%Discretization dependent scaling of A matrix
sr = 1.4063e+04/(Ndiscr_mon^2)*prod(subblocksperaxis)*0.9;
sg = 1.5313e+04/(Ndiscr_mon^2)*prod(subblocksperaxis)*0.98;
sb = 16250/(Ndiscr_mon^2)*prod(subblocksperaxis)*1.04;
case 'tommy'
[test_image1,ground_truth1]=load_image1('image_test_smilehat20.mat',calibParams.filepath,downsamp_factor);
Occ_LLcorner = [0.4569 0.5744 0.2080]; %Estimated occluder position from localization script
tv_reg_param = 1e07 * [5.72 6.76 5.72]; %TV regularization parameter
%Discretization dependent scaling of A matrix
sr = 1.1406e+04/(Ndiscr_mon^2)*prod(subblocksperaxis)*0.9;
sg = 1.3594e+04/(Ndiscr_mon^2)*prod(subblocksperaxis)*0.98;
sb = 1.9063e+04/(Ndiscr_mon^2)*prod(subblocksperaxis)*1.04;
case 'bu'
[test_image1,ground_truth1]=load_image1('image_test_bur20.mat',calibParams.filepath,downsamp_factor);
Occ_LLcorner = [0.4733 0.5661 0.2072]; %Estimated occluder position from localization script
tv_reg_param = 1e07*[5 25 25]; %TV regularization parameter
%Discretization dependent scaling of A matrix
sr = 12500/(Ndiscr_mon^2)*prod(subblocksperaxis)*0.9;
sg = 15625/(Ndiscr_mon^2)*prod(subblocksperaxis)*0.98;
sb = 1.7188e+04/(Ndiscr_mon^2)*prod(subblocksperaxis)*1.04;
case 'rgb'
[test_image1,ground_truth1]=load_image1('image_test_colbar20.mat',calibParams.filepath,downsamp_factor);
Occ_LLcorner = [0.4693 0.5629 0.2080]; %Estimated occluder position from localization script
tv_reg_param = 1e06 * [52.5 50 47.5]; %TV regularization parameter
%Discretization dependent scaling of A matrix
sr = 1.4063e+04/(Ndiscr_mon^2)*prod(subblocksperaxis)*0.9;
sg = 1.4063e+04/(Ndiscr_mon^2)*prod(subblocksperaxis)*0.98;
sb = 1.4063e+04/(Ndiscr_mon^2)*prod(subblocksperaxis)*1.04;
end
%%
% Occluder
occ_corner(1,:,1) = Occ_LLcorner;
occ_corner(2,:,1) = Occ_LLcorner + [Occ_size(1), 0, 0];
occ_corner(3,:,1) = Occ_LLcorner + [Occ_size(1), 0, Occ_size(3)];
occ_corner(4,:,1) = Occ_LLcorner + [0, 0, Occ_size(3)];
occ_corner(1,:,2) = Occ_LLcorner + [Occ_size(1)/2-0.00275, 0, 0];
occ_corner(2,:,2) = Occ_LLcorner + [Occ_size(1)/2+0.00275, 0, 0];
occ_corner(3,:,2) = Occ_LLcorner + [Occ_size(1)/2-0.00275, 0, -Occ_LLcorner(3)];
occ_corner(4,:,2) = Occ_LLcorner + [Occ_size(1)/2+0.00275, 0, -Occ_LLcorner(3)];
%%%%%%%%%%%%%%
%% Simulate Transport Matrix
disp('Simulating transport matrix...')
[simA] = simulate_A(wallparam, (occ_corner),simuParams, Mon_xdiscr,Mon_zdiscr, 0);
%% Reconstruction
final_im1 = reconstruct_tv_it_cbg(simA,[sr,sg,sb], test_image1, tv_reg_param, NumBlocks_sim, [0,0,0]);
%% Plots
figure()
subplot(1,2,1)
imshow(ground_truth1/255)
title('Ground truths')
subplot(1,2,2)
imshow(final_im1(:,:,:))