forked from justinpinkney/awesome-pretrained-stylegan2
-
Notifications
You must be signed in to change notification settings - Fork 1
/
generate_images.py
230 lines (189 loc) · 7.44 KB
/
generate_images.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
# iterate over lines in csv
# download pickle
# setup docker image
# run container to generate 9 images
# Compile images into montage
import json
import lzma
import math
import os
import shutil
import subprocess
import sys
import tempfile
import traceback
from pathlib import Path
import gdown
import requests
from mega import Mega
from PIL import Image
model_data_file = 'models.json'
content_dir = Path('content')
models_dir = Path('models')
for directory in (content_dir, models_dir):
directory.mkdir(exist_ok=True)
working_dir = '/working'
temp_outputs = Path('temp_outputs')
truncation = str(0.75)
def run_in_container(cmd_to_run):
"""Run the requested command in the docker container"""
image_name = 'awesome-stylegan2'
base =['docker',
'run',
'-t',
'--rm',
'--net', 'host',
'--gpus', 'all',
'-v', '/home/justin/code/awesome-pretrained-stylegan2:/working',
image_name,
]
base.extend(cmd_to_run)
subprocess.run(base)
def run_network(pkl_path, output_dir, start_seed=0, end_seed=11, truncation=0.75):
seeds = f"{start_seed}-{end_seed}"
cmd = ['python', 'run_generator.py',
'generate-images',
'--network', working_dir + '/' + str(pkl_path),
'--seeds', seeds,
'--truncation-psi', str(truncation),
'--result-dir', working_dir + '/' + str(output_dir),
]
run_in_container(cmd)
def run_noise_loop(pkl_path, output_dir):
cmd = ['python', 'grid_vid.py',
working_dir + '/' + str(pkl_path),
'--truncation-psi', truncation,
'--grid-size', '3', '3',
'--duration-sec', '10',
'--smoothing-sec', '1',
'--output-width', str(3*256),
'--mp4', working_dir + '/' + str(output_dir),]
run_in_container(cmd)
def run_style_mixing(pkl_path, output_dir, resolution):
row_seeds = '100-103'
col_seeds = '200-203'
if resolution:
top_style = int(math.log(resolution[0]/16)/math.log(2))
else:
top_style = 8
styles = '0-' + str(top_style)
cmd = ['python', 'run_generator.py',
'style-mixing-example',
'--network', working_dir + '/' + str(pkl_path),
'--row-seeds', row_seeds,
'--col-seeds', col_seeds,
'--col-styles', styles,
'--truncation-psi', truncation,
'--result-dir', working_dir + '/' + str(output_dir),
]
run_in_container(cmd)
def clean_up(output_dir):
"""Delete the requested directory in the container"""
cmd = ['rm', '-rf', working_dir + '/' + str(output_dir),]
run_in_container(cmd)
def parse_resolution(res):
"""parse the resolution from string.
e.g. either 512x512 or Unknown"""
elements = res.split("x")
try:
resolution = [int(el) for el in elements]
except ValueError:
resolution = None
return resolution
def download(url, dest_path):
"""Downloads a model file and saves to dest_path.
Can deal with normal urls and google drive and mega"""
print(f'Downloading {dest_path} model')
if dest_path.exists():
print(f'{dest_path} already exists, skipping download')
return
with tempfile.TemporaryDirectory() as tmpdirname:
tmpdirname = Path(tmpdirname)
if 'drive.google.com' in url:
downloaded_file = gdown.download(url, output=str(tmpdirname/'model_file'))
elif 'mega.nz' in url:
mega = Mega()
m = mega.login()
downloaded_file = m.download_url(url, dest_path=str(tmpdirname))
else:
r = requests.get(url)
downloaded_file = 'downloaded.pkl'
with open(downloaded_file, 'wb') as f:
f.write(r.content)
downloaded_file = Path(downloaded_file)
if downloaded_file.suffix == ".xz":
print(f'Downloaded file {downloaded_file} is .xz')
pkl_file = tmpdirname/downloaded_file.stem
with lzma.open(downloaded_file, 'rb') as in_file:
with open(pkl_file, 'wb') as out:
out.write(in_file.read())
downloaded_file.unlink()
downloaded_file = pkl_file
shutil.copyfile(downloaded_file, dest_path)
def draw_figure(results_dir, filename, rows=4, cols=3, out_size=256):
canvas = Image.new('RGB', (out_size * cols, out_size*rows), 'white')
images = Path(results_dir).rglob('*.png')
images = iter(sorted(images))
for row in range(rows):
for col in range(cols):
image = Image.open(next(images))
image = image.resize((out_size, out_size), Image.ANTIALIAS)
canvas.paste(image, (out_size*col, out_size*row))
canvas.save(filename)
def check_resolution(results_dir):
images = Path(results_dir).rglob('*.png')
image = Image.open(list(images)[0])
return image.size
def main(selected=None):
with open(model_data_file) as model_file:
reader = json.load(model_file)
for model in reader:
if selected and not model["name"] == selected:
continue
base_content_dir = content_dir/model["name"]
base_content_dir.mkdir(exist_ok=True)
image_name = base_content_dir/"samples.jpg"
mixing_name = base_content_dir/"mixing.jpg"
movie_name = base_content_dir/"interpolation.mp4"
model_location = models_dir/(model["name"] + ".pkl")
download(model['download_url'], model_location)
resolution = parse_resolution(model["resolution"])
if not os.path.exists(image_name):
for idx, trunc in enumerate((0.25, 0.5, 0.75, 1)):
run_network(model_location, temp_outputs,
start_seed=0+idx*3, end_seed=2+idx*3,
truncation=trunc)
draw_figure(temp_outputs, image_name)
generated_resolution = check_resolution(temp_outputs)
print(f"Found resolution {generated_resolution}")
if resolution and any(x != y for x, y in zip(resolution, generated_resolution)):
raise ValueError(f"resolution was {generated_resolution} but label is {resolution}")
clean_up(temp_outputs)
else:
print(f'{image_name} already exists.')
if not os.path.exists(mixing_name):
run_style_mixing(model_location, temp_outputs, resolution)
filename = Path(temp_outputs)/"00000-style-mixing-example/grid.png"
im = Image.open(filename)
im = im.resize((5*256, 5*256))
im.save(mixing_name)
clean_up(temp_outputs)
else:
print(f'{mixing_name} already exists.')
if not os.path.exists(movie_name):
temp_movie = temp_outputs.with_suffix(".mp4")
run_noise_loop(model_location, temp_movie)
shutil.copyfile(temp_movie, movie_name)
clean_up(temp_outputs)
else:
print(f'{movie_name} already exists.')
if __name__ == "__main__":
if len(sys.argv) > 1:
selected = sys.argv[1]
else:
selected = None
try:
main(selected)
except Exception as err:
traceback.print_tb(err.__traceback__)
clean_up(temp_outputs)