From c45c266c740ed8c0a3617a63e97fda9545e8826a Mon Sep 17 00:00:00 2001 From: Johnny van Doorn <15704203+JohnnyDoorn@users.noreply.github.com> Date: Wed, 27 Nov 2024 18:12:54 +0100 Subject: [PATCH] [Linear regression] Only check weights cov when there are predictors (#352) * Only check weights cov when there are predictors * update format coefficients cov table --- R/regressionlinear.R | 51 +++++++++++++++++++++++--------------------- 1 file changed, 27 insertions(+), 24 deletions(-) diff --git a/R/regressionlinear.R b/R/regressionlinear.R index 056f1c81..d222ea03 100755 --- a/R/regressionlinear.R +++ b/R/regressionlinear.R @@ -16,7 +16,8 @@ # RegressionLinearInternal <- function(jaspResults, dataset = NULL, options) { - ready <- options$dependent != "" && (length(unlist(options$modelTerms)) > 0 || options$interceptTerm) + nModels <- length(options[["modelTerms"]]) + ready <- options$dependent != "" && (length(options[["modelTerms"]][[nModels]][["components"]]) > 0 || options$interceptTerm) if (ready) { dataset <- .linregReadDataset(dataset, options) @@ -51,11 +52,11 @@ RegressionLinearInternal <- function(jaspResults, dataset = NULL, options) { # these output elements show statistics of the "final model" (lm fit with all predictors in enter method and last lm fit in stepping methods) finalModel <- model[[length(model)]] - if (options$residualCasewiseDiagnostic && is.null(modelContainer[["influenceTable"]])) + if (options$residualCasewiseDiagnostic && is.null(modelContainer[["influenceTable"]])) .glmInfluenceTable(modelContainer, finalModel$fit, dataset, options, ready = ready, position = 9) .regressionExportResiduals(modelContainer, finalModel$fit, dataset, options, ready = ready) - - + + if (options$residualStatistic && is.null(modelContainer[["residualsTable"]])) .linregCreateResidualsTable(modelContainer, finalModel, options, position = 10) @@ -128,12 +129,12 @@ RegressionLinearInternal <- function(jaspResults, dataset = NULL, options) { return(gettext("Stepwise procedures are not supported for models containing factors with more than 2 levels; retry the analysis using dummy variables")) } }, - + checkIfFactorInteractions = function() { if (any(vapply(options[["modelTerms"]], .linregCheckIfInteractionWithFactors, logical(1L), factorVariables = options[["factors"]]))) { return(gettext("Stepwise procedures are not supported for interactions containing more than 1 factor")) } - }, + }, checkIfPEntryIsValid = function() { if (options$steppingMethodCriteriaType == "pValue" && options$steppingMethodCriteriaPEntry > options$steppingMethodCriteriaPRemoval) @@ -171,9 +172,11 @@ RegressionLinearInternal <- function(jaspResults, dataset = NULL, options) { factorLevels.target = options$factors, factorLevels.amount = '< 2', exitAnalysisIfErrors = TRUE) - covwt <- function(...) return(stats::cov.wt(..., wt = dataset[[.v(options[["weights"]])]])$cov) - .hasErrors(dataset[, -which(colnames(dataset) %in% c(.v(options$weights)))], type = "varCovData", varCovData.corFun = covwt, - exitAnalysisIfErrors = TRUE) + if (length(c(options$covariates, options$factors)) != 0) { + covwt <- function(...) return(stats::cov.wt(..., wt = dataset[[.v(options[["weights"]])]])$cov) + .hasErrors(dataset[, -which(colnames(dataset) %in% c(.v(options$weights)))], type = "varCovData", varCovData.corFun = covwt, + exitAnalysisIfErrors = TRUE) + } } } @@ -209,7 +212,7 @@ RegressionLinearInternal <- function(jaspResults, dataset = NULL, options) { summaryTable$addColumnInfo(name = "AIC", title = gettext("AIC"), type = "number", format = "dp:3") summaryTable$addColumnInfo(name = "BIC", title = gettext("BIC"), type = "number", format = "dp:3") } - + if (options$rSquaredChange || options$fChange) { if (options$rSquaredChange) summaryTable$addColumnInfo(name = "R2c", title = gettextf("R%s Change", "\u00B2"), type = "number", format = "dp:3") @@ -572,7 +575,7 @@ RegressionLinearInternal <- function(jaspResults, dataset = NULL, options) { collDiagTable$addColumnInfo(name = "condIndex", title = gettext("Condition Index"), type = "number") if (!is.null(model)) { - .linregAddPredictorsAsColumns(collDiagTable, model, options[["interceptTerm"]], overtitle = gettext("Variance Proportions"), format = "dp:3") + .linregAddPredictorsAsColumns(collDiagTable, model, options[["interceptTerm"]], overtitle = gettext("Variance Proportions"), format = "number") .linregAddInterceptNotShownFootnote(collDiagTable, model, options) .linregFillCollinearityDiagnosticsTable(collDiagTable, model, options) } @@ -714,7 +717,7 @@ RegressionLinearInternal <- function(jaspResults, dataset = NULL, options) { if (!is.null(finalModel) && !is.null(finalModel$fit)) { fit <- finalModel$fit - .linregInsertPlot(residQQPlot, .glmFillPlotResQQ, model = fit, + .linregInsertPlot(residQQPlot, .glmFillPlotResQQ, model = fit, residType = "deviance", options = options) } } @@ -807,13 +810,13 @@ RegressionLinearInternal <- function(jaspResults, dataset = NULL, options) { predictorsInNull <- .linregGetPredictors(options$modelTerms[[1]][["components"]]) predictorsInFull <- .linregGetPredictors(options$modelTerms[[nModels]][["components"]]) # these include the null terms - - + + if (options$weights != "") weights <- dataset[[options$weights]] else weights <- rep(1, length(dataset[[dependent]])) - + if (options$method %in% c("backward", "forward", "stepwise") && length(predictorsInFull) > 0) model <- .linregGetModelSteppingMethod(dependent, predictorsInFull, predictorsInNull, dataset, options, weights) else @@ -858,10 +861,10 @@ RegressionLinearInternal <- function(jaspResults, dataset = NULL, options) { model <- .linregForwardRegression(dependent, predictors, predictorsInNull, dataset, options, weights) else # stepwise model <- .linregStepwiseRegression(dependent, predictors, predictorsInNull, dataset, options, weights) - + for (i in seq_along(model)) - model[[i]] <- c(model[[i]], number = i) - + model[[i]] <- c(model[[i]], number = i) + return(model) } @@ -992,8 +995,8 @@ RegressionLinearInternal <- function(jaspResults, dataset = NULL, options) { if (grepl(candidatePredictors[i], pattern = ":")) { variables <- unlist(strsplit(candidatePredictors[i], ":")) # split up interaction permutations <- combinat::permn(variables) # realize all orderings - myPattern <- paste(sapply(permutations, - function(perm) paste(paste0(perm, ".?"), collapse = ":")), + myPattern <- paste(sapply(permutations, + function(perm) paste(paste0(perm, ".?"), collapse = ":")), collapse = "|") # paste together with "|" } else { myPattern <- candidatePredictors[i] @@ -1857,7 +1860,7 @@ RegressionLinearInternal <- function(jaspResults, dataset = NULL, options) { .linregGetIndicesOfModelsWithPredictors <- function(model, options) { predictorsInNull <- model[[1]]$predictors indices <- seq_along(model) - + if (options$method == "enter") { if (length(model) >= 1 && options$interceptTerm && length(predictorsInNull) == 0) indices <- indices[-1] @@ -2123,7 +2126,7 @@ RegressionLinearInternal <- function(jaspResults, dataset = NULL, options) { mapping = ggplot2::aes(x = x, y = y, group = group), size = 1) + ggplot2::xlab(xlab) + - ggplot2::ylab(ylab) + ggplot2::ylab(ylab) factorPoints <- jaspGraphs::geom_point(data = d_factor, mapping = ggplot2::aes(x = x, y = y)) @@ -2132,7 +2135,7 @@ RegressionLinearInternal <- function(jaspResults, dataset = NULL, options) { } else { xBreaks <- jaspGraphs::getPrettyAxisBreaks(xVar) - + basicMarginalPlot <- ggplot2::ggplot() + ggplot2::geom_line(data = d, mapping = ggplot2::aes(x = x, y = y), @@ -2200,7 +2203,7 @@ RegressionLinearInternal <- function(jaspResults, dataset = NULL, options) { # base y-axis breaks on y and the prediction and/or confidence interval yBreaks <- jaspGraphs::getPrettyAxisBreaks(jaspGraphs::getPrettyAxisBreaks(unlist(d[, -1]))) - + finalMarginalPlot <- basicMarginalPlot + confidenceBounds + predictionBound1 +