-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathLap3dLocCorr.m
296 lines (261 loc) · 10.8 KB
/
Lap3dLocCorr.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
function [As, Ad, Asn] = Lap3dLocCorr(s,ord)
% LAP3DLOCCORR. Laplace surface potentials Nystrom local-corrections
% for the 2-periodic trapezoidal discretization of a toroidal surface.
%
% [As,Ad,Asn] = Lap3dLocCorr(s,ord)
if ord <= 1
[As, Asn] = Lap3dSLPmat(s,s);
Ad = Lap3dDLPmat(s,s);
return
elseif ord <= 3
[As,Ad,Asn] = CorrTrap1pt(s);
elseif ord <= 5
% 9-point stencil location for each node
[Nu,Nv] = ndgrid(1:s.Nu,1:s.Nv);
sub1=sub2ind([s.Nu,s.Nv],Nu,Nv); % self
sub2=sub2ind([s.Nu,s.Nv],Nu([2:end,1],:),Nv); % south
sub3=sub2ind([s.Nu,s.Nv],Nu([end,1:end-1],:),Nv); % north
sub4=sub2ind([s.Nu,s.Nv],Nu,Nv(:,[2:end,1])); % east
sub5=sub2ind([s.Nu,s.Nv],Nu,Nv(:,[end,1:end-1])); % west
sub6=sub2ind([s.Nu,s.Nv],Nu([2:end,1],:),Nv(:,[2:end,1])); % south-east
sub7=sub2ind([s.Nu,s.Nv],Nu([end,1:end-1],:),Nv(:,[end,1:end-1])); % north-west
sub8=sub2ind([s.Nu,s.Nv],Nu([2:end,1],:),Nv(:,[end,1:end-1])); % south-west
sub9=sub2ind([s.Nu,s.Nv],Nu([end,1:end-1],:),Nv(:,[2:end,1])); % north-east
sub = [sub1(:),sub2(:),sub3(:),sub4(:),sub5(:),sub6(:),sub7(:),sub8(:),sub9(:)];
% Corrected quadr
[As,Ad,Asn] = CorrTrap9pt(s,sub);
else
error('ord: order of correction cannot bigger than 5')
end
end
function [As,Ad,Asn] = CorrTrap1pt(s)
% 2-periodic trapezoidal rule 1-point correction
% calculate coefficient (fundamental forms with proper scaling)
Efac = s.Nv/s.Nu; Gfac = 1/Efac; % scaling factors assoc. w. E & G
E = dot(s.xu,s.xu)*Efac; F = dot(s.xu,s.xv); G = dot(s.xv,s.xv)*Gfac;
e =dot(s.xuu,s.nxj)*Efac; f =dot(s.xuv,s.nxj); g =dot(s.xvv,s.nxj)*Gfac;
% O(h) errs
[Cs0,Cd0] = epstein_zeta(1,E,F,G,e,f,g); Cs0 = -Cs0;
% Laplace BIOs
[As, Asn] = Lap3dSLPmat(s,s);
Ad = Lap3dDLPmat(s,s);
% correction
hc = 1/sqrt(s.Nu*s.Nv)/2;
N = size(As,1);
ind = sub2ind([N,N], 1:N, 1:N);
As(ind) = Cs0.*s.sp*hc;
Ad(ind) = Cd0*hc;
Asn(ind) = Cd0*hc;
end
function [As,Ad,Asn] = CorrTrap9pt(s,sub)
% 2-periodic trapezoidal rule 9-point local correction weights
% calculate coefficients (discrepancy factors)
[Cd0,Cd01,Cd1,Cd2,Cd3,Cd4,Cd5,...
Cs0,Cs01,Cs1,Cs2,Cs3,Cs4,Cs5,...
Csn01,Csn1,Csn2] = wigner_type_lims(s);
% Laplace BIOs
if_jac = 0; % don't include jacobian in SLP or its normal gradient
[As, Asn] = Lap3dSLPmat(s,s,if_jac);
Ad = Lap3dDLPmat(s,s);
% correction
N = size(s.x,2);
h = 2*pi/sqrt(s.Nu*s.Nv);
hc = h/4/pi;
jac = s.sp(:);
% self ( 0, 0)
ind = sub2ind([N,N],(1:N)',sub(:,1));
As(ind) = ((Cs0-Cs3-Cs4)+Cs01*h^2)*hc;
Ad(ind) = ((Cd0-Cd3-Cd4)+Cd01*h^2)*hc;
Asn(ind) = ((Cd0-Cd3-Cd4)+Csn01*h^2)./jac*hc;
% south (+1, 0)
ind = sub2ind([N,N],(1:N)',sub(:,2));
As(ind) = As(ind) + (Cs3+Cs1*h)*hc/2;
Ad(ind) = Ad(ind) + (Cd3+Cd1*h)*hc/2;
Asn(ind) = Asn(ind) + (Cd3+Csn1*h)./jac*hc/2;
% north (-1, 0)
ind = sub2ind([N,N],(1:N)',sub(:,3));
As(ind) = As(ind) + (Cs3-Cs1*h)*hc/2;
Ad(ind) = Ad(ind) + (Cd3-Cd1*h)*hc/2;
Asn(ind) = Asn(ind) + (Cd3-Csn1*h)./jac*hc/2;
% east ( 0,+1)
ind = sub2ind([N,N],(1:N)',sub(:,4));
As(ind) = As(ind) + (Cs4+Cs2*h)*hc/2;
Ad(ind) = Ad(ind) + (Cd4+Cd2*h)*hc/2;
Asn(ind) = Asn(ind) + (Cd4+Csn2*h)./jac*hc/2;
% west ( 0,-1)
ind = sub2ind([N,N],(1:N)',sub(:,5));
As(ind) = As(ind) + (Cs4-Cs2*h)*hc/2;
Ad(ind) = Ad(ind) + (Cd4-Cd2*h)*hc/2;
Asn(ind) = Asn(ind) + (Cd4-Csn2*h)./jac*hc/2;
% s-e (+1,+1) and n-w (-1,-1)
Csn5 = Cd5./jac;
ind = sub2ind([N,N],(1:N)',sub(:,6));
As(ind) = As(ind) + Cs5*hc/4;
Ad(ind) = Ad(ind) + Cd5*hc/4;
Asn(ind) = Asn(ind) + Csn5*hc/4;
ind = sub2ind([N,N],(1:N)',sub(:,7));
As(ind) = As(ind) + Cs5*hc/4;
Ad(ind) = Ad(ind) + Cd5*hc/4;
Asn(ind) = Asn(ind) + Csn5*hc/4;
% s-w (+1,-1) and n-e (-1,+1)
ind = sub2ind([N,N],(1:N)',sub(:,8));
As(ind) = As(ind) - Cs5*hc/4;
Ad(ind) = Ad(ind) - Cd5*hc/4;
Asn(ind) = Asn(ind) - Csn5*hc/4;
ind = sub2ind([N,N],(1:N)',sub(:,9));
As(ind) = As(ind) - Cs5*hc/4;
Ad(ind) = Ad(ind) - Cd5*hc/4;
Asn(ind) = Asn(ind) - Csn5*hc/4;
% include Jacobian
As = As .* s.sp;
Asn= Asn.* s.sp;
end
function [Cd0,Cd01,Cd1,Cd2,Cd3,Cd4,Cd5,...
Cs0,Cs01,Cs1,Cs2,Cs3,Cs4,Cs5,...
Csn01,Csn1,Csn2] = wigner_type_lims(s)
% Compute Wigner-type limits for the O(h^5) correction of Laplace DLP,
% SLP, and normal gradient of SLP.
%
% Cdx are Wigner-type limits for the DLP
% * Cd0 and Cd01 are coefficients of the O(h) and O(h^3) components of D0
% * Cd1--Cd5 are coefficients of the O(h^3) factors D1--D5
%
% Csx are Wigner-type limits for the SLP
% * Cs0 and Cs01 are coefficients of the O(h) and O(h^3) components of D0
% * Cs1--Cs5 are coefficients of the O(h^3) factors D1--D5
%
% Csnx are Wigner-type limits for the normal gradient of SLP
% * Csnx == Cdx, except Csn01, Csn1, Csn2 are different
% compute coefficients of expansion of the geometry
Efac = s.Nv/s.Nu; Gfac = 1/Efac; % scaling factors assoc. w. E & G
E = dot(s.xu,s.xu)*Efac; F = dot(s.xu,s.xv); G = dot(s.xv,s.xv)*Gfac; % scaled 1st fund form
[Lb2,Lb3,Lb4,Lb5,Lb6,Lb8,La3,La4,La6,Lc3,Lc4,Lc6] = wigner_type_coeff(s);
% compute \square^{(1)}, \square^{(2)} & \square^{(3)}
% all second & third derivatives of Epstein zeta Z(s;E,F,G)
s = -1;
[~, d1_E, d2_E, d3_E, d4_E] = epstein_zeta(s,E,F,G,Efac,0,0);
[~, d1_G, d2_G, d3_G, d4_G] = epstein_zeta(s,E,F,G,0,0,Gfac);
[~, d1_F, d2_F, d3_F, d4_F] = epstein_zeta(s,E,F,G,0,0.5,0);
[~,~, d2_EpF, d3_EpF, d4_EpF] = epstein_zeta(s,E,F,G,Efac,.5,0);
[~,~, ~, ~,d4_Ep2F] = epstein_zeta(s,E,F,G,Efac,1,0);
[~,~, ~, d3_EmF, d4_EmF] = epstein_zeta(s,E,F,G,Efac,-.5,0);
[~,~, d2_GpF, d3_GpF, d4_GpF] = epstein_zeta(s,E,F,G,0,.5,Gfac);
[~,~, ~, ~,d4_Gp2F] = epstein_zeta(s,E,F,G,0,1,Gfac);
[~,~, ~, d3_GmF, d4_GmF] = epstein_zeta(s,E,F,G,0,-.5,Gfac);
sq2 = [d2_E; (d2_EpF-d2_E-d2_F)/2; d2_F; (d2_GpF-d2_F-d2_G)/2; d2_G];
sq3 = [d3_E; (d3_EpF-d3_EmF-2*d3_F)/6; (d3_EpF+d3_EmF-2*d3_E)/6;...
d3_F; (d3_GpF+d3_GmF-2*d3_G)/6; (d3_GpF-d3_GmF-2*d3_F)/6; d3_G];
sq4 = [d4_E; (6*d4_EpF-2*d4_EmF-d4_Ep2F-3*d4_E+12*d4_F)/24;...
(d4_EpF+d4_EmF-2*d4_E-2*d4_F)/12;...
(d4_Ep2F-3*d4_EpF-d4_EmF+3*d4_E-12*d4_F)/24;d4_F;...
(d4_Gp2F-3*d4_GpF-d4_GmF+3*d4_G-12*d4_F)/24;...
(d4_GpF+d4_GmF-2*d4_G-2*d4_F)/12;...
(6*d4_GpF-2*d4_GmF-d4_Gp2F-3*d4_G+12*d4_F)/24; d4_G];
% D0
[Cs0,Cd0] = epstein_zeta(1,E,F,G,Lb2(1,:)*Efac,Lb2(2,:)/2,Lb2(3,:)*Gfac);
Cs0 = -Cs0(:); Cd0 = Cd0(:); % O(h) errs
Cd01 = (dot(Lb4,sq2)+2*dot(Lb6,sq3)+dot(Lb8,sq4)).'; % DLP O(h^3) err
Cs01 =-(2*dot(La4,sq2)+dot(La6,sq3)).'; % SLP O(h^3) err
Csn01= (dot(Lc4,sq2)+2*dot(Lc6,sq3)+dot(Lb8,sq4)).'; % conj DLP O(h^3) err
% D1
Cs1 = -2*dot(La3,sq2(1:4,:)).'; %SLP: dot((1,0)*La3,sq2)
Cd1 = 2*(dot(Lb3,sq2(1:4,:))... %DLP: dot((1,0)*Lb3,sq2)
+dot(Lb5,sq3(1:6,:))).'; % +dot((1,0)*La3*Lb2,sq2)
Csn1= 2*(dot(Lc3,sq2(1:4,:))... %conj DLP: dot((1,0)*Lc3,sq2)
+dot(Lb5,sq3(1:6,:))).'; % +dot((1,0)*La3*Lc2,sq2)
% D2
Cs2 = -2*dot(La3,sq2(2:5,:)).'; %SLP: dot((0,1)*La3,sq2)
Cd2 = 2*(dot(Lb3,sq2(2:5,:))... %DLP: dot((0,1)*Lb3,sq2)
+dot(Lb5,sq3(2:7,:))).'; % +dot((0,1)*La3*Lb2,sq2)
Csn2= 2*(dot(Lc3,sq2(2:5,:))... %conj DLP: dot((0,1)*Lc3,sq2)
+dot(Lb5,sq3(2:7,:))).'; % +dot((0,1)*La3*Lc2,sq2)
% D3
Cd3 = 2*dot(Lb2,sq2(1:3,:)).'; %DLP: dot((1,0,0)*Lb2,sq2)
Cs3 =-2*d1_E(:); %SLP
% D4
Cd4 = 2*dot(Lb2,sq2(3:5,:)).'; %DLP: dot((0,0,1)*Lb2,sq2)
Cs4 =-2*d1_G(:); %SLP
% D5
Cd5 = 2*dot(Lb2,sq2(2:4,:)).'; %DLP: dot((0,1,0)*Lb2,sq2)
Cs5 =-2*d1_F(:); %SLP
end
function [Lb2,Lb3,Lb4,Lb5,Lb6,Lb8,La3,La4,La6,Lc3,Lc4,Lc6] = wigner_type_coeff(s)
% Expand r.(s.xu x s.xv) in terms of u & v
npt = size(s.x,2); % num of pts
% O(u,v)^2 term coeffs ( = 2nd fundamental form * jacobian)
Lb2 = [dot(s.nxj,s.xuu); 2*dot(s.nxj,s.xuv); dot(s.nxj,s.xvv)];
% O(u,v)^3 term coeffs
L30 = 2*dot(s.nxj,s.xuuu)/3-dot(s.xu,cross(s.xuu,s.xuv));
L21 = 2*dot(s.nxj,s.xuuv)-dot(s.xu,cross(s.xuu,s.xvv))-dot(s.xv,cross(s.xuu,s.xuv));
L12 = 2*dot(s.nxj,s.xuvv)-dot(s.xu,cross(s.xuv,s.xvv))-dot(s.xv,cross(s.xuu,s.xvv));
L03 = 2*dot(s.nxj,s.xvvv)/3-dot(s.xv,cross(s.xuv,s.xvv));
Lb3 = [L30;L21;L12;L03];
L30 = dot(s.xu,s.xuu);
L21 = dot(s.xu,s.xuv)*2+dot(s.xv,s.xuu);
L12 = dot(s.xv,s.xuv)*2+dot(s.xu,s.xvv);
L03 = dot(s.xv,s.xvv);
La3 = [L30;L21;L12;L03];
L30 = dot(s.nxj,s.xuuu)/3;
L21 = dot(s.nxj,s.xuuv);
L12 = dot(s.nxj,s.xuvv);
L03 = dot(s.nxj,s.xvvv)/3;
Lc3 = [L30;L21;L12;L03];
% O(u,v)^4 term coeffs
L40 = dot(s.nxj,s.xuuuu)/2-dot(s.xu,cross(s.xuu,s.xuuv))+...
4*dot(s.xu,cross(s.xuv,s.xuuu))/3-dot(s.xv,cross(s.xuu,s.xuuu))/3;
L31 = 2*dot(s.nxj,s.xuuuv)-2*dot(s.xu,cross(s.xuu,s.xuvv))+2*dot(s.xu,cross(s.xuv,s.xuuv))+...
4*dot(s.xu,cross(s.xvv,s.xuuu))/3-2*dot(s.xv,cross(s.xuu,s.xuuv))+2*dot(s.xv,cross(s.xuv,s.xuuu))/3;
L22 = 3*dot(s.nxj,s.xuuvv)-dot(s.xu,cross(s.xuu,s.xvvv))+...
3*dot(s.xu,cross(s.xvv,s.xuuv))-3*dot(s.xv,cross(s.xuu,s.xuvv))+dot(s.xv,cross(s.xvv,s.xuuu));
L13 = 2*dot(s.nxj,s.xuvvv)+2*dot(s.xv,cross(s.xvv,s.xuuv))-2*dot(s.xv,cross(s.xuv,s.xuvv))-...
4*dot(s.xv,cross(s.xuu,s.xvvv))/3+2*dot(s.xu,cross(s.xvv,s.xuvv))-2*dot(s.xu,cross(s.xuv,s.xvvv))/3;
L04 = dot(s.nxj,s.xvvvv)/2+dot(s.xv,cross(s.xvv,s.xuvv))-...
4*dot(s.xv,cross(s.xuv,s.xvvv))/3+dot(s.xu,cross(s.xvv,s.xvvv))/3;
Lb4 = [L40;L31;L22;L13;L04];
L40 = dot(s.xuuu,s.xu)/3+dot(s.xuu,s.xuu)/4;
L31 = dot(s.xuuu,s.xv)/3+dot(s.xuu,s.xuv)+dot(s.xu,s.xuuv);
L22 = dot(s.xuuv,s.xv)+dot(s.xuu,s.xvv)/2+dot(s.xu,s.xuvv)+dot(s.xuv,s.xuv);
L13 = dot(s.xuvv,s.xv)+dot(s.xuv,s.xvv)+dot(s.xu,s.xvvv)/3;
L04 = dot(s.xvvv,s.xv)/3+dot(s.xvv,s.xvv)/4;
La4 = [L40;L31;L22;L13;L04];
L40 = dot(s.nxj,s.xuuuu)/6;
L31 = 2*dot(s.nxj,s.xuuuv)/3;
L22 = dot(s.nxj,s.xuuvv);
L13 = 2*dot(s.nxj,s.xuvvv)/3;
L04 = dot(s.nxj,s.xvvvv)/6;
Lc4 = [L40;L31;L22;L13;L04];
% O(u,v)^5 term coeffs
% Lb5 = conv(La3,Lb2)
Lb5 = zeros(6,npt);
Lb5(1:4,:) = Lb5(1:4,:) + La3.*Lb2(1,:);
Lb5(2:5,:) = Lb5(2:5,:) + La3.*Lb2(2,:);
Lb5(3:6,:) = Lb5(3:6,:) + La3.*Lb2(3,:);
% O(u,v)^6 term coeffs
% La6 = conv(La3,La3)
La6 = zeros(7,npt);
La6(1:4,:) = La6(1:4,:) + La3.*La3(1,:);
La6(2:5,:) = La6(2:5,:) + La3.*La3(2,:);
La6(3:6,:) = La6(3:6,:) + La3.*La3(3,:);
La6(4:7,:) = La6(4:7,:) + La3.*La3(4,:);
% Lb6 = conv(La4,Lb2)+conv(La3,Lb3)
Lb6 = zeros(7,npt);
Lb6(1:5,:) = Lb6(1:5,:) + La4.*Lb2(1,:);
Lb6(2:6,:) = Lb6(2:6,:) + La4.*Lb2(2,:);
Lb6(3:7,:) = Lb6(3:7,:) + La4.*Lb2(3,:);
Lc6 = Lb6;
Lb6(1:4,:) = Lb6(1:4,:) + La3.*Lb3(1,:);
Lb6(2:5,:) = Lb6(2:5,:) + La3.*Lb3(2,:);
Lb6(3:6,:) = Lb6(3:6,:) + La3.*Lb3(3,:);
Lb6(4:7,:) = Lb6(4:7,:) + La3.*Lb3(4,:);
% Lc6 = conv(La4,Lb2)+conv(La3,Lc3)
Lc6(1:4,:) = Lc6(1:4,:) + La3.*Lc3(1,:);
Lc6(2:5,:) = Lc6(2:5,:) + La3.*Lc3(2,:);
Lc6(3:6,:) = Lc6(3:6,:) + La3.*Lc3(3,:);
Lc6(4:7,:) = Lc6(4:7,:) + La3.*Lc3(4,:);
% O(u,v)^8 term coeffs
% Lb8 = conv(La6,Lb2);
Lb8 = zeros(9,npt);
Lb8(1:7,:) = Lb8(1:7,:) + La6.*Lb2(1,:);
Lb8(2:8,:) = Lb8(2:8,:) + La6.*Lb2(2,:);
Lb8(3:9,:) = Lb8(3:9,:) + La6.*Lb2(3,:);
end