-
Notifications
You must be signed in to change notification settings - Fork 10
/
main_pretrain.py
289 lines (251 loc) · 11.6 KB
/
main_pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import argparse
import datetime
import json
import random
import time
from pathlib import Path
from collections import namedtuple
from functools import partial
import os
import numpy as np
import torch
from torch.utils.data import DataLoader, DistributedSampler
import util.misc as utils
import datasets.samplers as samplers
from datasets.coco_eval import CocoEvaluator
from datasets import build_dataset, get_coco_api_from_dataset
from engine import evaluate, train_one_epoch
from models import build_model
from models.postprocessors import build_postprocessors
from utils import pre_trained_model_to_finetune
from util.logger import TensorboardLogger
import opts
import os
import torch.cuda.amp as amp
import warnings
warnings.filterwarnings("ignore")
def main(args):
# set environ
os.environ["MDETR_CPU_REDUCE"] = "1"
args.masks = True
args.binary = True # only run on binary referred for joint
assert args.dataset_file in ["refcoco", "refcoco+", "refcocog", "all"]
utils.init_distributed_mode(args)
print("git:\n {}\n".format(utils.get_sha()))
print(args)
os.makedirs(args.output_dir, exist_ok=True)
with open(os.path.join(args.output_dir, "configs"), 'w') as f:
f.write(str(args) + '\n')
print("Record configs finish.")
print(f'\n Run on {args.dataset_file} dataset.\n')
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
# Logger
local_rank = torch.distributed.get_rank()
logger = None
if local_rank == 0:
long_id = args.exp_name
logger = TensorboardLogger(long_id, long_id, local_rank) # id name + time tag
logger.log_string('hyperpara', str(args))
model, criterion, postprocessors = build_model(args)
model.to(device)
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
model_without_ddp = model.module
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('number of params:', n_parameters)
# lr_backbone_names = ["backbone.0", "text_encoder"]
def match_name_keywords(n, name_keywords):
out = False
for b in name_keywords:
if b in n:
out = True
break
return out
param_dicts = [
{
"params":
[p for n, p in model_without_ddp.named_parameters()
if not match_name_keywords(n, args.lr_backbone_names) and not match_name_keywords(n, args.lr_text_encoder_names)
and not match_name_keywords(n, args.lr_linear_proj_names) and p.requires_grad],
"lr": args.lr,
},
{
"params": [p for n, p in model_without_ddp.named_parameters() if match_name_keywords(n, args.lr_backbone_names) and p.requires_grad],
"lr": args.lr_backbone,
},
{
"params": [p for n, p in model_without_ddp.named_parameters() if match_name_keywords(n, args.lr_text_encoder_names) and p.requires_grad],
"lr": args.lr_text_encoder,
},
{
"params": [p for n, p in model_without_ddp.named_parameters() if match_name_keywords(n, args.lr_linear_proj_names) and p.requires_grad],
"lr": args.lr * args.lr_linear_proj_mult,
}
]
optimizer = torch.optim.AdamW(param_dicts, lr=args.lr,
weight_decay=args.weight_decay)
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, args.lr_drop)
grad_scaler = amp.GradScaler(enabled=args.amp)
# build train dataset
if args.dataset_file != "all":
dataset_train = build_dataset(args.dataset_file, image_set='train', args=args)
else:
dataset_names = ["refcoco", "refcoco+", "refcocog"]
dataset_train = torch.utils.data.ConcatDataset(
[build_dataset(name, image_set="train", args=args) for name in dataset_names]
)
print("\nTrain dataset sample number: ", len(dataset_train))
print("\n")
if args.distributed:
if args.cache_mode:
sampler_train = samplers.NodeDistributedSampler(dataset_train)
else:
sampler_train = samplers.DistributedSampler(dataset_train)
else:
sampler_train = torch.utils.data.RandomSampler(dataset_train)
batch_sampler_train = torch.utils.data.BatchSampler(
sampler_train, args.batch_size, drop_last=True)
data_loader_train = DataLoader(dataset_train, batch_sampler=batch_sampler_train,
collate_fn=utils.collate_fn, num_workers=args.num_workers,
pin_memory=True)
# build val datasets
Val_all = namedtuple(typename="val_data", field_names=["dataset_name", "dataloader", "base_ds", "evaluator_list"])
if args.dataset_file != "all":
dataset_names = [args.dataset_file]
else:
dataset_names = ["refcoco", "refcoco+", "refcocog"]
val_tuples = []
for name in dataset_names:
dataset_val = build_dataset(name, image_set="val", args=args)
sampler_val = (
samplers.DistributedSampler(dataset_val, shuffle=False) if args.distributed else torch.utils.data.SequentialSampler(dataset_val)
)
data_loader_val = DataLoader(
dataset_val,
args.batch_size,
sampler=sampler_val,
drop_last=False,
collate_fn=utils.collate_fn,
num_workers=args.num_workers,
)
base_ds = get_coco_api_from_dataset(dataset_val)
val_tuples.append(Val_all(dataset_name=name, dataloader=data_loader_val, base_ds=base_ds, evaluator_list=None))
# build evaluator list for dataset_val
def build_evaluator_list(base_ds, dataset_name):
"""Helper function to build the list of evaluators for a given dataset"""
evaluator_list = []
iou_types = ["bbox"]
if args.masks:
iou_types.append("segm")
evaluator_list.append(CocoEvaluator(base_ds, tuple(iou_types), useCats=False))
return evaluator_list
output_dir = Path(args.output_dir)
if args.resume:
print("Resume from {}".format(args.resume))
if args.resume.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(
args.resume, map_location='cpu', check_hash=True)
else:
checkpoint = torch.load(args.resume, map_location='cpu')
missing_keys, unexpected_keys = model_without_ddp.load_state_dict(checkpoint['model'], strict=False)
unexpected_keys = [k for k in unexpected_keys if not (k.endswith('total_params') or k.endswith('total_ops'))]
if len(missing_keys) > 0:
print('Missing Keys: {}'.format(missing_keys))
if len(unexpected_keys) > 0:
print('Unexpected Keys: {}'.format(unexpected_keys))
if not args.eval and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint:
import copy
p_groups = copy.deepcopy(optimizer.param_groups)
optimizer.load_state_dict(checkpoint['optimizer'])
for pg, pg_old in zip(optimizer.param_groups, p_groups):
pg['lr'] = pg_old['lr']
pg['initial_lr'] = pg_old['initial_lr']
checkpoint['lr_scheduler'].pop('gamma')
checkpoint['lr_scheduler'].pop('milestones')
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
# this is a hack for doing experiment that resume from checkpoint and also modify lr scheduler (e.g., decrease lr in advance).
args.override_resumed_lr_drop = True
if args.override_resumed_lr_drop:
print('Warning: (hack) args.override_resumed_lr_drop is set to True, so args.lr_drop would override lr_drop in resumed lr_scheduler.')
lr_scheduler.step_size = args.lr_drop
lr_scheduler.base_lrs = list(map(lambda group: group['initial_lr'], optimizer.param_groups))
lr_scheduler.step(lr_scheduler.last_epoch)
if 'grad_scaler' in checkpoint:
grad_scaler.load_state_dict(checkpoint['grad_scaler'])
args.start_epoch = checkpoint['epoch'] + 1
print("Loaded previous checkpoint from {}.".format(args.resume))
if args.eval:
print("Evaluating......")
test_stats = {}
for i, item in enumerate(val_tuples):
evaluator_list = build_evaluator_list(item.base_ds, item.dataset_name)
postprocessors = build_postprocessors(args, item.dataset_name)
item = item._replace(evaluator_list=evaluator_list)
print(f"Evaluating {item.dataset_name}")
curr_test_stats = evaluate(
model=model,
criterion=criterion,
postprocessors=postprocessors,
data_loader=item.dataloader,
evaluator_list=item.evaluator_list,
device=device,
args=args,
)
test_stats.update({item.dataset_name + "_" + k: v for k, v in curr_test_stats.items()})
log_stats = {
**{f"test_{k}": v for k, v in test_stats.items()},
"n_parameters": n_parameters,
}
print(log_stats)
return
print("Start training, total poch is: {}.".format(args.epochs))
start_time = time.time()
total_itr_num = 0
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
sampler_train.set_epoch(epoch)
epoch_s_ = time.time()
train_stats, total_itr_num = train_one_epoch(
args, model, criterion, data_loader_train, optimizer, grad_scaler, device, epoch,
args.clip_max_norm, total_itr_num, lr_scheduler, logger)
print("One epoch time cost is {}h.".format((time.time() - epoch_s_) / 3600))
lr_scheduler.step()
if args.output_dir:
checkpoint_paths = [output_dir / 'checkpoint.pth']
checkpoint_paths.append(output_dir / f'checkpoint{epoch:04}.pth')
for checkpoint_path in checkpoint_paths:
utils.save_on_master({
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch,
'args': args,
'grad_scaler': grad_scaler.state_dict(),
}, checkpoint_path)
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
'epoch': epoch,
'n_parameters': n_parameters}
if args.output_dir and utils.is_main_process():
with (output_dir / "log.txt").open("a") as f:
f.write(json.dumps(log_stats) + "\n")
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
parser = argparse.ArgumentParser('SgMg pretrain training and evaluation script', parents=[opts.get_args_parser()])
args = parser.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
gpu_num = torch.cuda.device_count()
print("Use GPU number is: ", gpu_num)
args.lr *= gpu_num / 8
args.lr_backbone *= gpu_num / 8
args.lr_text_encoder *= gpu_num / 8
print("After adjust with num {}, lr: {}, lr_backbone: {}, lr_text_backbone: {}.\n".format(gpu_num * args.batch_size, args.lr, args.lr_backbone, args.lr_text_encoder))
main(args)