-
Notifications
You must be signed in to change notification settings - Fork 2
/
Mesh_Gui_Lite.py
560 lines (460 loc) · 22.7 KB
/
Mesh_Gui_Lite.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
import pyvista as pv
import sympy as sp
from sympy import Matrix, lambdify
import numpy as np
from PyQt5 import Qt, QtWidgets
from PyQt5.QtWidgets import QMessageBox
from pyvistaqt import QtInteractor
import sys, os, time
import trimesh
# initiate stored mesh
mesh = pv.PolyData()
class MainWindow(Qt.QMainWindow):
def __init__(self, parent=None, show=True):
Qt.QMainWindow.__init__(self, parent)
# create the frame
self.frame = Qt.QFrame()
vlayout = Qt.QVBoxLayout()
# add the pyvista interactor object
self.plotter = QtInteractor(self.frame)
vlayout.addWidget(self.plotter.interactor)
self.frame.setLayout(vlayout)
self.setCentralWidget(self.frame)
# simple menu
mainMenu = self.menuBar()
fileMenu = mainMenu.addMenu('File')
editMenu = mainMenu.addMenu('Edit')
# opening a mesh file
self.open_mesh_action = Qt.QAction('Open Mesh...', self)
self.open_mesh_action.triggered.connect(self.open_mesh)
fileMenu.addAction(self.open_mesh_action)
# exit button
exitButton = Qt.QAction('Exit', self)
exitButton.setShortcut('Ctrl+Q')
exitButton.triggered.connect(self.close)
fileMenu.addAction(exitButton)
# create cubic skeleton
self.cubic_skeleton_action = Qt.QAction('Cubic Skeleton', self)
self.cubic_skeleton_action.triggered.connect(self.cubic_skeleton)
editMenu.addAction(self.cubic_skeleton_action)
# split mesh based on max cube faces
# self.max_cube_slice_action = Qt.QAction('Slice27', self)
# self.cubic_skeleton_action.triggered.connect(self.max_cube_slice)
# editMenu.addAction(self.max_cube_slice_action)
if show:
self.show()
self.plotter.add_axes(interactive=None, line_width=2, color=None, x_color=None, y_color=None, z_color=None, xlabel='X', ylabel='Y', zlabel='Z', labels_off=False, box=None, box_args=None)
def open_mesh(self):
""" add a mesh to the pyqt frame """
global mesh, mesh_vol
# open file
file_info = QtWidgets.QFileDialog.getOpenFileName()
print(file_info)
file_path = file_info[0]
# determine file type and if conversion needed
file_dir, file_name = os.path.split(file_path)
mesh_name, mesh_type = os.path.splitext(file_name)
# convert mesh file type
#if ext != ".vtk" or ext != ".VTK":
# mesh = meshio.read(file_path)
# meshio.write(root + ".vtk", mesh)
# mesh = pv.read(head + "/" + root + ".vtk")
# need to store elsewhere or delete .vtk file in the future
#else:
# mesh = pv.read(file_path)
# read mesh & transform according to principal axes
pre = trimesh.load_mesh(file_path)
orient = pre.principal_inertia_transform
pre = pre.apply_transform(orient)
pre.export('data/'+ mesh_name + '_oriented.STL')
mesh = pv.read('data/'+ mesh_name + '_oriented.STL')
# print mesh info
print("Mesh Name:", mesh_name)
print("Mesh Type:", mesh_type[1:])
# show transformed mesh
#self.plotter.add_mesh(mesh, show_edges=True, color="w", opacity=0.6)
# reset plotter
self.reset_plotter()
# find mesh centroid and translate the mesh so that's the origin
self.centroid()
# show bounding box
# self.plotter.add_bounding_box(opacity=0.5, color="y")
# mesh volume
mesh_vol = float(format(mesh.volume, ".5f"))
print("Mesh Volume:", mesh_vol)
def reset_plotter(self):
""" clear plotter of mesh or interactive options """
# clear plotter
self.plotter.clear()
#self.plotter.clear_plane_widgets()
#self.plotter.reset_camera()
# callback opened mesh
self.plotter.add_mesh(mesh, show_edges=True, color="w", opacity=0.6)
# show origin
self.plotter.add_axes_at_origin(xlabel='X', ylabel='Y', zlabel='Z', line_width=6, labels_off=True)
def centroid(self):
""" find centroid volumetrically and indicate on graph """
global Vol_centroid, V
# find the vertices & the vertex indices of each triangular face
V = np.array(mesh.points)
col = len(V)
f_ind = np.array(mesh.faces.reshape((-1,4))[:, 1:4])
# define an arbitrary start point from middle of max and min of X,Y,Z of
# all points: in a convex manifold it falls inside the volume (requires
# segmentation for general application)
start = np.array(mesh.center)
X_start = start[0]
Y_start = start[1]
Z_start = start[2]
# initialize variables
centroids = []
Vol_total = 0
Sum_vol_x = 0
Sum_vol_y = 0
Sum_vol_z = 0
# find centroid from all tetrahedra made with arbitrary center and triangular faces
for i in range(0, col-1, 3):
# find the center of each tetrahedron (average of X,Y,Z of
# 4 vertices, 3 from the triangle, and one arbitrary start point)
X_cent = (X_start + V[f_ind[i,0],0] + V[f_ind[i+1,0],0] + V[f_ind[i+2,0],0]) / 4
Y_cent = (Y_start + V[f_ind[i,1],1] + V[f_ind[i+1,1],1] + V[f_ind[i+2,1],1]) / 4
Z_cent = (Z_start + V[f_ind[i,2],2] + V[f_ind[i+1,2],2] + V[f_ind[i+2,2],2]) / 4
# compute the volume of each tetrahedron
V1 = np.array([V[f_ind[i,0],0], V[f_ind[i,1],1], V[f_ind[i,2],2]])**2 - np.array([X_start, Y_start, Z_start])**2
V2 = np.array([V[f_ind[i+1,0],0], V[f_ind[i+1,1],1], V[f_ind[i+1,2],2]])**2 - np.array([V[f_ind[i,0],0], V[f_ind[i,1],1], V[f_ind[i,2],2]])**2
V3 = np.array([V[f_ind[i+2,0],0], V[f_ind[i+2,1],1], V[f_ind[i+2,2],2]])**2 - np.array([V[f_ind[i+1,0],0], V[f_ind[i+1,1],1], V[f_ind[i+1,2],2]])**2
V1 = V1.reshape((-1,1))
V2 = V2.reshape((-1,1))
V3 = V3.reshape((-1,1))
Vol = abs(np.linalg.det(np.hstack([V1, V2, V3]))) / 6
# tally up each cycle
Vol_total = Vol_total + Vol
Sum_vol_x = Sum_vol_x + Vol * X_cent
Sum_vol_y = Sum_vol_y + Vol * Y_cent
Sum_vol_z = Sum_vol_z + Vol * Z_cent
centroids.append([X_cent,Y_cent,Z_cent])
# find & show centroid
centroids = np.asarray(centroids)
Vol_centroid = [Sum_vol_x, Sum_vol_y, Sum_vol_z] / Vol_total
def cubic_skeleton(self):
''' fill mesh with cubic skeleton'''
global max_cube_stored
max_cube_stored = 0
# user input number of rays for next cubes
# self.plotter.add_text_slider_widget(self.max_cube_ray, ['10 rays','15 rays', '20 rays'], value=0)
self.plotter.add_text_slider_widget(self.next_cubes_ray, ['10 rays','15 rays', '20 rays'], value=1)
def max_cube_ray(self, value):
""" add a maximally inscribed cube within the opened mesh (via ray tracing) """
global x_range, y_range, z_range, Vol_centroid
global face_center, max_normal, max_cube_vol, max_cube
global max_cube_start, max_cube_end, max_cube_run
global top_rays, top_ints, bottom_rays, bottom_ints
# bypass error
try:
top_rays, top_ints, bottom_rays, bottom_ints, max_cube, r_num, max_cube_stored
except NameError:
top_rays = None
top_ints = None
bottom_rays = None
bottom_ints = None
max_cube = None
max_cube_stored = None
r_num = 0
# remove old rays
if (r_num != 0) and (r_num == int(value[0])):
return
elif (r_num != 0) and (max_cube_stored != None):
self.plotter.remove_actor(max_cube_stored)
for i in range(0, r_num):
self.plotter.remove_actor(top_rays[i])
self.plotter.remove_actor(top_ints[i])
self.plotter.remove_actor(bottom_rays[i])
self.plotter.remove_actor(bottom_ints[i])
# track starting time
max_cube_start = time.time()
# find mesh vertices
V = np.array(mesh.points)
# find the max and min of x,y,z axes of mesh
ranges = mesh.bounds
x_range = abs(ranges[0] - ranges[1])
y_range = abs(ranges[2] - ranges[3])
z_range = abs(ranges[4] - ranges[5])
# show centroid
Vol_centroid = np.array([0,0,0]) # overwrite centroid with origin at principle axes
self.plotter.add_mesh(pv.PolyData(Vol_centroid), color='r', point_size=20.0, render_points_as_spheres=True)
# find the nearest possible cube vertex from top rays & mesh intersection
top_vert, top_rays, top_ints = self.cube_center_ray(Vol_centroid, 'z', value)
top = self.furthest_pt(top_vert, Vol_centroid)
# find the nearest possible cube vertex from bottom rays & mesh intersection
bottom_vert, bottom_rays, bottom_ints = self.cube_center_ray(Vol_centroid, '-z', value)
bottom = self.furthest_pt(bottom_vert, Vol_centroid)
# find the nearest possible cube vertex between the two
if top[0] < bottom[0]:
p = top[1]
V = top[2]
else:
p = bottom[1]
V = bottom[2]
# create and show max cube
max_cube_V, max_cube_F, max_cube_vol = self.create_cube(V[p,:], Vol_centroid, np.array([0,0,Vol_centroid[2]]))
max_cube = self.plotter.add_mesh(pv.PolyData(max_cube_V, max_cube_F), show_edges=True, line_width=3, color="g", opacity=0.6)
max_cube_stored = max_cube
# find & show max cube face centers
cell_center = pv.PolyData(max_cube_V, max_cube_F).cell_centers()
face_center = np.array(cell_center.points)
#self.plotter.add_mesh(cell_center, color="r", point_size=8, render_points_as_spheres=True)
# find max cube face normals
max_normal = pv.PolyData(max_cube_V, max_cube_F).cell_normals
# max cube volume
max_cube_vol = float(format(max_cube_vol, ".5f"))
print("Max Cube Volume:", max_cube_vol)
# track ending time & duration
max_cube_end = time.time()
max_cube_run = max_cube_end - max_cube_start
return
def cube_center_ray(self, start, dir, value):
''' from starting point shoot out n rays to find vertices of possible cubes '''
global r_num, r_rot, r_dec
# initialize variables
idx = value.index(" ")
r_num = 0
for i in range(0, idx):
r_num = r_num + int(value[i]) + (idx - i)**10
r_rot = np.pi/2
r_dec = -2*np.pi/r_num
l_wid = 5
pt_size = 20
ray_size = np.zeros((4, 3))
r_dir = ray_size
r_dir_norm = ray_size
r_end = ray_size
rays = [0] * r_num
ints = [0] * r_num
r_int = []
ori_r_int = []
# set ray length
r_len = np.sqrt((x_range/2)**2 + (y_range/2)**2 + (z_range/2)**2)
# create rays by rotating the first, which creates the cube with xyz axes as its face normals
for i in range(0, r_num):
for j in range(0, 4):
if (j == 0) and (dir == 'z'):
r_dir[0] = np.array([np.sqrt(2)/2 * np.cos(np.pi/4 + r_dec * i), np.sqrt(2)/2 * np.sin(np.pi/4 + r_dec * i), 0.5])
r_dir_norm[0] = r_dir[0] / np.linalg.norm(r_dir[0])
r_end[0] = Vol_centroid + r_dir_norm[0] * r_len
# set rotation matrix about 'z'
R = self.rot_axis(np.array([0,0,1]))
elif (j == 0) and (dir == '-z'):
r_dir[0] = np.array([np.sqrt(2)/2 * np.cos(np.pi/4 + r_dec * i), np.sqrt(2)/2 * np.sin(np.pi/4 + r_dec * i), -0.5])
r_dir_norm[0] = r_dir[0] / np.linalg.norm(r_dir[0])
r_end[0] = Vol_centroid + r_dir_norm[0] * r_len
# set rotation matrix about '-z'
R = self.rot_axis(np.array([0,0,-1]))
else:
r_end[j] = np.dot(R(j*r_rot), (r_end[0]-Vol_centroid).T).T
r_end[j] = r_end[j] + Vol_centroid
# perform ray trace
r_pts, r_ind = mesh.ray_trace(Vol_centroid, r_end[j])
# show rays
# rays[j] = self.plotter.add_mesh(pv.Line(Vol_centroid, r_end[j]), color='w', line_width=l_wid)
# ints[j] = self.plotter.add_mesh(pv.PolyData(r_pts[0]), color='w', point_size=pt_size)
# create an array of ray intersections
r_int = np.append(r_int, r_pts[0])
r_int = np.reshape(r_int, (4,3))
ori_nearest, ori_p, ori_V = self.nearest_pt(r_int, Vol_centroid)
r_int = []
ori_r_int = np.append(ori_r_int, ori_V[ori_p,:])
ori_r_int = np.reshape(ori_r_int, (r_num,3))
return ori_r_int, rays, ints
def nearest_pt(self, vert, starting_pt):
""" find nearest vertex: for segmented convex manifold, a cube with volume centroid as
center and nearest vertex as cube vertex, it falls inside the volume """
# find nearest point from the list of points
c = len(vert)
dist = np.zeros(c)
for i in range(0, c):
dist[i] = np.sqrt((vert[i,0] - starting_pt[0])**2 + (vert[i,1] - starting_pt[1])**2
+ (vert[i,2] - starting_pt[2])**2)
# find index of the nearest point
nearest = min(dist)
p = np.where(dist == nearest)
p = p[0].item()
return nearest, p, vert
def furthest_pt(self, vert, starting_pt):
global p, furthest, dist
""" find furthest vertex among the list of nearest vertices """
# find furthest point from the list of points
c = len(vert)
dist = np.zeros(c)
for i in range(0, c):
dist[i] = np.sqrt((vert[i,0] - starting_pt[0])**2 + (vert[i,1] - starting_pt[1])**2
+ (vert[i,2] - starting_pt[2])**2)
# find index of the furthest point
furthest = max(dist)
p = np.where(dist == furthest)
p = p[0][0]
return furthest, p, vert
def create_cube(self, vertex, starting_pt, axis):
''' create cube from the nearest pt & centroid '''
if (axis[0] == 0) and (axis[1] == 0) and (axis[2] == 0):
axis[2] = 1
vert_trans = np.array([0,0,0])
elif (starting_pt[0] == 0) and (starting_pt[1] == 0) and (starting_pt[2] == 0):
vert_trans = np.array([0,0,0])
else:
vert_trans = starting_pt
for i in range(0,3):
if round(axis[i]) == 1 or round(axis[i]) == -1:
vert_trans[i] == 0
# find the other 7 vertices
# 3 vertices can be found by rotating the first point 90 degrees 3 times around Z axis of centroid
# 4 vertices can be found by translating the first four vertices twice the half edge
# found from the distance times sin(pi/4)
R = self.rot_axis(axis / np.linalg.norm(axis))
# construct the array of the first 4 vertices
V_1 = np.array(vertex - vert_trans)
V_2 = np.dot(R(np.pi/2), V_1.T).T
V_3 = np.dot(R(np.pi), V_1.T).T
V_4 = np.dot(R(3*np.pi/2), V_1.T).T
# cube_V_start = np.array([V_1, V_2, V_3, V_4])
cube_V_start = np.array([V_1, V_2, V_3, V_4]) + np.ones((4,1)) * [vert_trans]
cube_V_start_center = np.array(pv.PolyData(cube_V_start).center)
# show nearest vertex of cube
V_1 = np.array(vertex)
self.plotter.add_mesh(pv.PolyData(V_1), color="y", point_size=30.0, render_points_as_spheres=True)
# find the translation distance
trans_dis = starting_pt - cube_V_start_center
trans_dir = trans_dis / np.linalg.norm(trans_dis)
dia_dis = np.sqrt((V_1[0]-cube_V_start_center[0])**2 + (V_1[1]-cube_V_start_center[1])**2 + (V_1[2]-cube_V_start_center[2])**2)
half_edge = np.ones((4,1)) * [trans_dir] * dia_dis * np.sin(np.pi/4)
cube_trans = np.asarray(2*half_edge, dtype=np.float64)
# construct the cube
cube_V_end = np.add(cube_V_start, cube_trans)
cube_V = np.vstack((cube_V_start, cube_V_end))
cube_F = np.hstack([[4,0,1,2,3],
[4,0,3,7,4],
[4,0,1,5,4],
[4,1,2,6,5],
[4,2,3,7,6],
[4,4,5,6,7]])
# cube volume
cube_vol = (2 * np.linalg.norm(half_edge[0,:]))**3
return cube_V, cube_F, cube_vol
def rot_axis(self, axis):
''' create a rotational matrix about an arbitrary axis '''
t = sp.Symbol('t')
R_t = Matrix([[sp.cos(t)+axis[0]**2*(1-sp.cos(t)), axis[0]*axis[1]*(1-sp.cos(t))-axis[2]*sp.sin(t), axis[0]*axis[2]*(1-sp.cos(t))+axis[1]*sp.sin(t)],
[axis[1]*axis[0]*(1-sp.cos(t))+axis[2]*sp.sin(t), sp.cos(t)+axis[1]**2*(1-sp.cos(t)), axis[1]*axis[2]*(1-sp.cos(t))-axis[0]*sp.sin(t)],
[axis[2]*axis[0]*(1-sp.cos(t))-axis[1]*sp.sin(t), axis[2]*axis[1]*(1-sp.cos(t))+axis[0]*sp.sin(t), sp.cos(t)+axis[2]**2*(1-sp.cos(t))]])
R = lambdify(t, R_t)
return R
def next_cubes_ray(self, value):
''' create cubes within the mesh from the face centers of the first cube'''
global next_cube_vol, max_normal
global next_rays, next_ints, next_cubes
# find max cube
self.max_cube_ray(value)
# # bypass error
# try:
# next_rays, next_ints, next_cubes, r_num
# except NameError:
# next_rays = None
# next_ints = None
# next_cubes = None
# r_num = 0
# # remove old rays
# if (r_num != 0) and (r_num == int(value[0])):
# return
# elif (r_num != 0) and (next_cubes != None):
# for i in range(0,6):
# self.plotter.remove_actor(next_cubes[i])
# for j in range(0, r_num):
# self.plotter.remove_actor(next_rays[i*r_num+j])
# self.plotter.remove_actor(next_ints[i*r_num+j])
# track starting time
next_cube_start = time.time()
# initiate variables
next_cube_vol_sum = 0
next_cubes = [0] * 6
next_rays = [0] * 6 * r_num
next_ints = [0] * 6 * r_num
# fix max_normal
normal = face_center[0] - Vol_centroid
if (np.sign(normal[2]) != np.sign(max_normal[0,2])):
max_normal = np.negative(max_normal)
# loop through all 6 faces of max cube
for i in range(0, 6):
# create rotaional matrix about max cube normals
R = self.rot_axis(max_normal[i])
# initialize variables
ray_size = np.zeros((4, 3))
r_dir = ray_size
r_dir_norm = ray_size
r_end = ray_size
# initialize ray trace parameters
l_wid = 3
pt_size = 10
r_len = np.sqrt((x_range/2)**2 + (y_range/2)**2 + (z_range/2)**2)
r_int = []
ori_r_int = []
for j in range(0, r_num):
for k in range(0, 4):
if k == 0:
if (i == 0) or (i == 5):
r_dir[0] = np.array([np.sqrt(2)/2 * np.cos(np.pi/4 + r_dec * j), np.sqrt(2)/2 * np.sin(np.pi/4 + r_dec * j), max_normal[i][2]])
else:
x,y = sp.symbols('x,y')
f = sp.Eq(max_normal[i][0]*x + max_normal[i][1]*y, 0)
g = sp.Eq(x**2 + y**2, 0.5**2)
inc = sp.solve([f,g],(x,y))
r_dir[0] = np.array(max_normal[i] + [inc[0][0], inc[0][1], 0.5])
r_dir_norm[0] = r_dir[0] / np.linalg.norm(r_dir[0])
r_end[0] = face_center[i] + r_dir_norm[0] * r_len
r_end[0] = np.dot(R(j*r_dec), (r_end[0]-Vol_centroid).T).T
else:
r_end[k] = np.dot(R(k*r_rot), (r_end[0]-Vol_centroid).T).T
r_end[k] = r_end[k] + Vol_centroid
# perform ray trace
r_pts, r_ind = mesh.ray_trace(face_center[i], r_end[k])
# show rays
# next_rays[i*r_num+k] = self.plotter.add_mesh(pv.Line(face_center[i], r_end[k]), color='w', line_width=l_wid)
# next_ints[i*r_num+k] = self.plotter.add_mesh(pv.PolyData(r_pts[0]), color='w', point_size=pt_size)
# create an array of ray intersections
r_int = np.append(r_int, r_pts[0])
# find nearest vertice among the ray intersections
r_int = np.reshape(r_int, (4,3))
ori_nearest, ori_p, ori_V = self.nearest_pt(r_int, face_center[i])
r_int = []
ori_r_int = np.append(ori_r_int, ori_V[ori_p,:])
ori_r_int = np.reshape(ori_r_int, (r_num,3))
face = self.furthest_pt(ori_r_int, face_center[i])
# create cube from nearest vertice
next_cube_V, next_cube_F, next_cube_vol = self.create_cube(face[2][face[1],:], face_center[i], max_normal[i])
next_cubes[i] = self.plotter.add_mesh(pv.PolyData(next_cube_V, next_cube_F), show_edges=True, line_width=3, color="g", opacity=0.6)
# next cube volume
next_cube_vol_sum = next_cube_vol_sum + next_cube_vol
# show packing efficiency
next_cube_vol_sum = float(format(next_cube_vol_sum, ".5f"))
pack_vol = float(format((max_cube_vol + next_cube_vol_sum), ".5f"))
pack_percent = "{:.1%}".format(pack_vol / mesh_vol)
print("Next Cubes Volume:", next_cube_vol_sum)
print("Packed Volume:", pack_vol)
print("Packing Efficiency:", pack_percent)
# track starting time
next_cube_end = time.time()
next_cube_run = next_cube_end - next_cube_start
print("Total elapsed run time: %g seconds" % (max_cube_run + next_cube_run))
return
def closeEvent(self, event):
reply = QMessageBox.question(self, "Window Close", "Are you sure you want to quit program?",
QMessageBox.Yes | QMessageBox.No, QMessageBox.No)
if reply == QMessageBox.Yes:
event.accept()
else:
event.ignore()
if __name__ == '__main__':
app = Qt.QApplication(sys.argv)
window = MainWindow()
window.show()
window.setWindowTitle("Mesh Visualization")
QtWidgets.QApplication.setQuitOnLastWindowClosed(True)
sys.exit(app.exec_())