forked from insightbook/data-science-from-scratch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathch20_natural_language_processing.py
315 lines (243 loc) · 9.77 KB
/
ch20_natural_language_processing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
from __future__ import division
import math, random, re
from collections import defaultdict, Counter
from bs4 import BeautifulSoup
import requests
def plot_resumes(plt):
data = [ ("big data", 100, 15), ("Hadoop", 95, 25), ("Python", 75, 50),
("R", 50, 40), ("machine learning", 80, 20), ("statistics", 20, 60),
("data science", 60, 70), ("analytics", 90, 3),
("team player", 85, 85), ("dynamic", 2, 90), ("synergies", 70, 0),
("actionable insights", 40, 30), ("think out of the box", 45, 10),
("self-starter", 30, 50), ("customer focus", 65, 15),
("thought leadership", 35, 35)]
def text_size(total):
"""equals 8 if total is 0, 28 if total is 200"""
return 8 + total / 200 * 20
for word, job_popularity, resume_popularity in data:
plt.text(job_popularity, resume_popularity, word,
ha='center', va='center',
size=text_size(job_popularity + resume_popularity))
plt.xlabel("Popularity on Job Postings")
plt.ylabel("Popularity on Resumes")
plt.axis([0, 100, 0, 100])
plt.show()
#
# n-gram models
#
def fix_unicode(text):
return text.replace(u"\u2019", "'")
def get_document():
url = "http://radar.oreilly.com/2010/06/what-is-data-science.html"
html = requests.get(url).text
soup = BeautifulSoup(html, 'html5lib')
content = soup.find("div", "article-body") # find article-body div
regex = r"[\w']+|[\.]" # matches a word or a period
document = []
for paragraph in content("p"):
words = re.findall(regex, fix_unicode(paragraph.text))
document.extend(words)
return document
def generate_using_bigrams(transitions):
current = "." # this means the next word will start a sentence
result = []
while True:
next_word_candidates = transitions[current] # bigrams (current, _)
current = random.choice(next_word_candidates) # choose one at random
result.append(current) # append it to results
if current == ".": return " ".join(result) # if "." we're done
def generate_using_trigrams(starts, trigram_transitions):
current = random.choice(starts) # choose a random starting word
prev = "." # and precede it with a '.'
result = [current]
while True:
next_word_candidates = trigram_transitions[(prev, current)]
next = random.choice(next_word_candidates)
prev, current = current, next
result.append(current)
if current == ".":
return " ".join(result)
def is_terminal(token):
return token[0] != "_"
def expand(grammar, tokens):
for i, token in enumerate(tokens):
# ignore terminals
if is_terminal(token): continue
# choose a replacement at random
replacement = random.choice(grammar[token])
if is_terminal(replacement):
tokens[i] = replacement
else:
tokens = tokens[:i] + replacement.split() + tokens[(i+1):]
return expand(grammar, tokens)
# if we get here we had all terminals and are done
return tokens
def generate_sentence(grammar):
return expand(grammar, ["_S"])
#
# Gibbs Sampling
#
def roll_a_die():
return random.choice([1,2,3,4,5,6])
def direct_sample():
d1 = roll_a_die()
d2 = roll_a_die()
return d1, d1 + d2
def random_y_given_x(x):
"""equally likely to be x + 1, x + 2, ... , x + 6"""
return x + roll_a_die()
def random_x_given_y(y):
if y <= 7:
# if the total is 7 or less, the first die is equally likely to be
# 1, 2, ..., (total - 1)
return random.randrange(1, y)
else:
# if the total is 7 or more, the first die is equally likely to be
# (total - 6), (total - 5), ..., 6
return random.randrange(y - 6, 7)
def gibbs_sample(num_iters=100):
x, y = 1, 2 # doesn't really matter
for _ in range(num_iters):
x = random_x_given_y(y)
y = random_y_given_x(x)
return x, y
def compare_distributions(num_samples=1000):
counts = defaultdict(lambda: [0, 0])
for _ in range(num_samples):
counts[gibbs_sample()][0] += 1
counts[direct_sample()][1] += 1
return counts
#
# TOPIC MODELING
#
def sample_from(weights):
total = sum(weights)
rnd = total * random.random() # uniform between 0 and total
for i, w in enumerate(weights):
rnd -= w # return the smallest i such that
if rnd <= 0: return i # sum(weights[:(i+1)]) >= rnd
documents = [
["Hadoop", "Big Data", "HBase", "Java", "Spark", "Storm", "Cassandra"],
["NoSQL", "MongoDB", "Cassandra", "HBase", "Postgres"],
["Python", "scikit-learn", "scipy", "numpy", "statsmodels", "pandas"],
["R", "Python", "statistics", "regression", "probability"],
["machine learning", "regression", "decision trees", "libsvm"],
["Python", "R", "Java", "C++", "Haskell", "programming languages"],
["statistics", "probability", "mathematics", "theory"],
["machine learning", "scikit-learn", "Mahout", "neural networks"],
["neural networks", "deep learning", "Big Data", "artificial intelligence"],
["Hadoop", "Java", "MapReduce", "Big Data"],
["statistics", "R", "statsmodels"],
["C++", "deep learning", "artificial intelligence", "probability"],
["pandas", "R", "Python"],
["databases", "HBase", "Postgres", "MySQL", "MongoDB"],
["libsvm", "regression", "support vector machines"]
]
K = 4
document_topic_counts = [Counter()
for _ in documents]
topic_word_counts = [Counter() for _ in range(K)]
topic_counts = [0 for _ in range(K)]
document_lengths = map(len, documents)
distinct_words = set(word for document in documents for word in document)
W = len(distinct_words)
D = len(documents)
def p_topic_given_document(topic, d, alpha=0.1):
"""the fraction of words in document _d_
that are assigned to _topic_ (plus some smoothing)"""
return ((document_topic_counts[d][topic] + alpha) /
(document_lengths[d] + K * alpha))
def p_word_given_topic(word, topic, beta=0.1):
"""the fraction of words assigned to _topic_
that equal _word_ (plus some smoothing)"""
return ((topic_word_counts[topic][word] + beta) /
(topic_counts[topic] + W * beta))
def topic_weight(d, word, k):
"""given a document and a word in that document,
return the weight for the k-th topic"""
return p_word_given_topic(word, k) * p_topic_given_document(k, d)
def choose_new_topic(d, word):
return sample_from([topic_weight(d, word, k)
for k in range(K)])
random.seed(0)
document_topics = [[random.randrange(K) for word in document]
for document in documents]
for d in range(D):
for word, topic in zip(documents[d], document_topics[d]):
document_topic_counts[d][topic] += 1
topic_word_counts[topic][word] += 1
topic_counts[topic] += 1
for iter in range(1000):
for d in range(D):
for i, (word, topic) in enumerate(zip(documents[d],
document_topics[d])):
# remove this word / topic from the counts
# so that it doesn't influence the weights
document_topic_counts[d][topic] -= 1
topic_word_counts[topic][word] -= 1
topic_counts[topic] -= 1
document_lengths[d] -= 1
# choose a new topic based on the weights
new_topic = choose_new_topic(d, word)
document_topics[d][i] = new_topic
# and now add it back to the counts
document_topic_counts[d][new_topic] += 1
topic_word_counts[new_topic][word] += 1
topic_counts[new_topic] += 1
document_lengths[d] += 1
if __name__ == "__main__":
document = get_document()
bigrams = zip(document, document[1:])
transitions = defaultdict(list)
for prev, current in bigrams:
transitions[prev].append(current)
random.seed(0)
print "bigram sentences"
for i in range(10):
print i, generate_using_bigrams(transitions)
print
# trigrams
trigrams = zip(document, document[1:], document[2:])
trigram_transitions = defaultdict(list)
starts = []
for prev, current, next in trigrams:
if prev == ".": # if the previous "word" was a period
starts.append(current) # then this is a start word
trigram_transitions[(prev, current)].append(next)
print "trigram sentences"
for i in range(10):
print i, generate_using_trigrams(starts, trigram_transitions)
print
grammar = {
"_S" : ["_NP _VP"],
"_NP" : ["_N",
"_A _NP _P _A _N"],
"_VP" : ["_V",
"_V _NP"],
"_N" : ["data science", "Python", "regression"],
"_A" : ["big", "linear", "logistic"],
"_P" : ["about", "near"],
"_V" : ["learns", "trains", "tests", "is"]
}
print "grammar sentences"
for i in range(10):
print i, " ".join(generate_sentence(grammar))
print
print "gibbs sampling"
comparison = compare_distributions()
for roll, (gibbs, direct) in comparison.iteritems():
print roll, gibbs, direct
# topic MODELING
for k, word_counts in enumerate(topic_word_counts):
for word, count in word_counts.most_common():
if count > 0: print k, word, count
topic_names = ["Big Data and programming languages",
"Python and statistics",
"databases",
"machine learning"]
for document, topic_counts in zip(documents, document_topic_counts):
print document
for topic, count in topic_counts.most_common():
if count > 0:
print topic_names[topic], count,
print