forked from insightbook/data-science-from-scratch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
ch15_multiple_regression.py
149 lines (118 loc) · 8.39 KB
/
ch15_multiple_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
from __future__ import division
from collections import Counter
from functools import partial
from linear_algebra import dot, vector_add
from statistics import median, standard_deviation
from probability import normal_cdf
from gradient_descent import minimize_stochastic
from simple_linear_regression import total_sum_of_squares
import math, random
def predict(x_i, beta):
return dot(x_i, beta)
def error(x_i, y_i, beta):
return y_i - predict(x_i, beta)
def squared_error(x_i, y_i, beta):
return error(x_i, y_i, beta) ** 2
def squared_error_gradient(x_i, y_i, beta):
"""the gradient corresponding to the ith squared error term"""
return [-2 * x_ij * error(x_i, y_i, beta)
for x_ij in x_i]
def estimate_beta(x, y):
beta_initial = [random.random() for x_i in x[0]]
return minimize_stochastic(squared_error,
squared_error_gradient,
x, y,
beta_initial,
0.001)
def multiple_r_squared(x, y, beta):
sum_of_squared_errors = sum(error(x_i, y_i, beta) ** 2
for x_i, y_i in zip(x, y))
return 1.0 - sum_of_squared_errors / total_sum_of_squares(y)
def bootstrap_sample(data):
"""randomly samples len(data) elements with replacement"""
return [random.choice(data) for _ in data]
def bootstrap_statistic(data, stats_fn, num_samples):
"""evaluates stats_fn on num_samples bootstrap samples from data"""
return [stats_fn(bootstrap_sample(data))
for _ in range(num_samples)]
def estimate_sample_beta(sample):
x_sample, y_sample = zip(*sample) # magic unzipping trick
return estimate_beta(x_sample, y_sample)
def p_value(beta_hat_j, sigma_hat_j):
if beta_hat_j > 0:
return 2 * (1 - normal_cdf(beta_hat_j / sigma_hat_j))
else:
return 2 * normal_cdf(beta_hat_j / sigma_hat_j)
#
# REGULARIZED REGRESSION
#
# alpha is a *hyperparameter* controlling how harsh the penalty is
# sometimes it's called "lambda" but that already means something in Python
def ridge_penalty(beta, alpha):
return alpha * dot(beta[1:], beta[1:])
def squared_error_ridge(x_i, y_i, beta, alpha):
"""estimate error plus ridge penalty on beta"""
return error(x_i, y_i, beta) ** 2 + ridge_penalty(beta, alpha)
def ridge_penalty_gradient(beta, alpha):
"""gradient of just the ridge penalty"""
return [0] + [2 * alpha * beta_j for beta_j in beta[1:]]
def squared_error_ridge_gradient(x_i, y_i, beta, alpha):
"""the gradient corresponding to the ith squared error term
including the ridge penalty"""
return vector_add(squared_error_gradient(x_i, y_i, beta),
ridge_penalty_gradient(beta, alpha))
def estimate_beta_ridge(x, y, alpha):
"""use gradient descent to fit a ridge regression
with penalty alpha"""
beta_initial = [random.random() for x_i in x[0]]
return minimize_stochastic(partial(squared_error_ridge, alpha=alpha),
partial(squared_error_ridge_gradient,
alpha=alpha),
x, y,
beta_initial,
0.001)
def lasso_penalty(beta, alpha):
return alpha * sum(abs(beta_i) for beta_i in beta[1:])
if __name__ == "__main__":
x = [[1,49,4,0],[1,41,9,0],[1,40,8,0],[1,25,6,0],[1,21,1,0],[1,21,0,0],[1,19,3,0],[1,19,0,0],[1,18,9,0],[1,18,8,0],[1,16,4,0],[1,15,3,0],[1,15,0,0],[1,15,2,0],[1,15,7,0],[1,14,0,0],[1,14,1,0],[1,13,1,0],[1,13,7,0],[1,13,4,0],[1,13,2,0],[1,12,5,0],[1,12,0,0],[1,11,9,0],[1,10,9,0],[1,10,1,0],[1,10,1,0],[1,10,7,0],[1,10,9,0],[1,10,1,0],[1,10,6,0],[1,10,6,0],[1,10,8,0],[1,10,10,0],[1,10,6,0],[1,10,0,0],[1,10,5,0],[1,10,3,0],[1,10,4,0],[1,9,9,0],[1,9,9,0],[1,9,0,0],[1,9,0,0],[1,9,6,0],[1,9,10,0],[1,9,8,0],[1,9,5,0],[1,9,2,0],[1,9,9,0],[1,9,10,0],[1,9,7,0],[1,9,2,0],[1,9,0,0],[1,9,4,0],[1,9,6,0],[1,9,4,0],[1,9,7,0],[1,8,3,0],[1,8,2,0],[1,8,4,0],[1,8,9,0],[1,8,2,0],[1,8,3,0],[1,8,5,0],[1,8,8,0],[1,8,0,0],[1,8,9,0],[1,8,10,0],[1,8,5,0],[1,8,5,0],[1,7,5,0],[1,7,5,0],[1,7,0,0],[1,7,2,0],[1,7,8,0],[1,7,10,0],[1,7,5,0],[1,7,3,0],[1,7,3,0],[1,7,6,0],[1,7,7,0],[1,7,7,0],[1,7,9,0],[1,7,3,0],[1,7,8,0],[1,6,4,0],[1,6,6,0],[1,6,4,0],[1,6,9,0],[1,6,0,0],[1,6,1,0],[1,6,4,0],[1,6,1,0],[1,6,0,0],[1,6,7,0],[1,6,0,0],[1,6,8,0],[1,6,4,0],[1,6,2,1],[1,6,1,1],[1,6,3,1],[1,6,6,1],[1,6,4,1],[1,6,4,1],[1,6,1,1],[1,6,3,1],[1,6,4,1],[1,5,1,1],[1,5,9,1],[1,5,4,1],[1,5,6,1],[1,5,4,1],[1,5,4,1],[1,5,10,1],[1,5,5,1],[1,5,2,1],[1,5,4,1],[1,5,4,1],[1,5,9,1],[1,5,3,1],[1,5,10,1],[1,5,2,1],[1,5,2,1],[1,5,9,1],[1,4,8,1],[1,4,6,1],[1,4,0,1],[1,4,10,1],[1,4,5,1],[1,4,10,1],[1,4,9,1],[1,4,1,1],[1,4,4,1],[1,4,4,1],[1,4,0,1],[1,4,3,1],[1,4,1,1],[1,4,3,1],[1,4,2,1],[1,4,4,1],[1,4,4,1],[1,4,8,1],[1,4,2,1],[1,4,4,1],[1,3,2,1],[1,3,6,1],[1,3,4,1],[1,3,7,1],[1,3,4,1],[1,3,1,1],[1,3,10,1],[1,3,3,1],[1,3,4,1],[1,3,7,1],[1,3,5,1],[1,3,6,1],[1,3,1,1],[1,3,6,1],[1,3,10,1],[1,3,2,1],[1,3,4,1],[1,3,2,1],[1,3,1,1],[1,3,5,1],[1,2,4,1],[1,2,2,1],[1,2,8,1],[1,2,3,1],[1,2,1,1],[1,2,9,1],[1,2,10,1],[1,2,9,1],[1,2,4,1],[1,2,5,1],[1,2,0,1],[1,2,9,1],[1,2,9,1],[1,2,0,1],[1,2,1,1],[1,2,1,1],[1,2,4,1],[1,1,0,1],[1,1,2,1],[1,1,2,1],[1,1,5,1],[1,1,3,1],[1,1,10,1],[1,1,6,1],[1,1,0,1],[1,1,8,1],[1,1,6,1],[1,1,4,1],[1,1,9,1],[1,1,9,1],[1,1,4,1],[1,1,2,1],[1,1,9,1],[1,1,0,1],[1,1,8,1],[1,1,6,1],[1,1,1,1],[1,1,1,1],[1,1,5,1]]
daily_minutes_good = [68.77,51.25,52.08,38.36,44.54,57.13,51.4,41.42,31.22,34.76,54.01,38.79,47.59,49.1,27.66,41.03,36.73,48.65,28.12,46.62,35.57,32.98,35,26.07,23.77,39.73,40.57,31.65,31.21,36.32,20.45,21.93,26.02,27.34,23.49,46.94,30.5,33.8,24.23,21.4,27.94,32.24,40.57,25.07,19.42,22.39,18.42,46.96,23.72,26.41,26.97,36.76,40.32,35.02,29.47,30.2,31,38.11,38.18,36.31,21.03,30.86,36.07,28.66,29.08,37.28,15.28,24.17,22.31,30.17,25.53,19.85,35.37,44.6,17.23,13.47,26.33,35.02,32.09,24.81,19.33,28.77,24.26,31.98,25.73,24.86,16.28,34.51,15.23,39.72,40.8,26.06,35.76,34.76,16.13,44.04,18.03,19.65,32.62,35.59,39.43,14.18,35.24,40.13,41.82,35.45,36.07,43.67,24.61,20.9,21.9,18.79,27.61,27.21,26.61,29.77,20.59,27.53,13.82,33.2,25,33.1,36.65,18.63,14.87,22.2,36.81,25.53,24.62,26.25,18.21,28.08,19.42,29.79,32.8,35.99,28.32,27.79,35.88,29.06,36.28,14.1,36.63,37.49,26.9,18.58,38.48,24.48,18.95,33.55,14.24,29.04,32.51,25.63,22.22,19,32.73,15.16,13.9,27.2,32.01,29.27,33,13.74,20.42,27.32,18.23,35.35,28.48,9.08,24.62,20.12,35.26,19.92,31.02,16.49,12.16,30.7,31.22,34.65,13.13,27.51,33.2,31.57,14.1,33.42,17.44,10.12,24.42,9.82,23.39,30.93,15.03,21.67,31.09,33.29,22.61,26.89,23.48,8.38,27.81,32.35,23.84]
random.seed(0)
beta = estimate_beta(x, daily_minutes_good) # [30.63, 0.972, -1.868, 0.911]
print "beta", beta
print "r-squared", multiple_r_squared(x, daily_minutes_good, beta)
print
print "digression: the bootstrap"
# 101 points all very close to 100
close_to_100 = [99.5 + random.random() for _ in range(101)]
# 101 points, 50 of them near 0, 50 of them near 200
far_from_100 = ([99.5 + random.random()] +
[random.random() for _ in range(50)] +
[200 + random.random() for _ in range(50)])
print "bootstrap_statistic(close_to_100, median, 100):"
print bootstrap_statistic(close_to_100, median, 100)
print "bootstrap_statistic(far_from_100, median, 100):"
print bootstrap_statistic(far_from_100, median, 100)
print
random.seed(0) # so that you get the same results as me
bootstrap_betas = bootstrap_statistic(zip(x, daily_minutes_good),
estimate_sample_beta,
100)
bootstrap_standard_errors = [
standard_deviation([beta[i] for beta in bootstrap_betas])
for i in range(4)]
print "bootstrap standard errors", bootstrap_standard_errors
print
print "p_value(30.63, 1.174)", p_value(30.63, 1.174)
print "p_value(0.972, 0.079)", p_value(0.972, 0.079)
print "p_value(-1.868, 0.131)", p_value(-1.868, 0.131)
print "p_value(0.911, 0.990)", p_value(0.911, 0.990)
print
print "regularization"
random.seed(0)
for alpha in [0.0, 0.01, 0.1, 1, 10]:
beta = estimate_beta_ridge(x, daily_minutes_good, alpha=alpha)
print "alpha", alpha
print "beta", beta
print "dot(beta[1:],beta[1:])", dot(beta[1:], beta[1:])
print "r-squared", multiple_r_squared(x, daily_minutes_good, beta)
print