-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinitial-idea.py
148 lines (123 loc) · 2.67 KB
/
initial-idea.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import csv
import numpy as np
from datetime import datetime
import matplotlib as mpl
import matplotlib.pyplot as plt
from numpy import genfromtxt
import csv
import numpy as np
from datetime import datetime
import matplotlib as mpl
from numpy import genfromtxt
times = []
accelerometer = []
aX = []
aY = []
aZ = []
vX = []
vY = []
vZ = []
with open("../Left hand/Static/no_movement2.csv") as file:
csvObj = csv.reader(file, delimiter=',')
cnt = 0
for row in csvObj:
if cnt > 0:
row[0] = datetime.strptime(row[0][0:-6], '%Y-%m-%d %H:%M:%S.%f').timestamp() * 1000
cnt += 1
times.append(row)
x=0
try:
x = float(row[11])
except:
print(row[2])
y=0
try:
y = float(row[12])
except:
print(row[3])
z=0
try:
z = float(row[13])
except:
print(row[4])
aX.append(x)
aY.append(y)
aZ.append(z)
timestamps = []
for row in times:
timestamps.append(row[0])
dT = []
obj3 = []
obj4 = []
start = 240000
allTimes = []
size = 5000
# moveAvg2 = diff = times[start][0] - times[start-1][0]
beta = 0.95
for j in range(2, len(times)):
diff = times[j][0] - times[j-1][0]
dT.append(diff)
if(diff > 5000):
break
allTimes.append(times[j][0])
vX.append(diff*aX[j])
vY.append(diff*aY[j])
vZ.append(diff*aZ[j])
movingAvgX = vX[0]
movingAvgY = vY[0]
movingAvgZ = vZ[0]
avgsX = []
avgsY = []
avgsZ = []
for j in range(0, len(vX)):
avgX = movingAvgX*beta + vX[j]*(1-beta)
avgY = movingAvgY*beta + vY[j]*(1-beta)
avgZ = movingAvgZ*beta + vZ[j]*(1-beta)
avgsX.append(avgX + 10)
avgsY.append(avgY + 7)
avgsZ.append(avgZ + 80.6)
# calculate velocity
uX = 0
uY = 0
uZ = 0
vX = []
vY = []
vZ = []
velocity = []
for i in range(0, len(dT)):
# print(aX[i])
# print(dT[i])
# print(f"{aX[i]}, {aY[i]}, {aZ[i]}")
print(f"{aX[i]+aY[i]+aZ[i]+0.980665}")
uX += aX[i]*(dT[i]/1000)
uY += aY[i]*(dT[i]/1000)
uZ += aZ[i]*(dT[i]/1000)
vX.append(uX)
vY.append(uY)
vZ.append(uZ)
velocity.append(uX+uY+uZ)
# print(f"{uX}, {uY}, {uZ}")
print("done")
low = 1
high = 500
# plt.figure(0)
# plt.plot(allTimes[low:high], avgsX[low:high], "r")
# plt.plot(allTimes[low:high], avgsY[low:high], "g")
# plt.plot(allTimes[low:high], avgsZ[low:high], "b")
# plt.ylabel('acceleration')
# plt.title("accelerometer moving average")
plt.figure(1)
plt.plot(timestamps[low:high], aX[low:high], "r")
plt.plot(timestamps[low:high], aY[low:high], "g")
plt.plot(timestamps[low:high], aZ[low:high], "b")
plt.ylabel('acceleration')
plt.title("raw accelerometer")
# plt.figure(2)
# plt.title("time since last sample")
# plt.plot(timestamps[low:high], dT[low:high], "r")
# velocity plot
plt.figure(3)
plt.plot(timestamps[low:high], velocity[low:high], "r")
plt.ylabel('velocity')
plt.title("velocity")
plt.show()