Skip to content

Latest commit

 

History

History
995 lines (768 loc) · 73.3 KB

RELEASE.md

File metadata and controls

995 lines (768 loc) · 73.3 KB

Upcoming Release 0.17.3

Major features and improvements

  • Kedro plugins can now override built-in CLI commands.

Bug fixes and other changes

  • TemplatedConfigLoader now correctly inserts default values when no globals are supplied.
  • Fixed a bug where the KEDRO_ENV environment variable had no effect on instantiating the context variable in an iPython session or a Jupyter notebook.
  • Plugins with empty CLI groups are no longer displayed in the Kedro CLI help screen.
  • Duplicate commands will no longer appear twice in the Kedro CLI help screen.
  • CLI commands from sources with the same name will show under one list in the help screen.

Minor breaking changes to the API

Thanks for supporting contributions

Release 0.17.2

Major features and improvements

  • Added support for compress_pickle backend to PickleDataSet.
  • Enabled loading pipelines without creating a KedroContext instance:
from kedro.framework.project import pipelines

print(pipelines)
  • Projects generated with kedro>=0.17.2:
    • should define pipelines in pipeline_registry.py rather than hooks.py.
    • when run as a package, will behave the same as kedro run

Bug fixes and other changes

  • If settings.py is not importable, the errors will be surfaced earlier in the process, rather than at runtime.

Minor breaking changes to the API

  • kedro pipeline list and kedro pipeline describe no longer accept redundant --env parameter.
  • from kedro.framework.cli.cli import cli no longer includes the new and starter commands.

Upcoming deprecations for Kedro 0.18.0

  • kedro.framework.context.KedroContext.run will be removed in release 0.18.0.

Thanks for supporting contributions

Sasaki Takeru

Release 0.17.1

Major features and improvements

  • Added env and extra_params to reload_kedro() line magic.
  • Extended the pipeline() API to allow strings and sets of strings as inputs and outputs, to specify when a dataset name remains the same (not namespaced).
  • Added the ability to add custom prompts with regexp validator for starters by repurposing default_config.yml as prompts.yml.
  • Added the env and extra_params arguments to register_config_loader hook.
  • Refactored the way settings are loaded. You will now be able to run:
from kedro.framework.project import settings

print(settings.CONF_ROOT)

Bug fixes and other changes

  • The version of a packaged modular pipeline now defaults to the version of the project package.
  • Added fix to prevent new lines being added to pandas CSV datasets.
  • Fixed issue with loading a versioned SparkDataSet in the interactive workflow.
  • Kedro CLI now checks pyproject.toml for a tool.kedro section before treating the project as a Kedro project.
  • Added fix to DataCatalog::shallow_copy now it should copy layers.
  • kedro pipeline pull now uses pip download for protocols that are not supported by fsspec.
  • Cleaned up documentation to fix broken links and rewrite permanently redirected ones.
  • Added a jsonschema schema definition for the Kedro 0.17 catalog.
  • kedro install now waits on Windows until all the requirements are installed.
  • Exposed --to-outputs option in the CLI, throughout the codebase, and as part of hooks specifications.
  • Fixed a bug where ParquetDataSet wasn't creating parent directories on the fly.
  • Updated documentation.

Breaking changes to the API

  • This release has broken the kedro ipython and kedro jupyter workflows. To fix this, follow the instructions in the migration guide below.
  • You will also need to upgrade kedro-viz to 3.10.1 if you use the %run_viz line magic in Jupyter Notebook.

Note: If you're using the ipython extension instead, you will not encounter this problem.

Migration guide

You will have to update the file <your_project>/.ipython/profile_default/startup/00-kedro-init.py in order to make kedro ipython and/or kedro jupyter work. Add the following line before the KedroSession is created:

configure_project(metadata.package_name)  # to add

session = KedroSession.create(metadata.package_name, path)

Make sure that the associated import is provided in the same place as others in the file:

from kedro.framework.project import configure_project  # to add
from kedro.framework.session import KedroSession

Thanks for supporting contributions

Mariana Silva, Kiyohito Kunii, noklam, Ivan Doroshenko, Zain Patel, Deepyaman Datta, Sam Hiscox, Pascal Brokmeier

Release 0.17.0

Major features and improvements

  • In a significant change, we have introduced KedroSession which is responsible for managing the lifecycle of a Kedro run.
  • Created a new Kedro Starter: kedro new --starter=mini-kedro. It is possible to use the DataCatalog as a standalone component in a Jupyter notebook and transition into the rest of the Kedro framework.
  • Added DatasetSpecs with Hooks to run before and after datasets are loaded from/saved to the catalog.
  • Added a command: kedro catalog create. For a registered pipeline, it creates a <conf_root>/<env>/catalog/<pipeline_name>.yml configuration file with MemoryDataSet datasets for each dataset that is missing from DataCatalog.
  • Added settings.py and pyproject.toml (to replace .kedro.yml) for project configuration, in line with Python best practice.
  • ProjectContext is no longer needed, unless for very complex customisations. KedroContext, ProjectHooks and settings.py together implement sensible default behaviour. As a result context_path is also now an optional key in pyproject.toml.
  • Removed ProjectContext from src/<package_name>/run.py.
  • TemplatedConfigLoader now supports Jinja2 template syntax alongside its original syntax.
  • Made registration Hooks mandatory, as the only way to customise the ConfigLoader or the DataCatalog used in a project. If no such Hook is provided in src/<package_name>/hooks.py, a KedroContextError is raised. There are sensible defaults defined in any project generated with Kedro >= 0.16.5.

Bug fixes and other changes

  • ParallelRunner no longer results in a run failure, when triggered from a notebook, if the run is started using KedroSession (session.run()).
  • before_node_run can now overwrite node inputs by returning a dictionary with the corresponding updates.
  • Added minimal, black-compatible flake8 configuration to the project template.
  • Moved isort and pytest configuration from <project_root>/setup.cfg to <project_root>/pyproject.toml.
  • Extra parameters are no longer incorrectly passed from KedroSession to KedroContext.
  • Relaxed pyspark requirements to allow for installation of pyspark 3.0.
  • Added a --fs-args option to the kedro pipeline pull command to specify configuration options for the fsspec filesystem arguments used when pulling modular pipelines from non-PyPI locations.
  • Bumped maximum required fsspec version to 0.9.
  • Bumped maximum supported s3fs version to 0.5 (S3FileSystem interface has changed since 0.4.1 version).

Deprecations

  • In Kedro 0.17.0 we have deleted the deprecated kedro.cli and kedro.context modules in favour of kedro.framework.cli and kedro.framework.context respectively.

Other breaking changes to the API

  • kedro.io.DataCatalog.exists() returns False when the dataset does not exist, as opposed to raising an exception.
  • The pipeline-specific catalog.yml file is no longer automatically created for modular pipelines when running kedro pipeline create. Use kedro catalog create to replace this functionality.
  • Removed include_examples prompt from kedro new. To generate boilerplate example code, you should use a Kedro starter.
  • Changed the --verbose flag from a global command to a project-specific command flag (e.g kedro --verbose new becomes kedro new --verbose).
  • Dropped support of the dataset_credentials key in credentials in PartitionedDataSet.
  • get_source_dir() was removed from kedro/framework/cli/utils.py.
  • Dropped support of get_config, create_catalog, create_pipeline, template_version, project_name and project_path keys by get_project_context() function (kedro/framework/cli/cli.py).
  • kedro new --starter now defaults to fetching the starter template matching the installed Kedro version.
  • Renamed kedro_cli.py to cli.py and moved it inside the Python package (src/<package_name>/), for a better packaging and deployment experience.
  • Removed .kedro.yml from the project template and replaced it with pyproject.toml.
  • Removed KEDRO_CONFIGS constant (previously residing in kedro.framework.context.context).
  • Modified kedro pipeline create CLI command to add a boilerplate parameter config file in conf/<env>/parameters/<pipeline_name>.yml instead of conf/<env>/pipelines/<pipeline_name>/parameters.yml. CLI commands kedro pipeline delete / package / pull were updated accordingly.
  • Removed get_static_project_data from kedro.framework.context.
  • Removed KedroContext.static_data.
  • The KedroContext constructor now takes package_name as first argument.
  • Replaced context property on KedroSession with load_context() method.
  • Renamed _push_session and _pop_session in kedro.framework.session.session to _activate_session and _deactivate_session respectively.
  • Custom context class is set via CONTEXT_CLASS variable in src/<your_project>/settings.py.
  • Removed KedroContext.hooks attribute. Instead, hooks should be registered in src/<your_project>/settings.py under the HOOKS key.
  • Restricted names given to nodes to match the regex pattern [\w\.-]+$.
  • Removed KedroContext._create_config_loader() and KedroContext._create_data_catalog(). They have been replaced by registration hooks, namely register_config_loader() and register_catalog() (see also upcoming deprecations).

Upcoming deprecations for Kedro 0.18.0

  • kedro.framework.context.load_context will be removed in release 0.18.0.
  • kedro.framework.cli.get_project_context will be removed in release 0.18.0.
  • We've added a DeprecationWarning to the decorator API for both node and pipeline. These will be removed in release 0.18.0. Use Hooks to extend a node's behaviour instead.
  • We've added a DeprecationWarning to the Transformers API when adding a transformer to the catalog. These will be removed in release 0.18.0. Use Hooks to customise the load and save methods.

Thanks for supporting contributions

Deepyaman Datta, Zach Schuster

Migration guide from Kedro 0.16.* to 0.17.*

Reminder: Our documentation on how to upgrade Kedro covers a few key things to remember when updating any Kedro version.

The Kedro 0.17.0 release contains some breaking changes. If you update Kedro to 0.17.0 and then try to work with projects created against earlier versions of Kedro, you may encounter some issues when trying to run kedro commands in the terminal for that project. Here's a short guide to getting your projects running against the new version of Kedro.

Note: As always, if you hit any problems, please check out our documentation:

To get an existing Kedro project to work after you upgrade to Kedro 0.17.0, we recommend that you create a new project against Kedro 0.17.0 and move the code from your existing project into it. Let's go through the changes, but first, note that if you create a new Kedro project with Kedro 0.17.0 you will not be asked whether you want to include the boilerplate code for the Iris dataset example. We've removed this option (you should now use a Kedro starter if you want to create a project that is pre-populated with code).

To create a new, blank Kedro 0.17.0 project to drop your existing code into, you can create one, as always, with kedro new. We also recommend creating a new virtual environment for your new project, or you might run into conflicts with existing dependencies.

  • Update pyproject.toml: Copy the following three keys from the .kedro.yml of your existing Kedro project into the pyproject.toml file of your new Kedro 0.17.0 project:
[tools.kedro]
package_name = "<package_name>"
project_name = "<project_name>"
project_version = "0.17.0"

Check your source directory. If you defined a different source directory (source_dir), make sure you also move that to pyproject.toml.

  • Copy files from your existing project:

    • Copy subfolders of project/src/project_name/pipelines from existing to new project
    • Copy subfolders of project/src/test/pipelines from existing to new project
    • Copy the requirements your project needs into requirements.txt and/or requirements.in.
    • Copy your project configuration from the conf folder. Take note of the new locations needed for modular pipeline configuration (move it from conf/<env>/pipeline_name/catalog.yml to conf/<env>/catalog/pipeline_name.yml and likewise for parameters.yml).
    • Copy from the data/ folder of your existing project, if needed, into the same location in your new project.
    • Copy any Hooks from src/<package_name>/hooks.py.
  • Update your new project's README and docs as necessary.

  • Update settings.py: For example, if you specified additional Hook implementations in hooks, or listed plugins under disable_hooks_by_plugin in your .kedro.yml, you will need to move them to settings.py accordingly:

from <package_name>.hooks import MyCustomHooks, ProjectHooks


HOOKS = (ProjectHooks(), MyCustomHooks())

DISABLE_HOOKS_FOR_PLUGINS = ("my_plugin1",)
  • Migration for node names. From 0.17.0 the only allowed characters for node names are letters, digits, hyphens, underscores and/or fullstops. If you have previously defined node names that have special characters, spaces or other characters that are no longer permitted, you will need to rename those nodes.

  • Copy changes to kedro_cli.py. If you previously customised the kedro run command or added more CLI commands to your kedro_cli.py, you should move them into <project_root>/src/<package_name>/cli.py. Note, however, that the new way to run a Kedro pipeline is via a KedroSession, rather than using the KedroContext:

with KedroSession.create(package_name=...) as session:
    session.run()
  • Copy changes made to ConfigLoader. If you have defined a custom class, such as TemplatedConfigLoader, by overriding ProjectContext._create_config_loader, you should move the contents of the function in src/<package_name>/hooks.py, under register_config_loader.

  • Copy changes made to DataCatalog. Likewise, if you have DataCatalog defined with ProjectContext._create_catalog, you should copy-paste the contents into register_catalog.

  • Optional: If you have plugins such as Kedro-Viz installed, it's likely that Kedro 0.17.0 won't work with their older versions, so please either upgrade to the plugin's newest version or follow their migration guides.

Release 0.16.6

Major features and improvements

  • Added documentation with a focus on single machine and distributed environment deployment; the series includes Docker, Argo, Prefect, Kubeflow, AWS Batch, AWS Sagemaker and extends our section on Databricks
  • Added kedro-starter-spaceflights alias for generating a project: kedro new --starter spaceflights.

Bug fixes and other changes

  • Fixed TypeError when converting dict inputs to a node made from a wrapped partial function.
  • PartitionedDataSet improvements:
    • Supported passing arguments to the underlying filesystem.
  • Improved handling of non-ASCII word characters in dataset names.
    • For example, a dataset named jalapeño will be accessible as DataCatalog.datasets.jalapeño rather than DataCatalog.datasets.jalape__o.
  • Fixed kedro install for an Anaconda environment defined in environment.yml.
  • Fixed backwards compatibility with templates generated with older Kedro versions <0.16.5. No longer need to update .kedro.yml to use kedro lint and kedro jupyter notebook convert.
  • Improved documentation.
  • Added documentation using MinIO with Kedro.
  • Improved error messages for incorrect parameters passed into a node.
  • Fixed issue with saving a TensorFlowModelDataset in the HDF5 format with versioning enabled.
  • Added missing run_result argument in after_pipeline_run Hooks spec.
  • Fixed a bug in IPython script that was causing context hooks to be registered twice. To apply this fix to a project generated with an older Kedro version, apply the same changes made in this PR to your 00-kedro-init.py file.
  • Improved documentation.

Breaking changes to the API

Thanks for supporting contributions

Deepyaman Datta, Bhavya Merchant, Lovkush Agarwal, Varun Krishna S, Sebastian Bertoli, noklam, Daniel Petti, Waylon Walker, Saran Balaji C

Release 0.16.5

Major features and improvements

  • Added the following new datasets.
Type Description Location
email.EmailMessageDataSet Manage email messages using the Python standard library kedro.extras.datasets.email
  • Added support for pyproject.toml to configure Kedro. pyproject.toml is used if .kedro.yml doesn't exist (Kedro configuration should be under [tool.kedro] section).
  • Projects created with this version will have no pipeline.py, having been replaced by hooks.py.
  • Added a set of registration hooks, as the new way of registering library components with a Kedro project:
    • register_pipelines(), to replace _get_pipelines()
    • register_config_loader(), to replace _create_config_loader()
    • register_catalog(), to replace _create_catalog() These can be defined in src/<package-name>/hooks.py and added to .kedro.yml (or pyproject.toml). The order of execution is: plugin hooks, .kedro.yml hooks, hooks in ProjectContext.hooks.
  • Added ability to disable auto-registered Hooks using .kedro.yml (or pyproject.toml) configuration file.

Bug fixes and other changes

  • Added option to run asynchronously via the Kedro CLI.
  • Absorbed .isort.cfg settings into setup.cfg.
  • Packaging a modular pipeline raises an error if the pipeline directory is empty or non-existent.

Breaking changes to the API

  • project_name, project_version and package_name now have to be defined in .kedro.yml for projects using Kedro 0.16.5+.

Migration Guide

This release has accidentally broken the usage of kedro lint and kedro jupyter notebook convert on a project template generated with previous versions of Kedro (<=0.16.4). To amend this, please either upgrade to kedro==0.16.6 or update .kedro.yml within your project root directory to include the following keys:

project_name: "<your_project_name>"
project_version: "<kedro_version_of_the_project>"
package_name: "<your_package_name>"

Thanks for supporting contributions

Deepyaman Datta, Bas Nijholt, Sebastian Bertoli

Release 0.16.4

Major features and improvements

  • Fixed a bug for using ParallelRunner on Windows.
  • Enabled auto-discovery of hooks implementations coming from installed plugins.

Bug fixes and other changes

  • Fixed a bug for using ParallelRunner on Windows.
  • Modified GBQTableDataSet to load customized results using customized queries from Google Big Query tables.
  • Documentation improvements.

Breaking changes to the API

Thanks for supporting contributions

Ajay Bisht, Vijay Sajjanar, Deepyaman Datta, Sebastian Bertoli, Shahil Mawjee, Louis Guitton, Emanuel Ferm

Release 0.16.3

Major features and improvements

  • Added the kedro pipeline pull CLI command to extract a packaged modular pipeline, and place the contents in a Kedro project.
  • Added the --version option to kedro pipeline package to allow specifying alternative versions to package under.
  • Added the --starter option to kedro new to create a new project from a local, remote or aliased starter template.
  • Added the kedro starter list CLI command to list all starter templates that can be used to bootstrap a new Kedro project.
  • Added the following new datasets.
Type Description Location
json.JSONDataSet Work with JSON files using the Python standard library kedro.extras.datasets.json

Bug fixes and other changes

  • Removed /src/nodes directory from the project template and made kedro jupyter convert create it on the fly if necessary.
  • Fixed a bug in MatplotlibWriter which prevented saving lists and dictionaries of plots locally on Windows.
  • Closed all pyplot windows after saving in MatplotlibWriter.
  • Documentation improvements:
  • Fixed broken versioning for Windows paths.
  • Fixed DataSet string representation for falsy values.
  • Improved the error message when duplicate nodes are passed to the Pipeline initializer.
  • Fixed a bug where kedro docs would fail because the built docs were located in a different directory.
  • Fixed a bug where ParallelRunner would fail on Windows machines whose reported CPU count exceeded 61.
  • Fixed an issue with saving TensorFlow model to h5 file on Windows.
  • Added a json parameter to APIDataSet for the convenience of generating requests with JSON bodies.
  • Fixed dependencies for SparkDataSet to include spark.

Breaking changes to the API

Thanks for supporting contributions

Deepyaman Datta, Tam-Sanh Nguyen, DataEngineerOne

Release 0.16.2

Major features and improvements

  • Added the following new datasets.
Type Description Location
pandas.AppendableExcelDataSet Work with Excel files opened in append mode kedro.extras.datasets.pandas
tensorflow.TensorFlowModelDataset Work with TensorFlow models using TensorFlow 2.X kedro.extras.datasets.tensorflow
holoviews.HoloviewsWriter Work with Holoviews objects (saves as image file) kedro.extras.datasets.holoviews
  • kedro install will now compile project dependencies (by running kedro build-reqs behind the scenes) before the installation if the src/requirements.in file doesn't exist.
  • Added only_nodes_with_namespace in Pipeline class to filter only nodes with a specified namespace.
  • Added the kedro pipeline delete command to help delete unwanted or unused pipelines (it won't remove references to the pipeline in your create_pipelines() code).
  • Added the kedro pipeline package command to help package up a modular pipeline. It will bundle up the pipeline source code, tests, and parameters configuration into a .whl file.

Bug fixes and other changes

  • DataCatalog improvements:
    • Introduced regex filtering to the DataCatalog.list() method.
    • Non-alphanumeric characters (except underscore) in dataset name are replaced with __ in DataCatalog.datasets, for ease of access to transcoded datasets.
  • Dataset improvements:
    • Improved initialization speed of spark.SparkHiveDataSet.
    • Improved S3 cache in spark.SparkDataSet.
    • Added support of options for building pyarrow table in pandas.ParquetDataSet.
  • kedro build-reqs CLI command improvements:
    • kedro build-reqs is now called with -q option and will no longer print out compiled requirements to the console for security reasons.
    • All unrecognized CLI options in kedro build-reqs command are now passed to pip-compile call (e.g. kedro build-reqs --generate-hashes).
  • kedro jupyter CLI command improvements:
    • Improved error message when running kedro jupyter notebook, kedro jupyter lab or kedro ipython with Jupyter/IPython dependencies not being installed.
    • Fixed %run_viz line magic for showing kedro viz inside a Jupyter notebook. For the fix to be applied on existing Kedro project, please see the migration guide.
    • Fixed the bug in IPython startup script (issue 298).
  • Documentation improvements:
    • Updated community-generated content in FAQ.
    • Added find-kedro and kedro-static-viz to the list of community plugins.
    • Add missing pillow.ImageDataSet entry to the documentation.

Breaking changes to the API

Migration guide from Kedro 0.16.1 to 0.16.2

Guide to apply the fix for %run_viz line magic in existing project

Even though this release ships a fix for project generated with kedro==0.16.2, after upgrading, you will still need to make a change in your existing project if it was generated with kedro>=0.16.0,<=0.16.1 for the fix to take effect. Specifically, please change the content of your project's IPython init script located at .ipython/profile_default/startup/00-kedro-init.py with the content of this file. You will also need kedro-viz>=3.3.1.

Thanks for supporting contributions

Miguel Rodriguez Gutierrez, Joel Schwarzmann, w0rdsm1th, Deepyaman Datta, Tam-Sanh Nguyen, Marcus Gawronsky

0.16.1

Major features and improvements

Bug fixes and other changes

  • Fixed deprecation warnings from kedro.cli and kedro.context when running kedro jupyter notebook.
  • Fixed a bug where catalog and context were not available in Jupyter Lab and Notebook.
  • Fixed a bug where kedro build-reqs would fail if you didn't have your project dependencies installed.

Breaking changes to the API

Thanks for supporting contributions

0.16.0

Major features and improvements

CLI

  • Added new CLI commands (only available for the projects created using Kedro 0.16.0 or later):
    • kedro catalog list to list datasets in your catalog
    • kedro pipeline list to list pipelines
    • kedro pipeline describe to describe a specific pipeline
    • kedro pipeline create to create a modular pipeline
  • Improved the CLI speed by up to 50%.
  • Improved error handling when making a typo on the CLI. We now suggest some of the possible commands you meant to type, in git-style.

Framework

  • All modules in kedro.cli and kedro.context have been moved into kedro.framework.cli and kedro.framework.context respectively. kedro.cli and kedro.context will be removed in future releases.
  • Added Hooks, which is a new mechanism for extending Kedro.
  • Fixed load_context changing user's current working directory.
  • Allowed the source directory to be configurable in .kedro.yml.
  • Added the ability to specify nested parameter values inside your node inputs, e.g. node(func, "params:a.b", None)

DataSets

  • Added the following new datasets.
Type Description Location
pillow.ImageDataSet Work with image files using Pillow kedro.extras.datasets.pillow
geopandas.GeoJSONDataSet Work with geospatial data using GeoPandas kedro.extras.datasets.geopandas
api.APIDataSet Work with data from HTTP(S) API requests kedro.extras.datasets.api
  • Added joblib backend support to pickle.PickleDataSet.
  • Added versioning support to MatplotlibWriter dataset.
  • Added the ability to install dependencies for a given dataset with more granularity, e.g. pip install "kedro[pandas.ParquetDataSet]".
  • Added the ability to specify extra arguments, e.g. encoding or compression, for fsspec.spec.AbstractFileSystem.open() calls when loading/saving a dataset. See Example 3 under docs.

Other

  • Added namespace property on Node, related to the modular pipeline where the node belongs.
  • Added an option to enable asynchronous loading inputs and saving outputs in both SequentialRunner(is_async=True) and ParallelRunner(is_async=True) class.
  • Added MemoryProfiler transformer.
  • Removed the requirement to have all dependencies for a dataset module to use only a subset of the datasets within.
  • Added support for pandas>=1.0.
  • Enabled Python 3.8 compatibility. Please note that a Spark workflow may be unreliable for this Python version as pyspark is not fully-compatible with 3.8 yet.
  • Renamed "features" layer to "feature" layer to be consistent with (most) other layers and the relevant FAQ.

Bug fixes and other changes

  • Fixed a bug where a new version created mid-run by an external system caused inconsistencies in the load versions used in the current run.
  • Documentation improvements
    • Added instruction in the documentation on how to create a custom runner).
    • Updated contribution process in CONTRIBUTING.md - added Developer Workflow.
    • Documented installation of development version of Kedro in the FAQ section.
    • Added missing _exists method to MyOwnDataSet example in 04_user_guide/08_advanced_io.
  • Fixed a bug where PartitionedDataSet and IncrementalDataSet were not working with s3a or s3n protocol.
  • Added ability to read partitioned parquet file from a directory in pandas.ParquetDataSet.
  • Replaced functools.lru_cache with cachetools.cachedmethod in PartitionedDataSet and IncrementalDataSet for per-instance cache invalidation.
  • Implemented custom glob function for SparkDataSet when running on Databricks.
  • Fixed a bug in SparkDataSet not allowing for loading data from DBFS in a Windows machine using Databricks-connect.
  • Improved the error message for DataSetNotFoundError to suggest possible dataset names user meant to type.
  • Added the option for contributors to run Kedro tests locally without Spark installation with make test-no-spark.
  • Added option to lint the project without applying the formatting changes (kedro lint --check-only).

Breaking changes to the API

Datasets

  • Deleted obsolete datasets from kedro.io.
  • Deleted kedro.contrib and extras folders.
  • Deleted obsolete CSVBlobDataSet and JSONBlobDataSet dataset types.
  • Made invalidate_cache method on datasets private.
  • get_last_load_version and get_last_save_version methods are no longer available on AbstractDataSet.
  • get_last_load_version and get_last_save_version have been renamed to resolve_load_version and resolve_save_version on AbstractVersionedDataSet, the results of which are cached.
  • The release() method on datasets extending AbstractVersionedDataSet clears the cached load and save version. All custom datasets must call super()._release() inside _release().
  • TextDataSet no longer has load_args and save_args. These can instead be specified under open_args_load or open_args_save in fs_args.
  • PartitionedDataSet and IncrementalDataSet method invalidate_cache was made private: _invalidate_caches.

Other

  • Removed KEDRO_ENV_VAR from kedro.context to speed up the CLI run time.
  • Pipeline.name has been removed in favour of Pipeline.tag().
  • Dropped Pipeline.transform() in favour of kedro.pipeline.modular_pipeline.pipeline() helper function.
  • Made constant PARAMETER_KEYWORDS private, and moved it from kedro.pipeline.pipeline to kedro.pipeline.modular_pipeline.
  • Layers are no longer part of the dataset object, as they've moved to the DataCatalog.
  • Python 3.5 is no longer supported by the current and all future versions of Kedro.

Migration guide from Kedro 0.15.* to 0.16.*

General Migration

reminder How do I upgrade Kedro covers a few key things to remember when updating any kedro version.

Migration for datasets

Since all the datasets (from kedro.io and kedro.contrib.io) were moved to kedro/extras/datasets you must update the type of all datasets in <project>/conf/base/catalog.yml file. Here how it should be changed: type: <SomeDataSet> -> type: <subfolder of kedro/extras/datasets>.<SomeDataSet> (e.g. type: CSVDataSet -> type: pandas.CSVDataSet).

In addition, all the specific datasets like CSVLocalDataSet, CSVS3DataSet etc. were deprecated. Instead, you must use generalized datasets like CSVDataSet. E.g. type: CSVS3DataSet -> type: pandas.CSVDataSet.

Note: No changes required if you are using your custom dataset.

Migration for Pipeline.transform()

Pipeline.transform() has been dropped in favour of the pipeline() constructor. The following changes apply:

  • Remember to import from kedro.pipeline import pipeline
  • The prefix argument has been renamed to namespace
  • And datasets has been broken down into more granular arguments:
    • inputs: Independent inputs to the pipeline
    • outputs: Any output created in the pipeline, whether an intermediary dataset or a leaf output
    • parameters: params:... or parameters

As an example, code that used to look like this with the Pipeline.transform() constructor:

result = my_pipeline.transform(
    datasets={"input": "new_input", "output": "new_output", "params:x": "params:y"},
    prefix="pre",
)

When used with the new pipeline() constructor, becomes:

from kedro.pipeline import pipeline

result = pipeline(
    my_pipeline,
    inputs={"input": "new_input"},
    outputs={"output": "new_output"},
    parameters={"params:x": "params:y"},
    namespace="pre",
)

Migration for decorators, color logger, transformers etc.

Since some modules were moved to other locations you need to update import paths appropriately. You can find the list of moved files in the 0.15.6 release notes under the section titled Files with a new location.

Migration for CLI and KEDRO_ENV environment variable

Note: If you haven't made significant changes to your kedro_cli.py, it may be easier to simply copy the updated kedro_cli.py .ipython/profile_default/startup/00-kedro-init.py and from GitHub or a newly generated project into your old project.

  • We've removed KEDRO_ENV_VAR from kedro.context. To get your existing project template working, you'll need to remove all instances of KEDRO_ENV_VAR from your project template:
    • From the imports in kedro_cli.py and .ipython/profile_default/startup/00-kedro-init.py: from kedro.context import KEDRO_ENV_VAR, load_context -> from kedro.framework.context import load_context
    • Remove the envvar=KEDRO_ENV_VAR line from the click options in run, jupyter_notebook and jupyter_lab in kedro_cli.py
    • Replace KEDRO_ENV_VAR with "KEDRO_ENV" in _build_jupyter_env
    • Replace context = load_context(path, env=os.getenv(KEDRO_ENV_VAR)) with context = load_context(path) in .ipython/profile_default/startup/00-kedro-init.py

Migration for kedro build-reqs

We have upgraded pip-tools which is used by kedro build-reqs to 5.x. This pip-tools version requires pip>=20.0. To upgrade pip, please refer to their documentation.

Thanks for supporting contributions

@foolsgold, Mani Sarkar, Priyanka Shanbhag, Luis Blanche, Deepyaman Datta, Antony Milne, Panos Psimatikas, Tam-Sanh Nguyen, Tomasz Kaczmarczyk, Kody Fischer, Waylon Walker

0.15.9

Major features and improvements

Bug fixes and other changes

  • Pinned fsspec>=0.5.1, <0.7.0 and s3fs>=0.3.0, <0.4.1 to fix incompatibility issues with their latest release.

Breaking changes to the API

Thanks for supporting contributions

0.15.8

Major features and improvements

Bug fixes and other changes

  • Added the additional libraries to our requirements.txt so pandas.CSVDataSet class works out of box with pip install kedro.
  • Added pandas to our extra_requires in setup.py.
  • Improved the error message when dependencies of a DataSet class are missing.

Breaking changes to the API

Thanks for supporting contributions

0.15.7

Major features and improvements

  • Added in documentation on how to contribute a custom AbstractDataSet implementation.

Bug fixes and other changes

  • Fixed the link to the Kedro banner image in the documentation.

Breaking changes to the API

Thanks for supporting contributions

0.15.6

Major features and improvements

TL;DR We're launching kedro.extras, the new home for our revamped series of datasets, decorators and dataset transformers. The datasets in kedro.extras.datasets use fsspec to access a variety of data stores including local file systems, network file systems, cloud object stores (including S3 and GCP), and Hadoop, read more about this here. The change will allow #178 to happen in the next major release of Kedro.

An example of this new system can be seen below, loading the CSV SparkDataSet from S3:

weather:
  type: spark.SparkDataSet  # Observe the specified type, this  affects all datasets
  filepath: s3a://your_bucket/data/01_raw/weather*  # filepath uses fsspec to indicate the file storage system
  credentials: dev_s3
  file_format: csv

You can also load data incrementally whenever it is dumped into a directory with the extension to PartionedDataSet, a feature that allows you to load a directory of files. The IncrementalDataSet stores the information about the last processed partition in a checkpoint, read more about this feature here.

New features

  • Added layer attribute for datasets in kedro.extras.datasets to specify the name of a layer according to data engineering convention, this feature will be passed to kedro-viz in future releases.
  • Enabled loading a particular version of a dataset in Jupyter Notebooks and iPython, using catalog.load("dataset_name", version="<2019-12-13T15.08.09.255Z>").
  • Added property run_id on ProjectContext, used for versioning using the Journal. To customise your journal run_id you can override the private method _get_run_id().
  • Added the ability to install all optional kedro dependencies via pip install "kedro[all]".
  • Modified the DataCatalog's load order for datasets, loading order is the following:
    • kedro.io
    • kedro.extras.datasets
    • Import path, specified in type
  • Added an optional copy_mode flag to CachedDataSet and MemoryDataSet to specify (deepcopy, copy or assign) the copy mode to use when loading and saving.

New Datasets

Type Description Location
dask.ParquetDataSet Handles parquet datasets using Dask kedro.extras.datasets.dask
pickle.PickleDataSet Work with Pickle files using fsspec to communicate with the underlying filesystem kedro.extras.datasets.pickle
pandas.CSVDataSet Work with CSV files using fsspec to communicate with the underlying filesystem kedro.extras.datasets.pandas
pandas.TextDataSet Work with text files using fsspec to communicate with the underlying filesystem kedro.extras.datasets.pandas
pandas.ExcelDataSet Work with Excel files using fsspec to communicate with the underlying filesystem kedro.extras.datasets.pandas
pandas.HDFDataSet Work with HDF using fsspec to communicate with the underlying filesystem kedro.extras.datasets.pandas
yaml.YAMLDataSet Work with YAML files using fsspec to communicate with the underlying filesystem kedro.extras.datasets.yaml
matplotlib.MatplotlibWriter Save with Matplotlib images using fsspec to communicate with the underlying filesystem kedro.extras.datasets.matplotlib
networkx.NetworkXDataSet Work with NetworkX files using fsspec to communicate with the underlying filesystem kedro.extras.datasets.networkx
biosequence.BioSequenceDataSet Work with bio-sequence objects using fsspec to communicate with the underlying filesystem kedro.extras.datasets.biosequence
pandas.GBQTableDataSet Work with Google BigQuery kedro.extras.datasets.pandas
pandas.FeatherDataSet Work with feather files using fsspec to communicate with the underlying filesystem kedro.extras.datasets.pandas
IncrementalDataSet Inherit from PartitionedDataSet and remembers the last processed partition kedro.io

Files with a new location

Type New Location
JSONDataSet kedro.extras.datasets.pandas
CSVBlobDataSet kedro.extras.datasets.pandas
JSONBlobDataSet kedro.extras.datasets.pandas
SQLTableDataSet kedro.extras.datasets.pandas
SQLQueryDataSet kedro.extras.datasets.pandas
SparkDataSet kedro.extras.datasets.spark
SparkHiveDataSet kedro.extras.datasets.spark
SparkJDBCDataSet kedro.extras.datasets.spark
kedro/contrib/decorators/retry.py kedro/extras/decorators/retry_node.py
kedro/contrib/decorators/memory_profiler.py kedro/extras/decorators/memory_profiler.py
kedro/contrib/io/transformers/transformers.py kedro/extras/transformers/time_profiler.py
kedro/contrib/colors/logging/color_logger.py kedro/extras/logging/color_logger.py
extras/ipython_loader.py tools/ipython/ipython_loader.py
kedro/contrib/io/cached/cached_dataset.py kedro/io/cached_dataset.py
kedro/contrib/io/catalog_with_default/data_catalog_with_default.py kedro/io/data_catalog_with_default.py
kedro/contrib/config/templated_config.py kedro/config/templated_config.py

Upcoming deprecations

Category Type
Datasets BioSequenceLocalDataSet
CSVGCSDataSet
CSVHTTPDataSet
CSVLocalDataSet
CSVS3DataSet
ExcelLocalDataSet
FeatherLocalDataSet
JSONGCSDataSet
JSONLocalDataSet
HDFLocalDataSet
HDFS3DataSet
kedro.contrib.io.cached.CachedDataSet
kedro.contrib.io.catalog_with_default.DataCatalogWithDefault
MatplotlibLocalWriter
MatplotlibS3Writer
NetworkXLocalDataSet
ParquetGCSDataSet
ParquetLocalDataSet
ParquetS3DataSet
PickleLocalDataSet
PickleS3DataSet
TextLocalDataSet
YAMLLocalDataSet
Decorators kedro.contrib.decorators.memory_profiler
kedro.contrib.decorators.retry
kedro.contrib.decorators.pyspark.spark_to_pandas
kedro.contrib.decorators.pyspark.pandas_to_spark
Transformers kedro.contrib.io.transformers.transformers
Configuration Loaders kedro.contrib.config.TemplatedConfigLoader

Bug fixes and other changes

  • Added the option to set/overwrite params in config.yaml using YAML dict style instead of string CLI formatting only.
  • Kedro CLI arguments --node and --tag support comma-separated values, alternative methods will be deprecated in future releases.
  • Fixed a bug in the invalidate_cache method of ParquetGCSDataSet and CSVGCSDataSet.
  • --load-version now won't break if version value contains a colon.
  • Enabled running nodes with duplicate inputs.
  • Improved error message when empty credentials are passed into SparkJDBCDataSet.
  • Fixed bug that caused an empty project to fail unexpectedly with ImportError in template/.../pipeline.py.
  • Fixed bug related to saving dataframe with categorical variables in table mode using HDFS3DataSet.
  • Fixed bug that caused unexpected behavior when using from_nodes and to_nodes in pipelines using transcoding.
  • Credentials nested in the dataset config are now also resolved correctly.
  • Bumped minimum required pandas version to 0.24.0 to make use of pandas.DataFrame.to_numpy (recommended alternative to pandas.DataFrame.values).
  • Docs improvements.
  • Pipeline.transform skips modifying node inputs/outputs containing params: or parameters keywords.
  • Support for dataset_credentials key in the credentials for PartitionedDataSet is now deprecated. The dataset credentials should be specified explicitly inside the dataset config.
  • Datasets can have a new confirm function which is called after a successful node function execution if the node contains confirms argument with such dataset name.
  • Make the resume prompt on pipeline run failure use --from-nodes instead of --from-inputs to avoid unnecessarily re-running nodes that had already executed.
  • When closed, Jupyter notebook kernels are automatically terminated after 30 seconds of inactivity by default. Use --idle-timeout option to update it.
  • Added kedro-viz to the Kedro project template requirements.txt file.
  • Removed the results and references folder from the project template.
  • Updated contribution process in CONTRIBUTING.md.

Breaking changes to the API

  • Existing MatplotlibWriter dataset in contrib was renamed to MatplotlibLocalWriter.
  • kedro/contrib/io/matplotlib/matplotlib_writer.py was renamed to kedro/contrib/io/matplotlib/matplotlib_local_writer.py.
  • kedro.contrib.io.bioinformatics.sequence_dataset.py was renamed to kedro.contrib.io.bioinformatics.biosequence_local_dataset.py.

Thanks for supporting contributions

Andrii Ivaniuk, Jonas Kemper, Yuhao Zhu, Balazs Konig, Pedro Abreu, Tam-Sanh Nguyen, Peter Zhao, Deepyaman Datta, Florian Roessler, Miguel Rodriguez Gutierrez

0.15.5

Major features and improvements

  • New CLI commands and command flags:
    • Load multiple kedro run CLI flags from a configuration file with the --config flag (e.g. kedro run --config run_config.yml)
    • Run parametrised pipeline runs with the --params flag (e.g. kedro run --params param1:value1,param2:value2).
    • Lint your project code using the kedro lint command, your project is linted with black (Python 3.6+), flake8 and isort.
  • Load specific environments with Jupyter notebooks using KEDRO_ENV which will globally set run, jupyter notebook and jupyter lab commands using environment variables.
  • Added the following datasets:
    • CSVGCSDataSet dataset in contrib for working with CSV files in Google Cloud Storage.
    • ParquetGCSDataSet dataset in contrib for working with Parquet files in Google Cloud Storage.
    • JSONGCSDataSet dataset in contrib for working with JSON files in Google Cloud Storage.
    • MatplotlibS3Writer dataset in contrib for saving Matplotlib images to S3.
    • PartitionedDataSet for working with datasets split across multiple files.
    • JSONDataSet dataset for working with JSON files that uses fsspec to communicate with the underlying filesystem. It doesn't support http(s) protocol for now.
  • Added s3fs_args to all S3 datasets.
  • Pipelines can be deducted with pipeline1 - pipeline2.

Bug fixes and other changes

  • ParallelRunner now works with SparkDataSet.
  • Allowed the use of nulls in parameters.yml.
  • Fixed an issue where %reload_kedro wasn't reloading all user modules.
  • Fixed pandas_to_spark and spark_to_pandas decorators to work with functions with kwargs.
  • Fixed a bug where kedro jupyter notebook and kedro jupyter lab would run a different Jupyter installation to the one in the local environment.
  • Implemented Databricks-compatible dataset versioning for SparkDataSet.
  • Fixed a bug where kedro package would fail in certain situations where kedro build-reqs was used to generate requirements.txt.
  • Made bucket_name argument optional for the following datasets: CSVS3DataSet, HDFS3DataSet, PickleS3DataSet, contrib.io.parquet.ParquetS3DataSet, contrib.io.gcs.JSONGCSDataSet - bucket name can now be included into the filepath along with the filesystem protocol (e.g. s3://bucket-name/path/to/key.csv).
  • Documentation improvements and fixes.

Breaking changes to the API

  • Renamed entry point for running pip-installed projects to run_package() instead of main() in src/<package>/run.py.
  • bucket_name key has been removed from the string representation of the following datasets: CSVS3DataSet, HDFS3DataSet, PickleS3DataSet, contrib.io.parquet.ParquetS3DataSet, contrib.io.gcs.JSONGCSDataSet.
  • Moved the mem_profiler decorator to contrib and separated the contrib decorators so that dependencies are modular. You may need to update your import paths, for example the pyspark decorators should be imported as from kedro.contrib.decorators.pyspark import <pyspark_decorator> instead of from kedro.contrib.decorators import <pyspark_decorator>.

Thanks for supporting contributions

Sheldon Tsen, @roumail, Karlson Lee, Waylon Walker, Deepyaman Datta, Giovanni, Zain Patel

0.15.4

Major features and improvements

  • kedro jupyter now gives the default kernel a sensible name.
  • Pipeline.name has been deprecated in favour of Pipeline.tags.
  • Reuse pipelines within a Kedro project using Pipeline.transform, it simplifies dataset and node renaming.
  • Added Jupyter Notebook line magic (%run_viz) to run kedro viz in a Notebook cell (requires kedro-viz version 3.0.0 or later).
  • Added the following datasets:
    • NetworkXLocalDataSet in kedro.contrib.io.networkx to load and save local graphs (JSON format) via NetworkX. (by @josephhaaga)
    • SparkHiveDataSet in kedro.contrib.io.pyspark.SparkHiveDataSet allowing usage of Spark and insert/upsert on non-transactional Hive tables.
  • kedro.contrib.config.TemplatedConfigLoader now supports name/dict key templating and default values.

Bug fixes and other changes

  • get_last_load_version() method for versioned datasets now returns exact last load version if the dataset has been loaded at least once and None otherwise.
  • Fixed a bug in _exists method for versioned SparkDataSet.
  • Enabled the customisation of the ExcelWriter in ExcelLocalDataSet by specifying options under writer key in save_args.
  • Fixed a bug in IPython startup script, attempting to load context from the incorrect location.
  • Removed capping the length of a dataset's string representation.
  • Fixed kedro install command failing on Windows if src/requirements.txt contains a different version of Kedro.
  • Enabled passing a single tag into a node or a pipeline without having to wrap it in a list (i.e. tags="my_tag").

Breaking changes to the API

  • Removed _check_paths_consistency() method from AbstractVersionedDataSet. Version consistency check is now done in AbstractVersionedDataSet.save(). Custom versioned datasets should modify save() method implementation accordingly.

Thanks for supporting contributions

Joseph Haaga, Deepyaman Datta, Joost Duisters, Zain Patel, Tom Vigrass

0.15.3

Bug Fixes and other changes

  • Narrowed the requirements for PyTables so that we maintain support for Python 3.5.

0.15.2

Major features and improvements

  • Added --load-version, a kedro run argument that allows you run the pipeline with a particular load version of a dataset.
  • Support for modular pipelines in src/, break the pipeline into isolated parts with reusability in mind.
  • Support for multiple pipelines, an ability to have multiple entry point pipelines and choose one with kedro run --pipeline NAME.
  • Added a MatplotlibWriter dataset in contrib for saving Matplotlib images.
  • An ability to template/parameterize configuration files with kedro.contrib.config.TemplatedConfigLoader.
  • Parameters are exposed as a context property for ease of access in iPython / Jupyter Notebooks with context.params.
  • Added max_workers parameter for ParallelRunner.

Bug fixes and other changes

  • Users will override the _get_pipeline abstract method in ProjectContext(KedroContext) in run.py rather than the pipeline abstract property. The pipeline property is not abstract anymore.
  • Improved an error message when versioned local dataset is saved and unversioned path already exists.
  • Added catalog global variable to 00-kedro-init.py, allowing you to load datasets with catalog.load().
  • Enabled tuples to be returned from a node.
  • Disallowed the ConfigLoader loading the same file more than once, and deduplicated the conf_paths passed in.
  • Added a --open flag to kedro build-docs that opens the documentation on build.
  • Updated the Pipeline representation to include name of the pipeline, also making it readable as a context property.
  • kedro.contrib.io.pyspark.SparkDataSet and kedro.contrib.io.azure.CSVBlobDataSet now support versioning.

Breaking changes to the API

  • KedroContext.run() no longer accepts catalog and pipeline arguments.
  • node.inputs now returns the node's inputs in the order required to bind them properly to the node's function.

Thanks for supporting contributions

Deepyaman Datta, Luciano Issoe, Joost Duisters, Zain Patel, William Ashford, Karlson Lee

0.15.1

Major features and improvements

  • Extended versioning support to cover the tracking of environment setup, code and datasets.
  • Added the following datasets:
    • FeatherLocalDataSet in contrib for usage with pandas. (by @mdomarsaleem)
  • Added get_last_load_version and get_last_save_version to AbstractVersionedDataSet.
  • Implemented __call__ method on Node to allow for users to execute my_node(input1=1, input2=2) as an alternative to my_node.run(dict(input1=1, input2=2)).
  • Added new --from-inputs run argument.

Bug fixes and other changes

  • Fixed a bug in load_context() not loading context in non-Kedro Jupyter Notebooks.
  • Fixed a bug in ConfigLoader.get() not listing nested files for **-ending glob patterns.
  • Fixed a logging config error in Jupyter Notebook.
  • Updated documentation in 03_configuration regarding how to modify the configuration path.
  • Documented the architecture of Kedro showing how we think about library, project and framework components.
  • extras/kedro_project_loader.py renamed to extras/ipython_loader.py and now runs any IPython startup scripts without relying on the Kedro project structure.
  • Fixed TypeError when validating partial function's signature.
  • After a node failure during a pipeline run, a resume command will be suggested in the logs. This command will not work if the required inputs are MemoryDataSets.

Breaking changes to the API

Thanks for supporting contributions

Omar Saleem, Mariana Silva, Anil Choudhary, Craig

0.15.0

Major features and improvements

  • Added KedroContext base class which holds the configuration and Kedro's main functionality (catalog, pipeline, config, runner).
  • Added a new CLI command kedro jupyter convert to facilitate converting Jupyter Notebook cells into Kedro nodes.
  • Added support for pip-compile and new Kedro command kedro build-reqs that generates requirements.txt based on requirements.in.
  • Running kedro install will install packages to conda environment if src/environment.yml exists in your project.
  • Added a new --node flag to kedro run, allowing users to run only the nodes with the specified names.
  • Added new --from-nodes and --to-nodes run arguments, allowing users to run a range of nodes from the pipeline.
  • Added prefix params: to the parameters specified in parameters.yml which allows users to differentiate between their different parameter node inputs and outputs.
  • Jupyter Lab/Notebook now starts with only one kernel by default.
  • Added the following datasets:
    • CSVHTTPDataSet to load CSV using HTTP(s) links.
    • JSONBlobDataSet to load json (-delimited) files from Azure Blob Storage.
    • ParquetS3DataSet in contrib for usage with pandas. (by @mmchougule)
    • CachedDataSet in contrib which will cache data in memory to avoid io/network operations. It will clear the cache once a dataset is no longer needed by a pipeline. (by @tsanikgr)
    • YAMLLocalDataSet in contrib to load and save local YAML files. (by @Minyus)

Bug fixes and other changes

  • Documentation improvements including instructions on how to initialise a Spark session using YAML configuration.
  • anyconfig default log level changed from INFO to WARNING.
  • Added information on installed plugins to kedro info.
  • Added style sheets for project documentation, so the output of kedro build-docs will resemble the style of kedro docs.

Breaking changes to the API

  • Simplified the Kedro template in run.py with the introduction of KedroContext class.
  • Merged FilepathVersionMixIn and S3VersionMixIn under one abstract class AbstractVersionedDataSet which extendsAbstractDataSet.
  • name changed to be a keyword-only argument for Pipeline.
  • CSVLocalDataSet no longer supports URLs. CSVHTTPDataSet supports URLs.

Migration guide from Kedro 0.14.* to Kedro 0.15.0

Migration for Kedro project template

This guide assumes that:

  • The framework specific code has not been altered significantly
  • Your project specific code is stored in the dedicated python package under src/.

The breaking changes were introduced in the following project template files:

  • <project-name>/.ipython/profile_default/startup/00-kedro-init.py
  • <project-name>/kedro_cli.py
  • <project-name>/src/tests/test_run.py
  • <project-name>/src/<package-name>/run.py
  • <project-name>/.kedro.yml (new file)

The easiest way to migrate your project from Kedro 0.14.* to Kedro 0.15.0 is to create a new project (by using kedro new) and move code and files bit by bit as suggested in the detailed guide below:

  1. Create a new project with the same name by running kedro new

  2. Copy the following folders to the new project:

  • results/
  • references/
  • notebooks/
  • logs/
  • data/
  • conf/
  1. If you customised your src/<package>/run.py, make sure you apply the same customisations to src/<package>/run.py
  • If you customised get_config(), you can override config_loader property in ProjectContext derived class
  • If you customised create_catalog(), you can override catalog() property in ProjectContext derived class
  • If you customised run(), you can override run() method in ProjectContext derived class
  • If you customised default env, you can override it in ProjectContext derived class or pass it at construction. By default, env is local.
  • If you customised default root_conf, you can override CONF_ROOT attribute in ProjectContext derived class. By default, KedroContext base class has CONF_ROOT attribute set to conf.
  1. The following syntax changes are introduced in ipython or Jupyter notebook/labs:
  • proj_dir -> context.project_path
  • proj_name -> context.project_name
  • conf -> context.config_loader.
  • io -> context.catalog (e.g., io.load() -> context.catalog.load())
  1. If you customised your kedro_cli.py, you need to apply the same customisations to your kedro_cli.py in the new project.

  2. Copy the contents of the old project's src/requirements.txt into the new project's src/requirements.in and, from the project root directory, run the kedro build-reqs command in your terminal window.

Migration for versioning custom dataset classes

If you defined any custom dataset classes which support versioning in your project, you need to apply the following changes:

  1. Make sure your dataset inherits from AbstractVersionedDataSet only.
  2. Call super().__init__() with the appropriate arguments in the dataset's __init__. If storing on local filesystem, providing the filepath and the version is enough. Otherwise, you should also pass in an exists_function and a glob_function that emulate exists and glob in a different filesystem (see CSVS3DataSet as an example).
  3. Remove setting of the _filepath and _version attributes in the dataset's __init__, as this is taken care of in the base abstract class.
  4. Any calls to _get_load_path and _get_save_path methods should take no arguments.
  5. Ensure you convert the output of _get_load_path and _get_save_path appropriately, as these now return PurePaths instead of strings.
  6. Make sure _check_paths_consistency is called with PurePaths as input arguments, instead of strings.

These steps should have brought your project to Kedro 0.15.0. There might be some more minor tweaks needed as every project is unique, but now you have a pretty solid base to work with. If you run into any problems, please consult the Kedro documentation.

Thanks for supporting contributions

Dmitry Vukolov, Jo Stichbury, Angus Williams, Deepyaman Datta, Mayur Chougule, Marat Kopytjuk, Evan Miller, Yusuke Minami

0.14.3

Major features and improvements

  • Tab completion for catalog datasets in ipython or jupyter sessions. (Thank you @datajoely and @WaylonWalker)
  • Added support for transcoding, an ability to decouple loading/saving mechanisms of a dataset from its storage location, denoted by adding '@' to the dataset name.
  • Datasets have a new release function that instructs them to free any cached data. The runners will call this when the dataset is no longer needed downstream.

Bug fixes and other changes

  • Add support for pipeline nodes made up from partial functions.
  • Expand user home directory ~ for TextLocalDataSet (see issue #19).
  • Add a short_name property to Nodes for a display-friendly (but not necessarily unique) name.
  • Add Kedro project loader for IPython: extras/kedro_project_loader.py.
  • Fix source file encoding issues with Python 3.5 on Windows.
  • Fix local project source not having priority over the same source installed as a package, leading to local updates not being recognised.

Breaking changes to the API

  • Remove the max_loads argument from the MemoryDataSet constructor and from the AbstractRunner.create_default_data_set method.

Thanks for supporting contributions

Joel Schwarzmann, Alex Kalmikov

0.14.2

Major features and improvements

  • Added Data Set transformer support in the form of AbstractTransformer and DataCatalog.add_transformer.

Breaking changes to the API

  • Merged the ExistsMixin into AbstractDataSet.
  • Pipeline.node_dependencies returns a dictionary keyed by node, with sets of parent nodes as values; Pipeline and ParallelRunner were refactored to make use of this for topological sort for node dependency resolution and running pipelines respectively.
  • Pipeline.grouped_nodes returns a list of sets, rather than a list of lists.

Thanks for supporting contributions

Darren Gallagher, Zain Patel

0.14.1

Major features and improvements

  • New I/O module HDFS3DataSet.

Bug fixes and other changes

  • Improved API docs.
  • Template run.py will throw a warning instead of error if credentials.yml is not present.

Breaking changes to the API

None

0.14.0

The initial release of Kedro.

Thanks for supporting contributions

Jo Stichbury, Aris Valtazanos, Fabian Peters, Guilherme Braccialli, Joel Schwarzmann, Miguel Beltre, Mohammed ElNabawy, Deepyaman Datta, Shubham Agrawal, Oleg Andreyev, Mayur Chougule, William Ashford, Ed Cannon, Nikhilesh Nukala, Sean Bailey, Vikram Tegginamath, Thomas Huijskens, Musa Bilal

We are also grateful to everyone who advised and supported us, filed issues or helped resolve them, asked and answered questions and were part of inspiring discussions.