-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy pathutils.py
243 lines (203 loc) · 8.32 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import numpy as np
import os
import torch
import copy
from graphdata import *
import torch.nn.functional as F
from torchvision import datasets, transforms
from sklearn.metrics import roc_auc_score
import numbers
import random
def load_save_noise(f, noise_shape):
if os.path.isfile(f):
print('loading noise from %s' % f)
noises = torch.load(f)
else:
noises = torch.randn(noise_shape, dtype=torch.float)
# np.save(f, noises.numpy())
torch.save(noises, f)
return noises
def list_to_torch(data):
for i in range(len(data)):
if data[i] is None:
continue
elif isinstance(data[i], np.ndarray):
if data[i].dtype == np.bool:
data[i] = data[i].astype(np.float32)
data[i] = torch.from_numpy(data[i]).float()
elif isinstance(data[i], list):
data[i] = list_to_torch(data[i])
return data
def data_to_device(data, device):
if isinstance(data, dict):
keys = list(data.keys())
else:
keys = range(len(data))
for i in keys:
if isinstance(data[i], list) or isinstance(data[i], dict):
data[i] = data_to_device(data[i], device)
else:
if isinstance(data[i], torch.Tensor):
try:
data[i] = data[i].to(device)
except:
print('error', i, data[i], type(data[i]))
raise
return data
def count_correct(output, target, N_nodes=None, N_nodes_min=0, N_nodes_max=25):
if output.shape[1] == 1:
# Regression
pred = output.round().long()
else:
# Classification
pred = output.max(1, keepdim=True)[1]
target = target.long().squeeze().cpu() # for older pytorch
pred = pred.squeeze().cpu() # for older pytorch
if N_nodes is not None:
idx = (N_nodes >= N_nodes_min) & (N_nodes <= N_nodes_max)
if idx.sum() > 0:
correct = pred[idx].eq(target[idx]).sum().item()
for lbl in torch.unique(target, sorted=True):
idx_lbl = target[idx] == lbl
eq = (pred[idx][idx_lbl] == target[idx][idx_lbl]).float()
print('lbl: {}, avg acc: {:2.2f}% ({}/{})'.format(lbl, 100 * eq.mean(), int(eq.sum()),
int(idx_lbl.float().sum())))
eq = (pred[idx] == target[idx]).float()
print('{} <= N_nodes <= {} (min={}, max={}), avg acc: {:2.2f}% ({}/{})'.format(N_nodes_min,
N_nodes_max,
N_nodes[idx].min(),
N_nodes[idx].max(),
100 * eq.mean(),
int(eq.sum()), int(idx.sum())))
else:
correct = 0
print('no graphs with nodes >= {} and <= {}'.format(N_nodes_min, N_nodes_max))
else:
correct = pred.eq(target).sum().item()
return correct
def attn_AUC(alpha_GT, alpha):
auc = []
if len(alpha) > 0 and alpha_GT is not None and len(alpha_GT) > 0:
for layer in alpha:
alpha_gt = np.concatenate([a.flatten() for a in alpha_GT[layer]]) > 0
if len(np.unique(alpha_gt)) <= 1:
print('Only one class ({}) present in y_true. ROC AUC score is not defined in that case.'.format(np.unique(alpha_gt)))
auc.append(np.nan)
else:
auc.append(100 * roc_auc_score(y_true=alpha_gt,
y_score=np.concatenate([a.flatten() for a in alpha[layer]])))
return auc
def stats(arr):
return np.mean(arr), np.std(arr), np.min(arr), np.max(arr)
def normalize(x, eps=1e-7):
return x / (x.sum() + eps)
def normalize_batch(x, dim=1, eps=1e-7):
return x / (x.sum(dim=dim, keepdim=True) + eps)
def normalize_zero_one(im, eps=1e-7):
m1 = im.min()
m2 = im.max()
return (im - m1) / (m2 - m1 + eps)
def mse_loss(target, output, reduction='mean', reduce=None):
loss = (target.float().squeeze() - output.float().squeeze()) ** 2
if reduce is None:
if reduction == 'mean':
return torch.mean(loss)
elif reduction == 'sum':
return torch.sum(loss)
elif reduction == 'none':
return loss
else:
NotImplementedError(reduction)
elif not reduce:
return loss
else:
NotImplementedError('use reduction if reduce=True')
def shuffle_nodes(batch):
x, A, mask, labels, params_dict = batch
for b in range(x.shape[0]):
idx = np.random.permutation(x.shape[1])
x[b] = x[b, idx]
A[b] = A[b, :, idx][idx, :]
mask[b] = mask[b, idx]
if 'node_attn' in params_dict:
params_dict['node_attn'][b] = params_dict['node_attn'][b, idx]
return [x, A, mask, labels, params_dict]
def copy_batch(data):
data_cp = []
for i in range(len(data)):
if isinstance(data[i], dict):
data_cp.append({key: data[i][key].clone() for key in data[i]})
else:
data_cp.append(data[i].clone())
return data_cp
def sanity_check(model, data):
with torch.no_grad():
output1 = model(copy_batch(data))[0]
output2 = model(shuffle_nodes(copy_batch(data)))[0]
if not torch.allclose(output1, output2, rtol=1e-02, atol=1e-03):
print('WARNING: model outputs different depending on the nodes order', (torch.norm(output1 - output2),
torch.max(output1 - output2),
torch.max(output1),
torch.max(output2)))
print('model is checked for nodes shuffling')
def set_seed(seed, seed_data=None):
random.seed(seed) # for some libraries
rnd = np.random.RandomState(seed)
if seed_data is not None:
rnd_data = np.random.RandomState(seed_data)
else:
rnd_data = rnd
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
return rnd, rnd_data
def compute_feature_stats(model, train_loader, device, n_batches=100):
print('computing mean and std of input features')
model.eval()
x = []
with torch.no_grad():
for batch_idx, data in enumerate(train_loader):
x.append(data[0].data.cpu().numpy()) # B,N,F
if batch_idx > n_batches:
break
x = np.concatenate(x, axis=1).reshape(-1, x[0].shape[-1])
print('features shape loaded', x.shape)
mn = x.mean(axis=0, keepdims=True)
sd = x.std(axis=0, keepdims=True)
print('mn', mn)
print('std', sd)
sd[sd < 1e-2] = 1 # to prevent dividing by a small number
print('corrected (non zeros) std', sd)#.data.cpu().numpy())
mn = torch.from_numpy(mn).float().to(device).unsqueeze(0)
sd = torch.from_numpy(sd).float().to(device).unsqueeze(0)
return mn, sd
def copy_data(data, idx):
data_new = {}
for key in data:
if key == 'Max_degree':
data_new[key] = data[key]
print(key, data_new[key])
else:
data_new[key] = copy.deepcopy([data[key][i] for i in idx])
if key in ['graph_labels', 'N_edges']:
data_new[key] = np.array(data_new[key], np.int32)
print(key, len(data_new[key]))
return data_new
def concat_data(data):
data_new = {}
for key in data[0]:
if key == 'Max_degree':
data_new[key] = np.max(np.array([ d[key] for d in data ]))
print(key, data_new[key])
else:
if key in ['graph_labels', 'N_edges']:
data_new[key] = np.concatenate([ d[key] for d in data ])
else:
lst = []
for d in data:
lst.extend(d[key])
data_new[key] = lst
print(key, len(data_new[key]))
return data_new