-
Notifications
You must be signed in to change notification settings - Fork 52
/
Copy pathpredict.py
135 lines (117 loc) · 5.15 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--input_csv', type=str, default='splits/transporters_only.csv')
parser.add_argument('--templates_dir', type=str, default='./data')
parser.add_argument('--msa_dir', type=str, default='./alignment_dir')
parser.add_argument('--mode', choices=['alphafold', 'esmfold'], default='alphafold')
parser.add_argument('--samples', type=int, default=10)
parser.add_argument('--steps', type=int, default=10)
parser.add_argument('--outpdb', type=str, default='./outpdb/default')
parser.add_argument('--weights', type=str, default=None)
parser.add_argument('--ckpt', type=str, default=None)
parser.add_argument('--original_weights', action='store_true')
parser.add_argument('--pdb_id', nargs='*', default=[])
parser.add_argument('--subsample', type=int, default=None)
parser.add_argument('--resample', action='store_true')
parser.add_argument('--tmax', type=float, default=1.0)
parser.add_argument('--templates', action='store_true')
parser.add_argument('--no_diffusion', action='store_true', default=False)
parser.add_argument('--self_cond', action='store_true', default=False)
parser.add_argument('--noisy_first', action='store_true', default=False)
parser.add_argument('--runtime_json', type=str, default=None)
parser.add_argument('--no_overwrite', action='store_true', default=False)
args = parser.parse_args()
import torch, tqdm, os, wandb, json, time
import pandas as pd
import pytorch_lightning as pl
import numpy as np
from collections import defaultdict
from alphaflow.data.data_modules import collate_fn
from alphaflow.model.wrapper import AlphaFoldWrapper, ESMFoldWrapper
from alphaflow.utils.tensor_utils import tensor_tree_map
import alphaflow.utils.protein as protein
from alphaflow.data.inference import AlphaFoldCSVDataset, CSVDataset
from collections import defaultdict
from openfold.utils.import_weights import import_jax_weights_
from alphaflow.config import model_config
from alphaflow.utils.logging import get_logger
logger = get_logger(__name__)
torch.set_float32_matmul_precision("high")
config = model_config(
'initial_training',
train=True,
low_prec=True
)
schedule = np.linspace(args.tmax, 0, args.steps+1)
if args.tmax != 1.0:
schedule = np.array([1.0] + list(schedule))
loss_cfg = config.loss
data_cfg = config.data
data_cfg.common.use_templates = False
data_cfg.common.max_recycling_iters = 0
if args.subsample: # https://elifesciences.org/articles/75751#s3
data_cfg.predict.max_msa_clusters = args.subsample // 2
data_cfg.predict.max_extra_msa = args.subsample
@torch.no_grad()
def main():
valset = {
'alphafold': AlphaFoldCSVDataset,
'esmfold': CSVDataset,
}[args.mode](
data_cfg,
args.input_csv,
data_dir=args.templates_dir,
msa_dir=args.msa_dir,
templates=args.templates,
)
# valset[0]
logger.info("Loading the model")
model_class = {'alphafold': AlphaFoldWrapper, 'esmfold': ESMFoldWrapper}[args.mode]
if args.weights:
ckpt = torch.load(args.weights, map_location='cpu')
model = model_class(**ckpt['hyper_parameters'], training=False)
model.model.load_state_dict(ckpt['params'], strict=False)
model = model.cuda()
elif args.original_weights:
model = model_class(config, None, training=False)
if args.mode == 'esmfold':
path = "esmfold_3B_v1.pt"
model_data = torch.load(path, map_location='cpu')
model_state = model_data["model"]
model.model.load_state_dict(model_state, strict=False)
model = model.to(torch.float).cuda()
elif args.mode == 'alphafold':
import_jax_weights_(model.model, 'params_model_1.npz', version='model_3')
model = model.cuda()
else:
model = model_class.load_from_checkpoint(args.ckpt, map_location='cpu')
model.load_ema_weights()
model = model.cuda()
model.eval()
logger.info("Model has been loaded")
results = defaultdict(list)
os.makedirs(args.outpdb, exist_ok=True)
runtime = defaultdict(list)
for i, item in enumerate(valset):
if args.pdb_id and item['name'] not in args.pdb_id:
continue
if args.no_overwrite and os.path.exists(f'{args.outpdb}/{item["name"]}.pdb'):
continue
result = []
for j in tqdm.trange(args.samples):
if args.subsample or args.resample:
item = valset[i] # resample MSA
batch = collate_fn([item])
batch = tensor_tree_map(lambda x: x.cuda(), batch)
start = time.time()
prots = model.inference(batch, as_protein=True, noisy_first=args.noisy_first,
no_diffusion=args.no_diffusion, schedule=schedule, self_cond=args.self_cond)
runtime[item['name']].append(time.time() - start)
result.append(prots[-1])
with open(f'{args.outpdb}/{item["name"]}.pdb', 'w') as f:
f.write(protein.prots_to_pdb(result))
if args.runtime_json:
with open(args.runtime_json, 'w') as f:
f.write(json.dumps(dict(runtime)))
if __name__ == "__main__":
main()