-
Notifications
You must be signed in to change notification settings - Fork 44
/
Copy pathdriver-SPI-bitmine-A1.c
1123 lines (978 loc) · 28.8 KB
/
driver-SPI-bitmine-A1.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* cgminer SPI driver for Bitmine.ch A1 devices
*
* Copyright 2013, 2014 Zefir Kurtisi <[email protected]>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 3 of the License, or (at your option)
* any later version. See COPYING for more details.
*/
#include <stdlib.h>
#include <assert.h>
#include <fcntl.h>
#include <limits.h>
#include <unistd.h>
#include <stdbool.h>
#include "spi-context.h"
#include "logging.h"
#include "miner.h"
#include "util.h"
#include "A1-common.h"
#include "A1-board-selector.h"
#include "A1-trimpot-mcp4x.h"
/* one global board_selector and spi context is enough */
static struct board_selector *board_selector;
static struct spi_ctx *spi;
/********** work queue */
static bool wq_enqueue(struct work_queue *wq, struct work *work)
{
if (work == NULL)
return false;
struct work_ent *we = malloc(sizeof(*we));
assert(we != NULL);
we->work = work;
INIT_LIST_HEAD(&we->head);
list_add_tail(&we->head, &wq->head);
wq->num_elems++;
return true;
}
static struct work *wq_dequeue(struct work_queue *wq)
{
if (wq == NULL)
return NULL;
if (wq->num_elems == 0)
return NULL;
struct work_ent *we;
we = list_entry(wq->head.next, struct work_ent, head);
struct work *work = we->work;
list_del(&we->head);
free(we);
wq->num_elems--;
return work;
}
/*
* if not cooled sufficiently, communication fails and chip is temporary
* disabled. we let it inactive for 30 seconds to cool down
*
* TODO: to be removed after bring up / test phase
*/
#define COOLDOWN_MS (30 * 1000)
/* if after this number of retries a chip is still inaccessible, disable it */
#define DISABLE_CHIP_FAIL_THRESHOLD 3
enum A1_command {
A1_BIST_START = 0x01,
A1_BIST_FIX = 0x03,
A1_RESET = 0x04,
A1_WRITE_JOB = 0x07,
A1_READ_RESULT = 0x08,
A1_WRITE_REG = 0x09,
A1_READ_REG = 0x0a,
A1_READ_REG_RESP = 0x1a,
};
/*
* for now, we have one global config, defaulting values:
* - ref_clk 16MHz / sys_clk 800MHz
* - 2000 kHz SPI clock
*/
struct A1_config_options A1_config_options = {
.ref_clk_khz = 16000, .sys_clk_khz = 800000, .spi_clk_khz = 2000,
};
/* override values with --bitmine-a1-options ref:sys:spi: - use 0 for default */
static struct A1_config_options *parsed_config_options;
/********** temporary helper for hexdumping SPI traffic */
static void applog_hexdump(char *prefix, uint8_t *buff, int len, int level)
{
static char line[256];
char *pos = line;
int i;
if (len < 1)
return;
pos += sprintf(pos, "%s: %d bytes:", prefix, len);
for (i = 0; i < len; i++) {
if (i > 0 && (i % 32) == 0) {
applog(LOG_DEBUG, "%s", line);
pos = line;
pos += sprintf(pos, "\t");
}
pos += sprintf(pos, "%.2X ", buff[i]);
}
applog(level, "%s", line);
}
static void hexdump(char *prefix, uint8_t *buff, int len)
{
applog_hexdump(prefix, buff, len, LOG_DEBUG);
}
static void hexdump_error(char *prefix, uint8_t *buff, int len)
{
applog_hexdump(prefix, buff, len, LOG_ERR);
}
static void flush_spi(struct A1_chain *a1)
{
memset(a1->spi_tx, 0, 64);
spi_transfer(a1->spi_ctx, a1->spi_tx, a1->spi_rx, 64);
}
/********** upper layer SPI functions */
static uint8_t *exec_cmd(struct A1_chain *a1,
uint8_t cmd, uint8_t chip_id,
uint8_t *data, uint8_t len,
uint8_t resp_len)
{
int tx_len = 4 + len;
memset(a1->spi_tx, 0, tx_len);
a1->spi_tx[0] = cmd;
a1->spi_tx[1] = chip_id;
if (data != NULL)
memcpy(a1->spi_tx + 2, data, len);
assert(spi_transfer(a1->spi_ctx, a1->spi_tx, a1->spi_rx, tx_len));
hexdump("send: TX", a1->spi_tx, tx_len);
hexdump("send: RX", a1->spi_rx, tx_len);
int poll_len = resp_len;
if (chip_id == 0) {
if (a1->num_chips == 0) {
applog(LOG_INFO, "%d: unknown chips in chain, "
"assuming 8", a1->chain_id);
poll_len += 32;
}
poll_len += 4 * a1->num_chips;
}
else {
poll_len += 4 * chip_id - 2;
}
assert(spi_transfer(a1->spi_ctx, NULL, a1->spi_rx + tx_len, poll_len));
hexdump("poll: RX", a1->spi_rx + tx_len, poll_len);
int ack_len = tx_len + resp_len;
int ack_pos = tx_len + poll_len - ack_len;
hexdump("poll: ACK", a1->spi_rx + ack_pos, ack_len - 2);
return (a1->spi_rx + ack_pos);
}
/********** A1 SPI commands */
static uint8_t *cmd_BIST_FIX_BCAST(struct A1_chain *a1)
{
uint8_t *ret = exec_cmd(a1, A1_BIST_FIX, 0x00, NULL, 0, 0);
if (ret == NULL || ret[0] != A1_BIST_FIX) {
applog(LOG_ERR, "%d: cmd_BIST_FIX_BCAST failed", a1->chain_id);
return NULL;
}
return ret;
}
static uint8_t *cmd_RESET_BCAST(struct A1_chain *a1, uint8_t strategy)
{
static uint8_t s[2];
s[0] = strategy;
s[1] = strategy;
uint8_t *ret = exec_cmd(a1, A1_RESET, 0x00, s, 2, 0);
if (ret == NULL || (ret[0] != A1_RESET && a1->num_chips != 0)) {
applog(LOG_ERR, "%d: cmd_RESET_BCAST failed", a1->chain_id);
return NULL;
}
return ret;
}
static uint8_t *cmd_READ_RESULT_BCAST(struct A1_chain *a1)
{
int tx_len = 8;
memset(a1->spi_tx, 0, tx_len);
a1->spi_tx[0] = A1_READ_RESULT;
assert(spi_transfer(a1->spi_ctx, a1->spi_tx, a1->spi_rx, tx_len));
hexdump("send: TX", a1->spi_tx, tx_len);
hexdump("send: RX", a1->spi_rx, tx_len);
int poll_len = tx_len + 4 * a1->num_chips;
assert(spi_transfer(a1->spi_ctx, NULL, a1->spi_rx + tx_len, poll_len));
hexdump("poll: RX", a1->spi_rx + tx_len, poll_len);
uint8_t *scan = a1->spi_rx;
int i;
for (i = 0; i < poll_len; i += 2) {
if ((scan[i] & 0x0f) == A1_READ_RESULT)
return scan + i;
}
applog(LOG_ERR, "%d: cmd_READ_RESULT_BCAST failed", a1->chain_id);
return NULL;
}
static uint8_t *cmd_WRITE_REG(struct A1_chain *a1, uint8_t chip, uint8_t *reg)
{
uint8_t *ret = exec_cmd(a1, A1_WRITE_REG, chip, reg, 6, 0);
if (ret == NULL || ret[0] != A1_WRITE_REG) {
applog(LOG_ERR, "%d: cmd_WRITE_REG failed", a1->chain_id);
return NULL;
}
return ret;
}
static uint8_t *cmd_READ_REG(struct A1_chain *a1, uint8_t chip)
{
uint8_t *ret = exec_cmd(a1, A1_READ_REG, chip, NULL, 0, 6);
if (ret == NULL || ret[0] != A1_READ_REG_RESP || ret[1] != chip) {
applog(LOG_ERR, "%d: cmd_READ_REG chip %d failed",
a1->chain_id, chip);
return NULL;
}
memcpy(a1->spi_rx, ret, 8);
return ret;
}
static uint8_t *cmd_WRITE_JOB(struct A1_chain *a1, uint8_t chip_id,
uint8_t *job)
{
/* ensure we push the SPI command to the last chip in chain */
int tx_len = WRITE_JOB_LENGTH + 2;
memcpy(a1->spi_tx, job, WRITE_JOB_LENGTH);
memset(a1->spi_tx + WRITE_JOB_LENGTH, 0, tx_len - WRITE_JOB_LENGTH);
assert(spi_transfer(a1->spi_ctx, a1->spi_tx, a1->spi_rx, tx_len));
hexdump("send: TX", a1->spi_tx, tx_len);
hexdump("send: RX", a1->spi_rx, tx_len);
int poll_len = 4 * chip_id - 2;
assert(spi_transfer(a1->spi_ctx, NULL, a1->spi_rx + tx_len, poll_len));
hexdump("poll: RX", a1->spi_rx + tx_len, poll_len);
int ack_len = tx_len;
int ack_pos = tx_len + poll_len - ack_len;
hexdump("poll: ACK", a1->spi_rx + ack_pos, tx_len);
uint8_t *ret = a1->spi_rx + ack_pos;
if (ret[0] != a1->spi_tx[0] || ret[1] != a1->spi_tx[1]){
applog(LOG_ERR, "%d: cmd_WRITE_JOB failed: "
"0x%02x%02x/0x%02x%02x", a1->chain_id,
ret[0], ret[1], a1->spi_tx[0], a1->spi_tx[1]);
return NULL;
}
return ret;
}
/********** A1 low level functions */
#define MAX_PLL_WAIT_CYCLES 25
#define PLL_CYCLE_WAIT_TIME 40
static bool check_chip_pll_lock(struct A1_chain *a1, int chip_id, uint8_t *wr)
{
int n;
for (n = 0; n < MAX_PLL_WAIT_CYCLES; n++) {
/* check for PLL lock status */
if (cmd_READ_REG(a1, chip_id) && (a1->spi_rx[4] & 1) == 1)
/* double check that we read back what we set before */
return wr[0] == a1->spi_rx[2] && wr[1] == a1->spi_rx[3];
cgsleep_ms(PLL_CYCLE_WAIT_TIME);
}
applog(LOG_ERR, "%d: chip %d failed PLL lock", a1->chain_id, chip_id);
return false;
}
static uint8_t *get_pll_reg(struct A1_chain *a1, int ref_clock_khz,
int sys_clock_khz)
{
/*
* PLL parameters after:
* sys_clk = (ref_clk * pll_fbdiv) / (pll_prediv * 2^(pll_postdiv - 1))
*
* with a higher pll_postdiv being desired over a higher pll_prediv
*/
static uint8_t writereg[6] = { 0x00, 0x00, 0x21, 0x84, };
uint8_t pre_div = 1;
uint8_t post_div = 1;
uint32_t fb_div;
int cid = a1->chain_id;
applog(LOG_WARNING, "%d: Setting PLL: CLK_REF=%dMHz, SYS_CLK=%dMHz",
cid, ref_clock_khz / 1000, sys_clock_khz / 1000);
/* Euclidean search for GCD */
int a = ref_clock_khz;
int b = sys_clock_khz;
while (b != 0) {
int h = a % b;
a = b;
b = h;
}
fb_div = sys_clock_khz / a;
int n = ref_clock_khz / a;
/* approximate multiplier if not exactly matchable */
if (fb_div > 511) {
int f = fb_div / n;
int m = (f < 32) ? 16 : (f < 64) ? 8 :
(f < 128) ? 4 : (256 < 2) ? 2 : 1;
fb_div = m * fb_div / n;
n = m;
}
/* try to maximize post divider */
if ((n & 3) == 0)
post_div = 3;
else if ((n & 1) == 0)
post_div = 2;
else
post_div = 1;
/* remainder goes to pre_div */
pre_div = n / (1 << (post_div - 1));
/* correct pre_div overflow */
if (pre_div > 31) {
fb_div = 31 * fb_div / pre_div;
pre_div = 31;
}
writereg[0] = (post_div << 6) | (pre_div << 1) | (fb_div >> 8);
writereg[1] = fb_div & 0xff;
applog(LOG_WARNING, "%d: setting PLL: pre_div=%d, post_div=%d, "
"fb_div=%d: 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x", cid,
pre_div, post_div, fb_div,
writereg[0], writereg[1], writereg[2],
writereg[3], writereg[4], writereg[5]);
return writereg;
}
static bool set_pll_config(struct A1_chain *a1, int chip_id,
int ref_clock_khz, int sys_clock_khz)
{
uint8_t *writereg = get_pll_reg(a1, ref_clock_khz, sys_clock_khz);
if (writereg == NULL)
return false;
if (!cmd_WRITE_REG(a1, chip_id, writereg))
return false;
int from = (chip_id == 0) ? 0 : chip_id - 1;
int to = (chip_id == 0) ? a1->num_active_chips : chip_id - 1;
int i;
for (i = from; i < to; i++) {
int cid = i + 1;
if (!check_chip_pll_lock(a1, chip_id, writereg)) {
applog(LOG_ERR, "%d: chip %d failed PLL lock",
a1->chain_id, cid);
return false;
}
}
return true;
}
#define WEAK_CHIP_THRESHOLD 30
#define BROKEN_CHIP_THRESHOLD 26
#define WEAK_CHIP_SYS_CLK (600 * 1000)
#define BROKEN_CHIP_SYS_CLK (400 * 1000)
static bool check_chip(struct A1_chain *a1, int i)
{
int chip_id = i + 1;
int cid = a1->chain_id;
if (!cmd_READ_REG(a1, chip_id)) {
applog(LOG_WARNING, "%d: Failed to read register for "
"chip %d -> disabling", cid, chip_id);
a1->chips[i].num_cores = 0;
a1->chips[i].disabled = 1;
return false;;
}
a1->chips[i].num_cores = a1->spi_rx[7];
a1->num_cores += a1->chips[i].num_cores;
applog(LOG_WARNING, "%d: Found chip %d with %d active cores",
cid, chip_id, a1->chips[i].num_cores);
if (a1->chips[i].num_cores < BROKEN_CHIP_THRESHOLD) {
applog(LOG_WARNING, "%d: broken chip %d with %d active "
"cores (threshold = %d)", cid, chip_id,
a1->chips[i].num_cores, BROKEN_CHIP_THRESHOLD);
set_pll_config(a1, chip_id, A1_config_options.ref_clk_khz,
BROKEN_CHIP_SYS_CLK);
cmd_READ_REG(a1, chip_id);
hexdump_error("new.PLL", a1->spi_rx, 8);
a1->chips[i].disabled = true;
a1->num_cores -= a1->chips[i].num_cores;
return false;
}
if (a1->chips[i].num_cores < WEAK_CHIP_THRESHOLD) {
applog(LOG_WARNING, "%d: weak chip %d with %d active "
"cores (threshold = %d)", cid,
chip_id, a1->chips[i].num_cores, WEAK_CHIP_THRESHOLD);
set_pll_config(a1, chip_id, A1_config_options.ref_clk_khz,
WEAK_CHIP_SYS_CLK);
cmd_READ_REG(a1, chip_id);
hexdump_error("new.PLL", a1->spi_rx, 8);
return false;
}
return true;
}
/*
* BIST_START works only once after HW reset, on subsequent calls it
* returns 0 as number of chips.
*/
static int chain_detect(struct A1_chain *a1)
{
int tx_len = 6;
memset(a1->spi_tx, 0, tx_len);
a1->spi_tx[0] = A1_BIST_START;
a1->spi_tx[1] = 0;
if (!spi_transfer(a1->spi_ctx, a1->spi_tx, a1->spi_rx, tx_len))
return 0;
hexdump("TX", a1->spi_tx, 6);
hexdump("RX", a1->spi_rx, 6);
int i;
int cid = a1->chain_id;
int max_poll_words = MAX_CHAIN_LENGTH * 2;
for(i = 1; i < max_poll_words; i++) {
if (a1->spi_rx[0] == A1_BIST_START && a1->spi_rx[1] == 0) {
spi_transfer(a1->spi_ctx, NULL, a1->spi_rx, 2);
hexdump("RX", a1->spi_rx, 2);
uint8_t n = a1->spi_rx[1];
a1->num_chips = (i / 2) + 1;
if (a1->num_chips != n) {
applog(LOG_ERR, "%d: enumeration: %d <-> %d",
cid, a1->num_chips, n);
if (n != 0)
a1->num_chips = n;
}
applog(LOG_WARNING, "%d: detected %d chips",
cid, a1->num_chips);
return a1->num_chips;
}
bool s = spi_transfer(a1->spi_ctx, NULL, a1->spi_rx, 2);
hexdump("RX", a1->spi_rx, 2);
if (!s)
return 0;
}
applog(LOG_WARNING, "%d: no A1 chip-chain detected", cid);
return 0;
}
/********** disable / re-enable related section (temporary for testing) */
static int get_current_ms(void)
{
cgtimer_t ct;
cgtimer_time(&ct);
return cgtimer_to_ms(&ct);
}
static bool is_chip_disabled(struct A1_chain *a1, uint8_t chip_id)
{
struct A1_chip *chip = &a1->chips[chip_id - 1];
return chip->disabled || chip->cooldown_begin != 0;
}
/* check and disable chip, remember time */
static void disable_chip(struct A1_chain *a1, uint8_t chip_id)
{
flush_spi(a1);
struct A1_chip *chip = &a1->chips[chip_id - 1];
int cid = a1->chain_id;
if (is_chip_disabled(a1, chip_id)) {
applog(LOG_WARNING, "%d: chip %d already disabled",
cid, chip_id);
return;
}
applog(LOG_WARNING, "%d: temporary disabling chip %d", cid, chip_id);
chip->cooldown_begin = get_current_ms();
}
/* check if disabled chips can be re-enabled */
void check_disabled_chips(struct A1_chain *a1)
{
int i;
int cid = a1->chain_id;
for (i = 0; i < a1->num_active_chips; i++) {
int chip_id = i + 1;
struct A1_chip *chip = &a1->chips[i];
if (!is_chip_disabled(a1, chip_id))
continue;
/* do not re-enable fully disabled chips */
if (chip->disabled)
continue;
if (chip->cooldown_begin + COOLDOWN_MS > get_current_ms())
continue;
if (!cmd_READ_REG(a1, chip_id)) {
chip->fail_count++;
applog(LOG_WARNING, "%d: chip %d not yet working - %d",
cid, chip_id, chip->fail_count);
if (chip->fail_count > DISABLE_CHIP_FAIL_THRESHOLD) {
applog(LOG_WARNING,
"%d: completely disabling chip %d at %d",
cid, chip_id, chip->fail_count);
chip->disabled = true;
a1->num_cores -= chip->num_cores;
continue;
}
/* restart cooldown period */
chip->cooldown_begin = get_current_ms();
continue;
}
applog(LOG_WARNING, "%d: chip %d is working again",
cid, chip_id);
chip->cooldown_begin = 0;
chip->fail_count = 0;
}
}
/********** job creation and result evaluation */
uint32_t get_diff(double diff)
{
uint32_t n_bits;
int shift = 29;
double f = (double) 0x0000ffff / diff;
while (f < (double) 0x00008000) {
shift--;
f *= 256.0;
}
while (f >= (double) 0x00800000) {
shift++;
f /= 256.0;
}
n_bits = (int) f + (shift << 24);
return n_bits;
}
static uint8_t *create_job(uint8_t chip_id, uint8_t job_id, struct work *work)
{
static uint8_t job[WRITE_JOB_LENGTH] = {
/* command */
0x00, 0x00,
/* midstate */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
/* wdata */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
/* start nonce */
0x00, 0x00, 0x00, 0x00,
/* difficulty 1 */
0xff, 0xff, 0x00, 0x1d,
/* end nonce */
0xff, 0xff, 0xff, 0xff,
};
uint8_t *midstate = work->midstate;
uint8_t *wdata = work->data + 64;
uint32_t *p1 = (uint32_t *) &job[34];
uint32_t *p2 = (uint32_t *) wdata;
job[0] = (job_id << 4) | A1_WRITE_JOB;
job[1] = chip_id;
swab256(job + 2, midstate);
p1[0] = bswap_32(p2[0]);
p1[1] = bswap_32(p2[1]);
p1[2] = bswap_32(p2[2]);
#ifdef USE_REAL_DIFF
p1[4] = get_diff(work->sdiff);
#endif
return job;
}
/* set work for given chip, returns true if a nonce range was finished */
static bool set_work(struct A1_chain *a1, uint8_t chip_id, struct work *work,
uint8_t queue_states)
{
int cid = a1->chain_id;
struct A1_chip *chip = &a1->chips[chip_id - 1];
bool retval = false;
int job_id = chip->last_queued_id + 1;
applog(LOG_INFO, "%d: queuing chip %d with job_id %d, state=0x%02x",
cid, chip_id, job_id, queue_states);
if (job_id == (queue_states & 0x0f) || job_id == (queue_states >> 4))
applog(LOG_WARNING, "%d: job overlap: %d, 0x%02x",
cid, job_id, queue_states);
if (chip->work[chip->last_queued_id] != NULL) {
work_completed(a1->cgpu, chip->work[chip->last_queued_id]);
chip->work[chip->last_queued_id] = NULL;
retval = true;
}
uint8_t *jobdata = create_job(chip_id, job_id, work);
if (!cmd_WRITE_JOB(a1, chip_id, jobdata)) {
/* give back work */
work_completed(a1->cgpu, work);
applog(LOG_ERR, "%d: failed to set work for chip %d.%d",
cid, chip_id, job_id);
disable_chip(a1, chip_id);
} else {
chip->work[chip->last_queued_id] = work;
chip->last_queued_id++;
chip->last_queued_id &= 3;
}
return retval;
}
static bool get_nonce(struct A1_chain *a1, uint8_t *nonce,
uint8_t *chip, uint8_t *job_id)
{
uint8_t *ret = cmd_READ_RESULT_BCAST(a1);
if (ret == NULL)
return false;
if (ret[1] == 0) {
applog(LOG_DEBUG, "%d: output queue empty", a1->chain_id);
return false;
}
*job_id = ret[0] >> 4;
*chip = ret[1];
memcpy(nonce, ret + 2, 4);
return true;
}
/* reset input work queues in chip chain */
static bool abort_work(struct A1_chain *a1)
{
/* drop jobs already queued: reset strategy 0xed */
return cmd_RESET_BCAST(a1, 0xed);
}
/********** driver interface */
void exit_A1_chain(struct A1_chain *a1)
{
if (a1 == NULL)
return;
free(a1->chips);
a1->chips = NULL;
a1->spi_ctx = NULL;
free(a1);
}
struct A1_chain *init_A1_chain(struct spi_ctx *ctx, int chain_id)
{
int i;
struct A1_chain *a1 = malloc(sizeof(*a1));
assert(a1 != NULL);
applog(LOG_DEBUG, "%d: A1 init chain", chain_id);
memset(a1, 0, sizeof(*a1));
a1->spi_ctx = ctx;
a1->chain_id = chain_id;
a1->num_chips = chain_detect(a1);
if (a1->num_chips == 0)
goto failure;
applog(LOG_WARNING, "spidev%d.%d: %d: Found %d A1 chips",
a1->spi_ctx->config.bus, a1->spi_ctx->config.cs_line,
a1->chain_id, a1->num_chips);
if (!set_pll_config(a1, 0, A1_config_options.ref_clk_khz,
A1_config_options.sys_clk_khz))
goto failure;
/* override max number of active chips if requested */
a1->num_active_chips = a1->num_chips;
if (A1_config_options.override_chip_num > 0 &&
a1->num_chips > A1_config_options.override_chip_num) {
a1->num_active_chips = A1_config_options.override_chip_num;
applog(LOG_WARNING, "%d: limiting chain to %d chips",
a1->chain_id, a1->num_active_chips);
}
a1->chips = calloc(a1->num_active_chips, sizeof(struct A1_chip));
assert (a1->chips != NULL);
if (!cmd_BIST_FIX_BCAST(a1))
goto failure;
for (i = 0; i < a1->num_active_chips; i++)
check_chip(a1, i);
applog(LOG_WARNING, "%d: found %d chips with total %d active cores",
a1->chain_id, a1->num_active_chips, a1->num_cores);
mutex_init(&a1->lock);
INIT_LIST_HEAD(&a1->active_wq.head);
return a1;
failure:
exit_A1_chain(a1);
return NULL;
}
static bool detect_single_chain(void)
{
board_selector = (struct board_selector*)&dummy_board_selector;
applog(LOG_WARNING, "A1: checking single chain");
struct A1_chain *a1 = init_A1_chain(spi, 0);
if (a1 == NULL)
return false;
struct cgpu_info *cgpu = malloc(sizeof(*cgpu));
assert(cgpu != NULL);
memset(cgpu, 0, sizeof(*cgpu));
cgpu->drv = &bitmineA1_drv;
cgpu->name = "BitmineA1.SingleChain";
cgpu->threads = 1;
cgpu->device_data = a1;
a1->cgpu = cgpu;
add_cgpu(cgpu);
applog(LOG_WARNING, "Detected single A1 chain with %d chips / %d cores",
a1->num_active_chips, a1->num_cores);
return true;
}
bool detect_coincraft_desk(void)
{
static const uint8_t mcp4x_mapping[] = { 0x2c, 0x2b, 0x2a, 0x29, 0x28 };
board_selector = ccd_board_selector_init();
if (board_selector == NULL) {
applog(LOG_INFO, "No CoinCrafd Desk backplane detected.");
return false;
}
board_selector->reset_all();
int boards_detected = 0;
int board_id;
for (board_id = 0; board_id < CCD_MAX_CHAINS; board_id++) {
uint8_t mcp_slave = mcp4x_mapping[board_id];
struct mcp4x *mcp = mcp4x_init(mcp_slave);
if (mcp == NULL)
continue;
if (A1_config_options.wiper != 0)
mcp->set_wiper(mcp, 0, A1_config_options.wiper);
applog(LOG_WARNING, "checking board %d...", board_id);
board_selector->select(board_id);
struct A1_chain *a1 = init_A1_chain(spi, board_id);
board_selector->release();
if (a1 == NULL)
continue;
struct cgpu_info *cgpu = malloc(sizeof(*cgpu));
assert(cgpu != NULL);
memset(cgpu, 0, sizeof(*cgpu));
cgpu->drv = &bitmineA1_drv;
cgpu->name = "BitmineA1.CCD";
cgpu->threads = 1;
cgpu->device_data = a1;
a1->cgpu = cgpu;
add_cgpu(cgpu);
boards_detected++;
}
if (boards_detected == 0)
return false;
applog(LOG_WARNING, "Detected CoinCraft Desk with %d boards",
boards_detected);
return true;
}
bool detect_coincraft_rig_v3(void)
{
board_selector = ccr_board_selector_init();
if (board_selector == NULL)
return false;
board_selector->reset_all();
int chains_detected = 0;
int c;
for (c = 0; c < CCR_MAX_CHAINS; c++) {
applog(LOG_WARNING, "checking RIG chain %d...", c);
if (!board_selector->select(c))
continue;
struct A1_chain *a1 = init_A1_chain(spi, c);
board_selector->release();
if (a1 == NULL)
continue;
if (A1_config_options.wiper != 0 && (c & 1) == 0) {
struct mcp4x *mcp = mcp4x_init(0x28);
if (mcp == NULL) {
applog(LOG_ERR, "%d: Cant access poti", c);
} else {
mcp->set_wiper(mcp, 0, A1_config_options.wiper);
mcp->set_wiper(mcp, 1, A1_config_options.wiper);
mcp->exit(mcp);
applog(LOG_WARNING, "%d: set wiper to 0x%02x",
c, A1_config_options.wiper);
}
}
struct cgpu_info *cgpu = malloc(sizeof(*cgpu));
assert(cgpu != NULL);
memset(cgpu, 0, sizeof(*cgpu));
cgpu->drv = &bitmineA1_drv;
cgpu->name = "BitmineA1.CCR";
cgpu->threads = 1;
cgpu->device_data = a1;
a1->cgpu = cgpu;
add_cgpu(cgpu);
chains_detected++;
}
if (chains_detected == 0)
return false;
applog(LOG_WARNING, "Detected CoinCraft Rig with %d chains",
chains_detected);
return true;
}
/* Probe SPI channel and register chip chain */
void A1_detect(bool hotplug)
{
/* no hotplug support for SPI */
if (hotplug)
return;
/* parse bimine-a1-options */
if (opt_bitmine_a1_options != NULL && parsed_config_options == NULL) {
int ref_clk = 0;
int sys_clk = 0;
int spi_clk = 0;
int override_chip_num = 0;
int wiper = 0;
sscanf(opt_bitmine_a1_options, "%d:%d:%d:%d:%d",
&ref_clk, &sys_clk, &spi_clk, &override_chip_num,
&wiper);
if (ref_clk != 0)
A1_config_options.ref_clk_khz = ref_clk;
if (sys_clk != 0) {
if (sys_clk < 100000)
quit(1, "system clock must be above 100MHz");
A1_config_options.sys_clk_khz = sys_clk;
}
if (spi_clk != 0)
A1_config_options.spi_clk_khz = spi_clk;
if (override_chip_num != 0)
A1_config_options.override_chip_num = override_chip_num;
if (wiper != 0)
A1_config_options.wiper = wiper;
/* config options are global, scan them once */
parsed_config_options = &A1_config_options;
}
applog(LOG_DEBUG, "A1 detect");
/* register global SPI context */
struct spi_config cfg = default_spi_config;
cfg.mode = SPI_MODE_1;
cfg.speed = A1_config_options.spi_clk_khz * 1000;
spi = spi_init(&cfg);
if (spi == NULL)
return;
/* detect and register supported products */
if (detect_coincraft_desk())
return;
if (detect_coincraft_rig_v3())
return;
if (detect_single_chain())
return;
/* release SPI context if no A1 products found */
spi_exit(spi);
}
#define TEMP_UPDATE_INT_MS 2000
static int64_t A1_scanwork(struct thr_info *thr)
{
int i;
struct cgpu_info *cgpu = thr->cgpu;
struct A1_chain *a1 = cgpu->device_data;
int32_t nonce_ranges_processed = 0;
if (a1->num_cores == 0) {
cgpu->deven = DEV_DISABLED;
return 0;
}
board_selector->select(a1->chain_id);
applog(LOG_DEBUG, "A1 running scanwork");
uint32_t nonce;
uint8_t chip_id;
uint8_t job_id;
bool work_updated = false;
mutex_lock(&a1->lock);
if (a1->last_temp_time + TEMP_UPDATE_INT_MS < get_current_ms()) {
a1->temp = board_selector->get_temp(0);
a1->last_temp_time = get_current_ms();
}
int cid = a1->chain_id;
/* poll queued results */
while (true) {
if (!get_nonce(a1, (uint8_t*)&nonce, &chip_id, &job_id))
break;
nonce = bswap_32(nonce);
work_updated = true;
if (chip_id < 1 || chip_id > a1->num_active_chips) {
applog(LOG_WARNING, "%d: wrong chip_id %d",
cid, chip_id);
continue;
}
if (job_id < 1 && job_id > 4) {
applog(LOG_WARNING, "%d: chip %d: result has wrong "
"job_id %d", cid, chip_id, job_id);
flush_spi(a1);
continue;
}
struct A1_chip *chip = &a1->chips[chip_id - 1];
struct work *work = chip->work[job_id - 1];
if (work == NULL) {
/* already been flushed => stale */
applog(LOG_WARNING, "%d: chip %d: stale nonce 0x%08x",
cid, chip_id, nonce);
chip->stales++;
continue;
}
if (!submit_nonce(thr, work, nonce)) {
applog(LOG_WARNING, "%d: chip %d: invalid nonce 0x%08x",
cid, chip_id, nonce);
chip->hw_errors++;
/* add a penalty of a full nonce range on HW errors */
nonce_ranges_processed--;
continue;
}
applog(LOG_DEBUG, "YEAH: %d: chip %d / job_id %d: nonce 0x%08x",
cid, chip_id, job_id, nonce);
chip->nonces_found++;
}
/* check for completed works */
for (i = a1->num_active_chips; i > 0; i--) {
uint8_t c = i;
if (is_chip_disabled(a1, c))
continue;
if (!cmd_READ_REG(a1, c)) {
disable_chip(a1, c);
continue;
}
uint8_t qstate = a1->spi_rx[5] & 3;
uint8_t qbuff = a1->spi_rx[6];
struct work *work;
struct A1_chip *chip = &a1->chips[i - 1];
switch(qstate) {
case 3:
continue;
case 2:
applog(LOG_ERR, "%d: chip %d: invalid state = 2",
cid, c);
continue;
case 1:
/* fall through */
case 0:
work_updated = true;