forked from Solidmatrix/ICNet-tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
image_reader.py
executable file
·117 lines (92 loc) · 4.76 KB
/
image_reader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import os
import numpy as np
import tensorflow as tf
def image_mirroring(img, label):
distort_left_right_random = tf.random_uniform([1], 0, 1.0, dtype=tf.float32)[0]
mirror = tf.less(tf.stack([1.0, distort_left_right_random, 1.0]), 0.5)
mirror = tf.boolean_mask([0, 1, 2], mirror)
img = tf.reverse(img, mirror)
label = tf.reverse(label, mirror)
return img, label
def image_scaling(img, label):
scale = tf.random_uniform([1], minval=0.5, maxval=2.0, dtype=tf.float32, seed=None)
h_new = tf.to_int32(tf.multiply(tf.to_float(tf.shape(img)[0]), scale))
w_new = tf.to_int32(tf.multiply(tf.to_float(tf.shape(img)[1]), scale))
new_shape = tf.squeeze(tf.stack([h_new, w_new]), squeeze_dims=[1])
img = tf.image.resize_images(img, new_shape)
label = tf.image.resize_nearest_neighbor(tf.expand_dims(label, 0), new_shape)
label = tf.squeeze(label, squeeze_dims=[0])
return img, label
def random_crop_and_pad_image_and_labels(image, label, crop_h, crop_w, ignore_label=255):
label = tf.cast(label, dtype=tf.float32)
label = label - ignore_label # Needs to be subtracted and later added due to 0 padding.
combined = tf.concat(axis=2, values=[image, label])
image_shape = tf.shape(image)
combined_pad = tf.image.pad_to_bounding_box(combined, 0, 0, tf.maximum(crop_h, image_shape[0]), tf.maximum(crop_w, image_shape[1]))
last_image_dim = tf.shape(image)[-1]
last_label_dim = tf.shape(label)[-1]
combined_crop = tf.random_crop(combined_pad, [crop_h,crop_w,4])
img_crop = combined_crop[:, :, :last_image_dim]
label_crop = combined_crop[:, :, last_image_dim:]
label_crop = label_crop + ignore_label
label_crop = tf.cast(label_crop, dtype=tf.uint8)
# Set static shape so that tensorflow knows shape at compile time.
img_crop.set_shape((crop_h, crop_w, 3))
label_crop.set_shape((crop_h,crop_w, 1))
return img_crop, label_crop
def read_labeled_image_list(data_dir, data_list):
f = open(data_list, 'r')
images = []
masks = []
for line in f:
try:
image, mask = line[:-1].split(' ')
except ValueError: # Adhoc for test.
image = mask = line.strip("\n")
image = os.path.join(data_dir, image)
mask = os.path.join(data_dir, mask)
mask = mask.strip()
if not tf.gfile.Exists(image):
raise ValueError('Failed to find file: ' + image)
if not tf.gfile.Exists(mask):
raise ValueError('Failed to find file: ' + mask)
images.append(image)
masks.append(mask)
return images, masks
def read_images_from_disk(input_queue, input_size, random_scale, random_mirror, ignore_label, img_mean): # optional pre-processing arguments
img_contents = tf.read_file(input_queue[0])
label_contents = tf.read_file(input_queue[1])
img = tf.image.decode_jpeg(img_contents, channels=3)
img_r, img_g, img_b = tf.split(axis=2, num_or_size_splits=3, value=img)
img = tf.cast(tf.concat(axis=2, values=[img_b, img_g, img_r]), dtype=tf.float32)
# Extract mean.
img -= img_mean
label = tf.image.decode_png(label_contents, channels=1)
if input_size is not None:
h, w = input_size
if random_scale:
img, label = image_scaling(img, label)
if random_mirror:
img, label = image_mirroring(img, label)
img, label = random_crop_and_pad_image_and_labels(img, label, h, w, ignore_label)
return img, label
class ImageReader(object):
'''Generic ImageReader which reads images and corresponding segmentation
masks from the disk, and enqueues them into a TensorFlow queue.
'''
def __init__(self, data_dir, data_list, input_size,
random_scale, random_mirror, ignore_label, img_mean, coord):
self.data_dir = data_dir
self.data_list = data_list
self.input_size = input_size
self.coord = coord
self.image_list, self.label_list = read_labeled_image_list(self.data_dir, self.data_list)
self.images = tf.convert_to_tensor(self.image_list, dtype=tf.string)
self.labels = tf.convert_to_tensor(self.label_list, dtype=tf.string)
self.queue = tf.train.slice_input_producer([self.images, self.labels],
shuffle=input_size is not None) # not shuffling if it is val
self.image, self.label = read_images_from_disk(self.queue, self.input_size, random_scale, random_mirror, ignore_label, img_mean)
def dequeue(self, num_elements):
image_batch, label_batch = tf.train.batch([self.image, self.label],
num_elements)
return image_batch, label_batch