forked from NVIDIA/Megatron-LM
-
Notifications
You must be signed in to change notification settings - Fork 49
/
pretrain_vision_dino.py
108 lines (87 loc) · 3.51 KB
/
pretrain_vision_dino.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
import torch
import torch.nn.functional as F
import torch.nn as nn
import numpy as np
import torch.distributed as dist
from functools import partial
from megatron import get_args, get_timers, print_rank_0
from megatron.core.enums import ModelType
from megatron.data.vit_dataset import build_train_valid_datasets
from megatron.model.vision.dino import DINOPretrainModel
from megatron.model.vision.knn_monitor import knn_predict, get_feature_bank
from megatron.training import pretrain
from megatron.utils import average_losses_across_data_parallel_group, unwrap_model
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.model import Float16Module
def model_provider(pre_process=True, post_process=True):
"""Build the model."""
return DINOPretrainModel(pre_process=pre_process, post_process=post_process)
def get_batch(data_iterator):
"""Build the batch."""
data = next(data_iterator)
# only data parallelism; no need for broadcast
if isinstance(data[0], list):
images = [aug.cuda() for aug in data[0]]
else:
images = data[0].cuda()
labels = data[1].cuda()
return images, labels
def loss_func(model, labels, output_tensor, collect_data=False):
args = get_args()
model = unwrap_model(
model,
(torchDDP, LocalDDP, Float16Module)
)
if model.training:
student_output, teacher_output = output_tensor
loss = model.dino_loss(student_output, teacher_output, args.curr_iteration)
averaged_loss = average_losses_across_data_parallel_group([loss])
return loss, {"loss": averaged_loss[0]}
else:
_, teacher_feature = output_tensor
feature_bank, feature_labels, classes = get_feature_bank()
feature = F.normalize(teacher_feature.float(), dim=1)
knn_accs = []
for k in [10, 20, 100, 200]:
pred_labels = knn_predict(feature, feature_bank,
feature_labels, classes, k, 0.07)
knn_acc = (pred_labels[:, 0] == labels).float().mean()
knn_accs.append(knn_acc)
averaged_loss = average_losses_across_data_parallel_group(knn_accs)
return 0, {"knn_acc_10": averaged_loss[0],
"knn_acc_20": averaged_loss[1],
"knn_acc_100": averaged_loss[2],
"knn_acc_200": averaged_loss[3]}
def forward_step(data_iterator, model):
"""Forward step."""
timers = get_timers()
# Get the batch.
timers("batch-generator", log_level=2).start()
(
images,
labels,
) = get_batch(data_iterator)
timers("batch-generator").stop()
return model(images), partial(loss_func, model, labels)
def train_valid_test_datasets_provider(train_val_test_num_samples):
"""Build train, valid, and test datasets."""
args = get_args()
print_rank_0(
"> building train, validation, and test datasets " "for VIT ..."
)
train_ds, valid_ds = build_train_valid_datasets(
data_path=args.data_path,
image_size=(args.img_h, args.img_w)
)
print_rank_0("> finished creating VIT datasets ...")
return train_ds, valid_ds, None
if __name__ == "__main__":
pretrain(
train_valid_test_datasets_provider,
model_provider,
ModelType.encoder_or_decoder,
forward_step,
args_defaults={'dataloader_type': 'cyclic', 'vision_pretraining': True}
)