-
Notifications
You must be signed in to change notification settings - Fork 4
/
main.py
66 lines (57 loc) · 2.38 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
from flask import Flask, render_template, request
import cv2
import numpy as np
import os
app = Flask(__name__)
script_path = os.path.dirname(os.path.realpath(__file__))
weights_path = os.path.join(script_path, 'tiny.weights')
cfg_path = os.path.join(script_path, 'tiny.cfg')
classes_path = os.path.join(script_path, 'classes.txt')
net = cv2.dnn.readNet(weights_path, cfg_path)
classes = []
with open(classes_path, 'r') as f:
classes = [line.strip() for line in f.readlines()]
@app.route('/')
def index():
return render_template('index.html')
@app.route('/upload', methods=['POST'])
def upload():
img = request.files['image']
img.save(os.path.join(script_path, 'static/input.jpg'))
image = cv2.imread(os.path.join(script_path, 'static/input.jpg'))
height, width, _ = image.shape
blob = cv2.dnn.blobFromImage(image, 0.00392, (416, 416), (0, 0, 0), True, crop=False)
net.setInput(blob)
outs = net.forward(net.getUnconnectedOutLayersNames())
class_ids = []
confidences = []
boxes = []
for out in outs:
for detection in out:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > 0.5:
center_x = int(detection[0] * width)
center_y = int(detection[1] * height)
w = int(detection[2] * width)
h = int(detection[3] * height)
x = int(center_x - w / 2)
y = int(center_y - h / 2)
boxes.append([x, y, w, h])
confidences.append(float(confidence))
class_ids.append(class_id)
indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
font = cv2.FONT_HERSHEY_PLAIN
colors = np.random.uniform(0, 255, size=(len(classes), 3))
for i in range(len(boxes)):
if i in indexes:
x, y, w, h = boxes[i]
label = str(classes[class_ids[i]])
color = colors[class_ids[i]]
cv2.rectangle(image, (x, y), (x + w, y + h), color, 2)
cv2.putText(image, label, (x, y + 30), font, 1, color, 2)
cv2.imwrite(os.path.join(script_path, 'static/output.jpg'), image)
return render_template('result.html', input_image='static/input.jpg', output_image='static/output.jpg')
if __name__ == '__main__':
app.run(debug=True)