This repository has been archived by the owner on Apr 6, 2021. It is now read-only.
forked from mauricesvay/php-facedetection
-
Notifications
You must be signed in to change notification settings - Fork 1
/
FaceDetector.php
228 lines (201 loc) · 8.65 KB
/
FaceDetector.php
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
<?php
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 2
// of the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
//
// @Author Karthik Tharavaad
// @Contributor Maurice Svay
class Face_Detector {
protected $detection_data;
protected $canvas;
protected $face;
private $reduced_canvas;
public function __construct($detection_file = 'detection.dat') {
if (is_file($detection_file)) {
$this->detection_data = unserialize(file_get_contents($detection_file));
} else {
throw new Exception("Couldn't load detection data");
}
}
public function face_detect($file) {
if (is_resource($file)) {
$this->canvas = $file;
}
elseif (is_file($file)) {
$this->canvas = imagecreatefromjpeg($file);
}
else {
throw new Exception("Can not load $file");
}
$im_width = imagesx($this->canvas);
$im_height = imagesy($this->canvas);
//Resample before detection?
$ratio = 0;
$diff_width = 320 - $im_width;
$diff_height = 240 - $im_height;
if ($diff_width > $diff_height) {
$ratio = $im_width / 320;
} else {
$ratio = $im_height / 240;
}
if ($ratio != 0) {
$this->reduced_canvas = imagecreatetruecolor($im_width / $ratio, $im_height / $ratio);
imagecopyresampled($this->reduced_canvas, $this->canvas, 0, 0, 0, 0, $im_width / $ratio, $im_height / $ratio, $im_width, $im_height);
$stats = $this->get_img_stats($this->reduced_canvas);
$this->face = $this->do_detect_greedy_big_to_small($stats['ii'], $stats['ii2'], $stats['width'], $stats['height']);
if ($this->face['w'] > 0) {
$this->face['x'] *= $ratio;
$this->face['y'] *= $ratio;
$this->face['w'] *= $ratio;
}
} else {
$stats = $this->get_img_stats($this->canvas);
$this->face = $this->do_detect_greedy_big_to_small($stats['ii'], $stats['ii2'], $stats['width'], $stats['height']);
}
return ($this->face['w'] > 0);
}
public function toJpeg() {
$color = imagecolorallocate($this->canvas, 255, 0, 0); //red
imagerectangle($this->canvas, $this->face['x'], $this->face['y'], $this->face['x']+$this->face['w'], $this->face['y']+ $this->face['w'], $color);
header('Content-type: image/jpeg');
imagejpeg($this->canvas);
}
public function toJson() {
return "{'x':" . $this->face['x'] . ", 'y':" . $this->face['y'] . ", 'w':" . $this->face['w'] . "}";
}
public function getFace() {
return $this->face;
}
protected function get_img_stats($canvas){
$image_width = imagesx($canvas);
$image_height = imagesy($canvas);
$iis = $this->compute_ii($canvas, $image_width, $image_height);
return array(
'width' => $image_width,
'height' => $image_height,
'ii' => $iis['ii'],
'ii2' => $iis['ii2']
);
}
protected function compute_ii($canvas, $image_width, $image_height ){
$ii_w = $image_width+1;
$ii_h = $image_height+1;
$ii = array();
$ii2 = array();
for($i=0; $i<$ii_w; $i++ ){
$ii[$i] = 0;
$ii2[$i] = 0;
}
for($i=1; $i<$ii_h-1; $i++ ){
$ii[$i*$ii_w] = 0;
$ii2[$i*$ii_w] = 0;
$rowsum = 0;
$rowsum2 = 0;
for($j=1; $j<$ii_w-1; $j++ ){
$rgb = ImageColorAt($canvas, $j, $i);
$red = ($rgb >> 16) & 0xFF;
$green = ($rgb >> 8) & 0xFF;
$blue = $rgb & 0xFF;
$grey = ( 0.2989*$red + 0.587*$green + 0.114*$blue )>>0; // this is what matlab uses
$rowsum += $grey;
$rowsum2 += $grey*$grey;
$ii_above = ($i-1)*$ii_w + $j;
$ii_this = $i*$ii_w + $j;
$ii[$ii_this] = $ii[$ii_above] + $rowsum;
$ii2[$ii_this] = $ii2[$ii_above] + $rowsum2;
}
}
return array('ii'=>$ii, 'ii2' => $ii2);
}
protected function do_detect_greedy_big_to_small( $ii, $ii2, $width, $height ){
$s_w = $width/20.0;
$s_h = $height/20.0;
$start_scale = $s_h < $s_w ? $s_h : $s_w;
$scale_update = 1 / 1.2;
for($scale = $start_scale; $scale > 1; $scale *= $scale_update ){
$w = (20*$scale) >> 0;
$endx = $width - $w - 1;
$endy = $height - $w - 1;
$step = max( $scale, 2 ) >> 0;
$inv_area = 1 / ($w*$w);
for($y = 0; $y < $endy ; $y += $step ){
for($x = 0; $x < $endx ; $x += $step ){
$passed = $this->detect_on_sub_image( $x, $y, $scale, $ii, $ii2, $w, $width+1, $inv_area);
if( $passed ) {
return array('x'=>$x, 'y'=>$y, 'w'=>$w);
}
} // end x
} // end y
} // end scale
return null;
}
protected function detect_on_sub_image( $x, $y, $scale, $ii, $ii2, $w, $iiw, $inv_area){
$mean = ( $ii[($y+$w)*$iiw + $x + $w] + $ii[$y*$iiw+$x] - $ii[($y+$w)*$iiw+$x] - $ii[$y*$iiw+$x+$w] )*$inv_area;
$vnorm = ( $ii2[($y+$w)*$iiw + $x + $w] + $ii2[$y*$iiw+$x] - $ii2[($y+$w)*$iiw+$x] - $ii2[$y*$iiw+$x+$w] )*$inv_area - ($mean*$mean);
$vnorm = $vnorm > 1 ? sqrt($vnorm) : 1;
$passed = true;
for($i_stage = 0; $i_stage < count($this->detection_data); $i_stage++ ){
$stage = $this->detection_data[$i_stage];
$trees = $stage[0];
$stage_thresh = $stage[1];
$stage_sum = 0;
for($i_tree = 0; $i_tree < count($trees); $i_tree++ ){
$tree = $trees[$i_tree];
$current_node = $tree[0];
$tree_sum = 0;
while( $current_node != null ){
$vals = $current_node[0];
$node_thresh = $vals[0];
$leftval = $vals[1];
$rightval = $vals[2];
$leftidx = $vals[3];
$rightidx = $vals[4];
$rects = $current_node[1];
$rect_sum = 0;
for( $i_rect = 0; $i_rect < count($rects); $i_rect++ ){
$s = $scale;
$rect = $rects[$i_rect];
$rx = ($rect[0]*$s+$x)>>0;
$ry = ($rect[1]*$s+$y)>>0;
$rw = ($rect[2]*$s)>>0;
$rh = ($rect[3]*$s)>>0;
$wt = $rect[4];
$r_sum = ( $ii[($ry+$rh)*$iiw + $rx + $rw] + $ii[$ry*$iiw+$rx] - $ii[($ry+$rh)*$iiw+$rx] - $ii[$ry*$iiw+$rx+$rw] )*$wt;
$rect_sum += $r_sum;
}
$rect_sum *= $inv_area;
$current_node = null;
if( $rect_sum >= $node_thresh*$vnorm ){
if( $rightidx == -1 )
$tree_sum = $rightval;
else
$current_node = $tree[$rightidx];
} else {
if( $leftidx == -1 )
$tree_sum = $leftval;
else
$current_node = $tree[$leftidx];
}
}
$stage_sum += $tree_sum;
}
if( $stage_sum < $stage_thresh ){
return false;
}
}
return true;
}
}