Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Merged by Bors] - many_cubes: Add a cube pattern suitable for benchmarking culling changes #4126

Closed
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
130 changes: 87 additions & 43 deletions examples/3d/many_cubes.rs
Original file line number Diff line number Diff line change
@@ -1,8 +1,8 @@
use bevy::{
diagnostic::{FrameTimeDiagnosticsPlugin, LogDiagnosticsPlugin},
math::{DVec2, DVec3},
prelude::*,
};

fn main() {
App::new()
.add_plugins(DefaultPlugins)
Expand All @@ -26,41 +26,75 @@ fn setup(
base_color: Color::PINK,
..default()
});
for x in 0..WIDTH {
for y in 0..HEIGHT {
// introduce spaces to break any kind of moiré pattern
if x % 10 == 0 || y % 10 == 0 {
continue;

match std::env::args().nth(1).as_deref() {
Some("sphere") => {
// NOTE: This pattern is good for testing performance of culling as it provides roughly
// the same number of visible meshes regardless of the viewing angle.
const N_POINTS: usize = WIDTH * HEIGHT * 4;
// NOTE: f64 is used to avoid precision issues that produce visual artifacts in the distribution
let radius = WIDTH as f64 * 2.5;
let golden_ratio = 0.5f64 * (1.0f64 + 5.0f64.sqrt());
for i in 0..N_POINTS {
let spherical_polar_theta_phi =
fibonacci_spiral_on_sphere(golden_ratio, i, N_POINTS);
let unit_sphere_p = spherical_polar_to_cartesian(spherical_polar_theta_phi);
commands.spawn_bundle(PbrBundle {
mesh: mesh.clone_weak(),
material: material.clone_weak(),
transform: Transform::from_translation((radius * unit_sphere_p).as_vec3()),
..default()
});
}

// camera
commands.spawn_bundle(PerspectiveCameraBundle::default());
}
_ => {
// NOTE: This pattern is good for demonstrating that frustum culling is working correctly
// as the number of visible meshes rises and falls depending on the viewing angle.
for x in 0..WIDTH {
for y in 0..HEIGHT {
// introduce spaces to break any kind of moiré pattern
if x % 10 == 0 || y % 10 == 0 {
continue;
}
// cube
commands.spawn_bundle(PbrBundle {
mesh: mesh.clone_weak(),
material: material.clone_weak(),
transform: Transform::from_xyz((x as f32) * 2.5, (y as f32) * 2.5, 0.0),
..default()
});
commands.spawn_bundle(PbrBundle {
mesh: mesh.clone_weak(),
material: material.clone_weak(),
transform: Transform::from_xyz(
(x as f32) * 2.5,
HEIGHT as f32 * 2.5,
(y as f32) * 2.5,
),
..default()
});
commands.spawn_bundle(PbrBundle {
mesh: mesh.clone_weak(),
material: material.clone_weak(),
transform: Transform::from_xyz((x as f32) * 2.5, 0.0, (y as f32) * 2.5),
..default()
});
commands.spawn_bundle(PbrBundle {
mesh: mesh.clone_weak(),
material: material.clone_weak(),
transform: Transform::from_xyz(0.0, (x as f32) * 2.5, (y as f32) * 2.5),
..default()
});
}
}
// cube
commands.spawn_bundle(PbrBundle {
mesh: mesh.clone_weak(),
material: material.clone_weak(),
transform: Transform::from_xyz((x as f32) * 2.5, (y as f32) * 2.5, 0.0),
// camera
commands.spawn_bundle(PerspectiveCameraBundle {
transform: Transform::from_xyz(WIDTH as f32, HEIGHT as f32, WIDTH as f32),
..default()
});
commands.spawn_bundle(PbrBundle {
mesh: mesh.clone_weak(),
material: material.clone_weak(),
transform: Transform::from_xyz(
(x as f32) * 2.5,
HEIGHT as f32 * 2.5,
(y as f32) * 2.5,
),
..Default::default()
});
commands.spawn_bundle(PbrBundle {
mesh: mesh.clone_weak(),
material: material.clone_weak(),
transform: Transform::from_xyz((x as f32) * 2.5, 0.0, (y as f32) * 2.5),
..Default::default()
});
commands.spawn_bundle(PbrBundle {
mesh: mesh.clone_weak(),
material: material.clone_weak(),
transform: Transform::from_xyz(0.0, (x as f32) * 2.5, (y as f32) * 2.5),
..Default::default()
});
}
}

Expand All @@ -72,20 +106,30 @@ fn setup(
transform: Transform {
translation: Vec3::new(0.0, HEIGHT as f32 * 2.5, 0.0),
scale: Vec3::splat(5.0),
..Default::default()
..default()
},
..Default::default()
});

// camera
commands.spawn_bundle(PerspectiveCameraBundle {
transform: Transform::from_xyz(WIDTH as f32, HEIGHT as f32, WIDTH as f32),
..default()
});

commands.spawn_bundle(DirectionalLightBundle {
..Default::default()
});
commands.spawn_bundle(DirectionalLightBundle { ..default() });
}

// NOTE: This epsilon value is apparently optimal for optimizing for the average
// nearest-neighbor distance. See:
// http://extremelearning.com.au/how-to-evenly-distribute-points-on-a-sphere-more-effectively-than-the-canonical-fibonacci-lattice/
// for details.
const EPSILON: f64 = 0.36;
fn fibonacci_spiral_on_sphere(golden_ratio: f64, i: usize, n: usize) -> DVec2 {
DVec2::new(
2.0 * std::f64::consts::PI * (i as f64 / golden_ratio),
(1.0 - 2.0 * (i as f64 + EPSILON) / (n as f64 - 1.0 + 2.0 * EPSILON)).acos(),
)
}

fn spherical_polar_to_cartesian(p: DVec2) -> DVec3 {
let (sin_theta, cos_theta) = p.x.sin_cos();
let (sin_phi, cos_phi) = p.y.sin_cos();
DVec3::new(cos_theta * sin_phi, sin_theta * sin_phi, cos_phi)
}

// System for rotating the camera
Expand Down