-
-
Notifications
You must be signed in to change notification settings - Fork 3.6k
/
camera.rs
740 lines (679 loc) · 29.5 KB
/
camera.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
use crate::{
camera::CameraProjection,
prelude::Image,
render_asset::RenderAssets,
render_resource::TextureView,
view::{ColorGrading, ExtractedView, ExtractedWindows, VisibleEntities},
Extract,
};
use bevy_asset::{AssetEvent, Assets, Handle};
use bevy_derive::{Deref, DerefMut};
use bevy_ecs::{
change_detection::DetectChanges,
component::Component,
entity::Entity,
event::EventReader,
prelude::With,
reflect::ReflectComponent,
system::{Commands, Query, Res, ResMut, Resource},
};
use bevy_log::warn;
use bevy_math::{Mat4, Ray, UVec2, UVec4, Vec2, Vec3};
use bevy_reflect::prelude::*;
use bevy_reflect::FromReflect;
use bevy_transform::components::GlobalTransform;
use bevy_utils::{HashMap, HashSet};
use bevy_window::{
NormalizedWindowRef, PrimaryWindow, Window, WindowCreated, WindowRef, WindowResized,
};
use std::{borrow::Cow, ops::Range};
use wgpu::{BlendState, Extent3d, LoadOp, TextureFormat};
/// Render viewport configuration for the [`Camera`] component.
///
/// The viewport defines the area on the render target to which the camera renders its image.
/// You can overlay multiple cameras in a single window using viewports to create effects like
/// split screen, minimaps, and character viewers.
#[derive(Reflect, FromReflect, Debug, Clone)]
#[reflect(Default)]
pub struct Viewport {
/// The physical position to render this viewport to within the [`RenderTarget`] of this [`Camera`].
/// (0,0) corresponds to the top-left corner
pub physical_position: UVec2,
/// The physical size of the viewport rectangle to render to within the [`RenderTarget`] of this [`Camera`].
/// The origin of the rectangle is in the top-left corner.
pub physical_size: UVec2,
/// The minimum and maximum depth to render (on a scale from 0.0 to 1.0).
pub depth: Range<f32>,
}
impl Default for Viewport {
fn default() -> Self {
Self {
physical_position: Default::default(),
physical_size: Default::default(),
depth: 0.0..1.0,
}
}
}
/// Information about the current [`RenderTarget`].
#[derive(Default, Debug, Clone)]
pub struct RenderTargetInfo {
/// The physical size of this render target (ignores scale factor).
pub physical_size: UVec2,
/// The scale factor of this render target.
pub scale_factor: f64,
}
/// Holds internally computed [`Camera`] values.
#[derive(Default, Debug, Clone)]
pub struct ComputedCameraValues {
projection_matrix: Mat4,
target_info: Option<RenderTargetInfo>,
// position and size of the `Viewport`
old_viewport_size: Option<UVec2>,
}
/// The defining component for camera entities, storing information about how and what to render
/// through this camera.
///
/// The [`Camera`] component is added to an entity to define the properties of the viewpoint from
/// which rendering occurs. It defines the position of the view to render, the projection method
/// to transform the 3D objects into a 2D image, as well as the render target into which that image
/// is produced.
///
/// Adding a camera is typically done by adding a bundle, either the `Camera2dBundle` or the
/// `Camera3dBundle`.
#[derive(Component, Debug, Reflect, FromReflect, Clone)]
#[reflect(Component)]
pub struct Camera {
/// If set, this camera will render to the given [`Viewport`] rectangle within the configured [`RenderTarget`].
pub viewport: Option<Viewport>,
/// Cameras with a higher order are rendered later, and thus on top of lower order cameras.
pub order: isize,
/// If this is set to `true`, this camera will be rendered to its specified [`RenderTarget`]. If `false`, this
/// camera will not be rendered.
pub is_active: bool,
/// Computed values for this camera, such as the projection matrix and the render target size.
#[reflect(ignore)]
pub computed: ComputedCameraValues,
/// The "target" that this camera will render to.
#[reflect(ignore)]
pub target: RenderTarget,
/// If this is set to `true`, the camera will use an intermediate "high dynamic range" render texture.
/// Warning: we are still working on this feature. If MSAA is enabled, there will be artifacts in
/// some cases. When rendering with WebGL, this will crash if MSAA is enabled.
/// See <https://github.com/bevyengine/bevy/pull/3425> for details.
// TODO: resolve the issues mentioned in the doc comment above, then remove the warning.
pub hdr: bool,
// todo: reflect this when #6042 lands
/// The [`CameraOutputMode`] for this camera.
#[reflect(ignore)]
pub output_mode: CameraOutputMode,
/// If this is enabled, a previous camera exists that shares this camera's render target, and this camera has MSAA enabled, then the previous camera's
/// outputs will be written to the intermediate multi-sampled render target textures for this camera. This enables cameras with MSAA enabled to
/// "write their results on top" of previous camera results, and include them as a part of their render results. This is enabled by default to ensure
/// cameras with MSAA enabled layer their results in the same way as cameras without MSAA enabled by default.
pub msaa_writeback: bool,
}
impl Default for Camera {
fn default() -> Self {
Self {
is_active: true,
order: 0,
viewport: None,
computed: Default::default(),
target: Default::default(),
output_mode: Default::default(),
hdr: false,
msaa_writeback: true,
}
}
}
impl Camera {
/// Converts a physical size in this `Camera` to a logical size.
#[inline]
pub fn to_logical(&self, physical_size: UVec2) -> Option<Vec2> {
let scale = self.computed.target_info.as_ref()?.scale_factor;
Some((physical_size.as_dvec2() / scale).as_vec2())
}
/// The rendered physical bounds (minimum, maximum) of the camera. If the `viewport` field is
/// set to [`Some`], this will be the rect of that custom viewport. Otherwise it will default to
/// the full physical rect of the current [`RenderTarget`].
#[inline]
pub fn physical_viewport_rect(&self) -> Option<(UVec2, UVec2)> {
let min = self
.viewport
.as_ref()
.map(|v| v.physical_position)
.unwrap_or(UVec2::ZERO);
let max = min + self.physical_viewport_size()?;
Some((min, max))
}
/// The rendered logical bounds (minimum, maximum) of the camera. If the `viewport` field is set
/// to [`Some`], this will be the rect of that custom viewport. Otherwise it will default to the
/// full logical rect of the current [`RenderTarget`].
#[inline]
pub fn logical_viewport_rect(&self) -> Option<(Vec2, Vec2)> {
let (min, max) = self.physical_viewport_rect()?;
Some((self.to_logical(min)?, self.to_logical(max)?))
}
/// The logical size of this camera's viewport. If the `viewport` field is set to [`Some`], this
/// will be the size of that custom viewport. Otherwise it will default to the full logical size
/// of the current [`RenderTarget`].
/// For logic that requires the full logical size of the
/// [`RenderTarget`], prefer [`Camera::logical_target_size`].
#[inline]
pub fn logical_viewport_size(&self) -> Option<Vec2> {
self.viewport
.as_ref()
.and_then(|v| self.to_logical(v.physical_size))
.or_else(|| self.logical_target_size())
}
/// The physical size of this camera's viewport. If the `viewport` field is set to [`Some`], this
/// will be the size of that custom viewport. Otherwise it will default to the full physical size of
/// the current [`RenderTarget`].
/// For logic that requires the full physical size of the [`RenderTarget`], prefer [`Camera::physical_target_size`].
#[inline]
pub fn physical_viewport_size(&self) -> Option<UVec2> {
self.viewport
.as_ref()
.map(|v| v.physical_size)
.or_else(|| self.physical_target_size())
}
/// The full logical size of this camera's [`RenderTarget`], ignoring custom `viewport` configuration.
/// Note that if the `viewport` field is [`Some`], this will not represent the size of the rendered area.
/// For logic that requires the size of the actually rendered area, prefer [`Camera::logical_viewport_size`].
#[inline]
pub fn logical_target_size(&self) -> Option<Vec2> {
self.computed
.target_info
.as_ref()
.and_then(|t| self.to_logical(t.physical_size))
}
/// The full physical size of this camera's [`RenderTarget`], ignoring custom `viewport` configuration.
/// Note that if the `viewport` field is [`Some`], this will not represent the size of the rendered area.
/// For logic that requires the size of the actually rendered area, prefer [`Camera::physical_viewport_size`].
#[inline]
pub fn physical_target_size(&self) -> Option<UVec2> {
self.computed.target_info.as_ref().map(|t| t.physical_size)
}
/// The projection matrix computed using this camera's [`CameraProjection`].
#[inline]
pub fn projection_matrix(&self) -> Mat4 {
self.computed.projection_matrix
}
/// Given a position in world space, use the camera to compute the viewport-space coordinates.
///
/// To get the coordinates in Normalized Device Coordinates, you should use
/// [`world_to_ndc`](Self::world_to_ndc).
#[doc(alias = "world_to_screen")]
pub fn world_to_viewport(
&self,
camera_transform: &GlobalTransform,
world_position: Vec3,
) -> Option<Vec2> {
let target_size = self.logical_viewport_size()?;
let ndc_space_coords = self.world_to_ndc(camera_transform, world_position)?;
// NDC z-values outside of 0 < z < 1 are outside the camera frustum and are thus not in viewport-space
if ndc_space_coords.z < 0.0 || ndc_space_coords.z > 1.0 {
return None;
}
// Once in NDC space, we can discard the z element and rescale x/y to fit the screen
let mut viewport_position = (ndc_space_coords.truncate() + Vec2::ONE) / 2.0 * target_size;
// Flip the Y co-ordinate origin from the bottom to the top.
viewport_position.y = target_size.y - viewport_position.y;
Some(viewport_position)
}
/// Returns a ray originating from the camera, that passes through everything beyond `viewport_position`.
///
/// The resulting ray starts on the near plane of the camera.
///
/// If the camera's projection is orthographic the direction of the ray is always equal to `camera_transform.forward()`.
///
/// To get the world space coordinates with Normalized Device Coordinates, you should use
/// [`ndc_to_world`](Self::ndc_to_world).
pub fn viewport_to_world(
&self,
camera_transform: &GlobalTransform,
mut viewport_position: Vec2,
) -> Option<Ray> {
let target_size = self.logical_viewport_size()?;
// Flip the Y co-ordinate origin from the top to the bottom.
viewport_position.y = target_size.y - viewport_position.y;
let ndc = viewport_position * 2. / target_size - Vec2::ONE;
let ndc_to_world =
camera_transform.compute_matrix() * self.computed.projection_matrix.inverse();
let world_near_plane = ndc_to_world.project_point3(ndc.extend(1.));
// Using EPSILON because an ndc with Z = 0 returns NaNs.
let world_far_plane = ndc_to_world.project_point3(ndc.extend(f32::EPSILON));
(!world_near_plane.is_nan() && !world_far_plane.is_nan()).then_some(Ray {
origin: world_near_plane,
direction: (world_far_plane - world_near_plane).normalize(),
})
}
/// Returns a 2D world position computed from a position on this [`Camera`]'s viewport.
///
/// Useful for 2D cameras and other cameras with an orthographic projection pointing along the Z axis.
///
/// To get the world space coordinates with Normalized Device Coordinates, you should use
/// [`ndc_to_world`](Self::ndc_to_world).
pub fn viewport_to_world_2d(
&self,
camera_transform: &GlobalTransform,
mut viewport_position: Vec2,
) -> Option<Vec2> {
let target_size = self.logical_viewport_size()?;
// Flip the Y co-ordinate origin from the top to the bottom.
viewport_position.y = target_size.y - viewport_position.y;
let ndc = viewport_position * 2. / target_size - Vec2::ONE;
let world_near_plane = self.ndc_to_world(camera_transform, ndc.extend(1.))?;
Some(world_near_plane.truncate())
}
/// Given a position in world space, use the camera's viewport to compute the Normalized Device Coordinates.
///
/// When the position is within the viewport the values returned will be between -1.0 and 1.0 on the X and Y axes,
/// and between 0.0 and 1.0 on the Z axis.
/// To get the coordinates in the render target's viewport dimensions, you should use
/// [`world_to_viewport`](Self::world_to_viewport).
pub fn world_to_ndc(
&self,
camera_transform: &GlobalTransform,
world_position: Vec3,
) -> Option<Vec3> {
// Build a transformation matrix to convert from world space to NDC using camera data
let world_to_ndc: Mat4 =
self.computed.projection_matrix * camera_transform.compute_matrix().inverse();
let ndc_space_coords: Vec3 = world_to_ndc.project_point3(world_position);
(!ndc_space_coords.is_nan()).then_some(ndc_space_coords)
}
/// Given a position in Normalized Device Coordinates,
/// use the camera's viewport to compute the world space position.
///
/// When the position is within the viewport the values returned will be between -1.0 and 1.0 on the X and Y axes,
/// and between 0.0 and 1.0 on the Z axis.
/// To get the world space coordinates with the viewport position, you should use
/// [`world_to_viewport`](Self::world_to_viewport).
pub fn ndc_to_world(&self, camera_transform: &GlobalTransform, ndc: Vec3) -> Option<Vec3> {
// Build a transformation matrix to convert from NDC to world space using camera data
let ndc_to_world =
camera_transform.compute_matrix() * self.computed.projection_matrix.inverse();
let world_space_coords = ndc_to_world.project_point3(ndc);
(!world_space_coords.is_nan()).then_some(world_space_coords)
}
}
/// Control how this camera outputs once rendering is completed.
#[derive(Debug, Clone, Copy)]
pub enum CameraOutputMode {
/// Writes the camera output to configured render target.
Write {
/// The blend state that will be used by the pipeline that writes the intermediate render textures to the final render target texture.
blend_state: Option<BlendState>,
/// The color attachment load operation that will be used by the pipeline that writes the intermediate render textures to the final render
/// target texture.
color_attachment_load_op: wgpu::LoadOp<wgpu::Color>,
},
/// Skips writing the camera output to the configured render target. The output will remain in the
/// Render Target's "intermediate" textures, which a camera with a higher order should write to the render target
/// using [`CameraOutputMode::Write`]. The "skip" mode can easily prevent render results from being displayed, or cause
/// them to be lost. Only use this if you know what you are doing!
/// In camera setups with multiple active cameras rendering to the same RenderTarget, the Skip mode can be used to remove
/// unnecessary / redundant writes to the final output texture, removing unnecessary render passes.
Skip,
}
impl Default for CameraOutputMode {
fn default() -> Self {
CameraOutputMode::Write {
blend_state: None,
color_attachment_load_op: LoadOp::Clear(Default::default()),
}
}
}
/// Configures the [`RenderGraph`](crate::render_graph::RenderGraph) name assigned to be run for a given [`Camera`] entity.
#[derive(Component, Deref, DerefMut, Reflect, Default)]
#[reflect(Component)]
pub struct CameraRenderGraph(Cow<'static, str>);
impl CameraRenderGraph {
/// Creates a new [`CameraRenderGraph`] from any string-like type.
#[inline]
pub fn new<T: Into<Cow<'static, str>>>(name: T) -> Self {
Self(name.into())
}
/// Sets the graph name.
#[inline]
pub fn set<T: Into<Cow<'static, str>>>(&mut self, name: T) {
self.0 = name.into();
}
}
/// The "target" that a [`Camera`] will render to. For example, this could be a [`Window`](bevy_window::Window)
/// swapchain or an [`Image`].
#[derive(Debug, Clone, Reflect)]
pub enum RenderTarget {
/// Window to which the camera's view is rendered.
Window(WindowRef),
/// Image to which the camera's view is rendered.
Image(Handle<Image>),
}
/// Normalized version of the render target.
///
/// Once we have this we shouldn't need to resolve it down anymore.
#[derive(Debug, Clone, Reflect, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub enum NormalizedRenderTarget {
/// Window to which the camera's view is rendered.
Window(NormalizedWindowRef),
/// Image to which the camera's view is rendered.
Image(Handle<Image>),
}
impl Default for RenderTarget {
fn default() -> Self {
Self::Window(Default::default())
}
}
impl RenderTarget {
/// Normalize the render target down to a more concrete value, mostly used for equality comparisons.
pub fn normalize(&self, primary_window: Option<Entity>) -> Option<NormalizedRenderTarget> {
match self {
RenderTarget::Window(window_ref) => window_ref
.normalize(primary_window)
.map(NormalizedRenderTarget::Window),
RenderTarget::Image(handle) => Some(NormalizedRenderTarget::Image(handle.clone())),
}
}
}
impl NormalizedRenderTarget {
pub fn get_texture_view<'a>(
&self,
windows: &'a ExtractedWindows,
images: &'a RenderAssets<Image>,
) -> Option<&'a TextureView> {
match self {
NormalizedRenderTarget::Window(window_ref) => windows
.get(&window_ref.entity())
.and_then(|window| window.swap_chain_texture.as_ref()),
NormalizedRenderTarget::Image(image_handle) => {
images.get(image_handle).map(|image| &image.texture_view)
}
}
}
/// Retrieves the [`TextureFormat`] of this render target, if it exists.
pub fn get_texture_format<'a>(
&self,
windows: &'a ExtractedWindows,
images: &'a RenderAssets<Image>,
) -> Option<TextureFormat> {
match self {
NormalizedRenderTarget::Window(window_ref) => windows
.get(&window_ref.entity())
.and_then(|window| window.swap_chain_texture_format),
NormalizedRenderTarget::Image(image_handle) => {
images.get(image_handle).map(|image| image.texture_format)
}
}
}
pub fn get_render_target_info<'a>(
&self,
resolutions: impl IntoIterator<Item = (Entity, &'a Window)>,
images: &Assets<Image>,
) -> Option<RenderTargetInfo> {
match self {
NormalizedRenderTarget::Window(window_ref) => resolutions
.into_iter()
.find(|(entity, _)| *entity == window_ref.entity())
.map(|(_, window)| RenderTargetInfo {
physical_size: UVec2::new(
window.resolution.physical_width(),
window.resolution.physical_height(),
),
scale_factor: window.resolution.scale_factor(),
}),
NormalizedRenderTarget::Image(image_handle) => {
let image = images.get(image_handle)?;
let Extent3d { width, height, .. } = image.texture_descriptor.size;
Some(RenderTargetInfo {
physical_size: UVec2::new(width, height),
scale_factor: 1.0,
})
}
}
}
// Check if this render target is contained in the given changed windows or images.
fn is_changed(
&self,
changed_window_ids: &HashSet<Entity>,
changed_image_handles: &HashSet<&Handle<Image>>,
) -> bool {
match self {
NormalizedRenderTarget::Window(window_ref) => {
changed_window_ids.contains(&window_ref.entity())
}
NormalizedRenderTarget::Image(image_handle) => {
changed_image_handles.contains(&image_handle)
}
}
}
}
/// System in charge of updating a [`Camera`] when its window or projection changes.
///
/// The system detects window creation and resize events to update the camera projection if
/// needed. It also queries any [`CameraProjection`] component associated with the same entity
/// as the [`Camera`] one, to automatically update the camera projection matrix.
///
/// The system function is generic over the camera projection type, and only instances of
/// [`OrthographicProjection`] and [`PerspectiveProjection`] are automatically added to
/// the app, as well as the runtime-selected [`Projection`].
/// The system runs during [`PostUpdate`](bevy_app::PostUpdate).
///
/// ## World Resources
///
/// [`Res<Assets<Image>>`](Assets<Image>) -- For cameras that render to an image, this resource is used to
/// inspect information about the render target. This system will not access any other image assets.
///
/// [`OrthographicProjection`]: crate::camera::OrthographicProjection
/// [`PerspectiveProjection`]: crate::camera::PerspectiveProjection
/// [`Projection`]: crate::camera::Projection
pub fn camera_system<T: CameraProjection + Component>(
mut window_resized_events: EventReader<WindowResized>,
mut window_created_events: EventReader<WindowCreated>,
mut image_asset_events: EventReader<AssetEvent<Image>>,
primary_window: Query<Entity, With<PrimaryWindow>>,
windows: Query<(Entity, &Window)>,
images: Res<Assets<Image>>,
mut cameras: Query<(&mut Camera, &mut T)>,
) {
let primary_window = primary_window.iter().next();
let mut changed_window_ids = HashSet::new();
changed_window_ids.extend(window_created_events.iter().map(|event| event.window));
changed_window_ids.extend(window_resized_events.iter().map(|event| event.window));
let changed_image_handles: HashSet<&Handle<Image>> = image_asset_events
.iter()
.filter_map(|event| {
if let AssetEvent::Modified { handle } = event {
Some(handle)
} else {
None
}
})
.collect();
for (mut camera, mut camera_projection) in &mut cameras {
let viewport_size = camera
.viewport
.as_ref()
.map(|viewport| viewport.physical_size);
if let Some(normalized_target) = camera.target.normalize(primary_window) {
if normalized_target.is_changed(&changed_window_ids, &changed_image_handles)
|| camera.is_added()
|| camera_projection.is_changed()
|| camera.computed.old_viewport_size != viewport_size
{
camera.computed.target_info =
normalized_target.get_render_target_info(&windows, &images);
if let Some(size) = camera.logical_viewport_size() {
camera_projection.update(size.x, size.y);
camera.computed.projection_matrix = camera_projection.get_projection_matrix();
}
}
}
}
}
#[derive(Component, Debug)]
pub struct ExtractedCamera {
pub target: Option<NormalizedRenderTarget>,
pub physical_viewport_size: Option<UVec2>,
pub physical_target_size: Option<UVec2>,
pub viewport: Option<Viewport>,
pub render_graph: Cow<'static, str>,
pub order: isize,
pub output_mode: CameraOutputMode,
pub msaa_writeback: bool,
pub sorted_camera_index_for_target: usize,
}
pub fn extract_cameras(
mut commands: Commands,
query: Extract<
Query<(
Entity,
&Camera,
&CameraRenderGraph,
&GlobalTransform,
&VisibleEntities,
Option<&ColorGrading>,
Option<&TemporalJitter>,
)>,
>,
primary_window: Extract<Query<Entity, With<PrimaryWindow>>>,
) {
let primary_window = primary_window.iter().next();
for (
entity,
camera,
camera_render_graph,
transform,
visible_entities,
color_grading,
temporal_jitter,
) in query.iter()
{
let color_grading = *color_grading.unwrap_or(&ColorGrading::default());
if !camera.is_active {
continue;
}
if let (Some((viewport_origin, _)), Some(viewport_size), Some(target_size)) = (
camera.physical_viewport_rect(),
camera.physical_viewport_size(),
camera.physical_target_size(),
) {
if target_size.x == 0 || target_size.y == 0 {
continue;
}
let mut commands = commands.get_or_spawn(entity);
commands.insert((
ExtractedCamera {
target: camera.target.normalize(primary_window),
viewport: camera.viewport.clone(),
physical_viewport_size: Some(viewport_size),
physical_target_size: Some(target_size),
render_graph: camera_render_graph.0.clone(),
order: camera.order,
output_mode: camera.output_mode,
msaa_writeback: camera.msaa_writeback,
// this will be set in sort_cameras
sorted_camera_index_for_target: 0,
},
ExtractedView {
projection: camera.projection_matrix(),
transform: *transform,
view_projection: None,
hdr: camera.hdr,
viewport: UVec4::new(
viewport_origin.x,
viewport_origin.y,
viewport_size.x,
viewport_size.y,
),
color_grading,
},
visible_entities.clone(),
));
if let Some(temporal_jitter) = temporal_jitter {
commands.insert(temporal_jitter.clone());
}
}
}
}
/// Cameras sorted by their order field. This is updated in the [`sort_cameras`] system.
#[derive(Resource, Default)]
pub struct SortedCameras(pub Vec<SortedCamera>);
pub struct SortedCamera {
pub entity: Entity,
pub order: isize,
pub target: Option<NormalizedRenderTarget>,
}
pub fn sort_cameras(
mut sorted_cameras: ResMut<SortedCameras>,
mut cameras: Query<(Entity, &mut ExtractedCamera)>,
) {
sorted_cameras.0.clear();
for (entity, camera) in cameras.iter() {
sorted_cameras.0.push(SortedCamera {
entity,
order: camera.order,
target: camera.target.clone(),
});
}
// sort by order and ensure within an order, RenderTargets of the same type are packed together
sorted_cameras
.0
.sort_by(|c1, c2| match c1.order.cmp(&c2.order) {
std::cmp::Ordering::Equal => c1.target.cmp(&c2.target),
ord => ord,
});
let mut previous_order_target = None;
let mut ambiguities = HashSet::new();
let mut target_counts = HashMap::new();
for sorted_camera in &mut sorted_cameras.0 {
let new_order_target = (sorted_camera.order, sorted_camera.target.clone());
if let Some(previous_order_target) = previous_order_target {
if previous_order_target == new_order_target {
ambiguities.insert(new_order_target.clone());
}
}
if let Some(target) = &sorted_camera.target {
let count = target_counts.entry(target.clone()).or_insert(0usize);
let (_, mut camera) = cameras.get_mut(sorted_camera.entity).unwrap();
camera.sorted_camera_index_for_target = *count;
*count += 1;
}
previous_order_target = Some(new_order_target);
}
if !ambiguities.is_empty() {
warn!(
"Camera order ambiguities detected for active cameras with the following priorities: {:?}. \
To fix this, ensure there is exactly one Camera entity spawned with a given order for a given RenderTarget. \
Ambiguities should be resolved because either (1) multiple active cameras were spawned accidentally, which will \
result in rendering multiple instances of the scene or (2) for cases where multiple active cameras is intentional, \
ambiguities could result in unpredictable render results.",
ambiguities
);
}
}
/// A subpixel offset to jitter a perspective camera's fustrum by.
///
/// Useful for temporal rendering techniques.
///
/// Do not use with [`OrthographicProjection`].
///
/// [`OrthographicProjection`]: crate::camera::OrthographicProjection
#[derive(Component, Clone, Default)]
pub struct TemporalJitter {
/// Offset is in range [-0.5, 0.5].
pub offset: Vec2,
}
impl TemporalJitter {
pub fn jitter_projection(&self, projection: &mut Mat4, view_size: Vec2) {
if projection.w_axis.w == 1.0 {
warn!(
"TemporalJitter not supported with OrthographicProjection. Use PerspectiveProjection instead."
);
return;
}
let jitter = self.offset / view_size;
projection.z_axis.x += jitter.x;
projection.z_axis.y += jitter.y;
}
}