-
Notifications
You must be signed in to change notification settings - Fork 34
/
manipulate.py
278 lines (186 loc) · 7.77 KB
/
manipulate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import os
import os.path
import pickle
import numpy as np
import tensorflow as tf
from dnnlib import tflib
from utils.visualizer import HtmlPageVisualizer
def Vis(bname,suffix,out,rownames=None,colnames=None):
num_images=out.shape[0]
step=out.shape[1]
if colnames is None:
colnames=[f'Step {i:02d}' for i in range(1, step + 1)]
if rownames is None:
rownames=[str(i) for i in range(num_images)]
visualizer = HtmlPageVisualizer(
num_rows=num_images, num_cols=step + 1, viz_size=256)
visualizer.set_headers(
['Name'] +colnames)
for i in range(num_images):
visualizer.set_cell(i, 0, text=rownames[i])
for i in range(num_images):
for k in range(step):
image=out[i,k,:,:,:]
visualizer.set_cell(i, 1+k, image=image)
# Save results.
visualizer.save(f'./html/'+bname+'_'+suffix+'.html')
def LoadData(img_path):
tmp=img_path+'S'
with open(tmp, "rb") as fp: #Pickling
s_names,all_s=pickle.load( fp)
dlatents=all_s
pindexs=[]
mindexs=[]
for i in range(len(s_names)):
name=s_names[i]
if not('ToRGB' in name):
mindexs.append(i)
else:
pindexs.append(i)
tmp=img_path+'S_mean_std'
with open(tmp, "rb") as fp: #Pickling
m,std=pickle.load( fp)
return dlatents,s_names,mindexs,pindexs,m,std
def LoadModel(model_path,model_name):
# Initialize TensorFlow.
tflib.init_tf()
tmp=os.path.join(model_path,model_name)
with open(tmp, 'rb') as f:
_, _, Gs = pickle.load(f)
Gs.print_layers()
return Gs
def convert_images_to_uint8(images, drange=[-1,1], nchw_to_nhwc=False):
"""Convert a minibatch of images from float32 to uint8 with configurable dynamic range.
Can be used as an output transformation for Network.run().
"""
if nchw_to_nhwc:
images = np.transpose(images, [0, 2, 3, 1])
scale = 255 / (drange[1] - drange[0])
images = images * scale + (0.5 - drange[0] * scale)
np.clip(images, 0, 255, out=images)
images=images.astype('uint8')
return images
def convert_images_from_uint8(images, drange=[-1,1], nhwc_to_nchw=False):
"""Convert a minibatch of images from uint8 to float32 with configurable dynamic range.
Can be used as an input transformation for Network.run().
"""
if nhwc_to_nchw:
images=np.rollaxis(images, 3, 1)
return images/ 255 *(drange[1] - drange[0])+ drange[0]
class Manipulator():
def __init__(self,dataset_name='ffhq'):
self.file_path='./'
self.img_path=self.file_path+'npy/'+dataset_name+'/'
self.model_path=self.file_path+'model/'
self.dataset_name=dataset_name
self.model_name=dataset_name+'.pkl'
self.alpha=[0] #manipulation strength
self.num_images=10
self.img_index=0 #which image to start
self.viz_size=256
self.manipulate_layers=None #which layer to manipulate, list
self.dlatents,self.s_names,self.mindexs,self.pindexs,self.code_mean,self.code_std=LoadData(self.img_path)
self.sess=tf.InteractiveSession()
init = tf.global_variables_initializer()
self.sess.run(init)
self.Gs=LoadModel(self.model_path,self.model_name)
self.num_layers=len(self.dlatents)
self.Vis=Vis
self.noise_constant={}
for i in range(len(self.s_names)):
tmp1=self.s_names[i].split('/')
if not 'ToRGB' in tmp1:
tmp1[-1]='random_normal:0'
size=int(tmp1[1].split('x')[0])
tmp1='/'.join(tmp1)
tmp=(1,1,size,size)
self.noise_constant[tmp1]=np.random.random(tmp)
tmp=self.Gs.components.synthesis.input_shape[1]
d={}
d['G_synthesis_1/dlatents_in:0']=np.zeros([1,tmp,512])
names=list(self.noise_constant.keys())
tmp=tflib.run(names,d)
for i in range(len(names)):
self.noise_constant[names[i]]=tmp[i]
self.fmt = dict(func=tflib.convert_images_to_uint8, nchw_to_nhwc=True)
self.img_size=self.Gs.output_shape[-1]
def GenerateImg(self,codes):
num_images,step=codes[0].shape[:2]
out=np.zeros((num_images,step,self.img_size,self.img_size,3),dtype='uint8')
for i in range(num_images):
for k in range(step):
d={}
for m in range(len(self.s_names)):
d[self.s_names[m]]=codes[m][i,k][None,:] #need to change
d['G_synthesis_1/4x4/Const/Shape:0']=np.array([1,18, 512], dtype=np.int32)
d.update(self.noise_constant)
img=tflib.run('G_synthesis_1/images_out:0', d)
image=convert_images_to_uint8(img, nchw_to_nhwc=True)
out[i,k,:,:,:]=image[0]
return out
def MSCode(self,dlatent_tmp,boundary_tmp):
step=len(self.alpha)
dlatent_tmp1=[tmp.reshape((self.num_images,-1)) for tmp in dlatent_tmp]
dlatent_tmp2=[np.tile(tmp[:,None],(1,step,1)) for tmp in dlatent_tmp1] # (10, 7, 512)
l=np.array(self.alpha)
l=l.reshape(
[step if axis == 1 else 1 for axis in range(dlatent_tmp2[0].ndim)])
if type(self.manipulate_layers)==int:
tmp=[self.manipulate_layers]
elif type(self.manipulate_layers)==list:
tmp=self.manipulate_layers
elif self.manipulate_layers is None:
tmp=np.arange(len(boundary_tmp))
else:
raise ValueError('manipulate_layers is wrong')
for i in tmp:
dlatent_tmp2[i]+=l*boundary_tmp[i]
codes=[]
for i in range(len(dlatent_tmp2)):
tmp=list(dlatent_tmp[i].shape)
tmp.insert(1,step)
codes.append(dlatent_tmp2[i].reshape(tmp))
return codes
def EditOne(self,bname,dlatent_tmp=None):
if dlatent_tmp==None:
dlatent_tmp=[tmp[self.img_index:(self.img_index+self.num_images)] for tmp in self.dlatents]
boundary_tmp=[]
for i in range(len(self.boundary)):
tmp=self.boundary[i]
if len(tmp)<=bname:
boundary_tmp.append([])
else:
boundary_tmp.append(tmp[bname])
codes=self.MSCode(dlatent_tmp,boundary_tmp)
out=self.GenerateImg(codes)
return codes,out
def EditOneC(self,cindex,dlatent_tmp=None):
if dlatent_tmp==None:
dlatent_tmp=[tmp[self.img_index:(self.img_index+self.num_images)] for tmp in self.dlatents]
boundary_tmp=[[] for i in range(len(self.dlatents))]
#'only manipulate 1 layer and one channel'
assert len(self.manipulate_layers)==1
ml=self.manipulate_layers[0]
tmp=dlatent_tmp[ml].shape[1] #ada
tmp1=np.zeros(tmp)
tmp1[cindex]=self.code_std[ml][cindex] #1
boundary_tmp[ml]=tmp1
codes=self.MSCode(dlatent_tmp,boundary_tmp)
out=self.GenerateImg(codes)
return codes,out
def W2S(self,dlatent_tmp):
all_s = self.sess.run(
self.s_names,
feed_dict={'G_synthesis_1/dlatents_in:0': dlatent_tmp})
return all_s
#%%
if __name__ == "__main__":
M=Manipulator(dataset_name='ffhq')
#%%
M.alpha=[-5,0,5]
M.num_images=20
lindex,cindex=6,501
M.manipulate_layers=[lindex]
codes,out=M.EditOneC(cindex) #dlatent_tmp
tmp=str(M.manipulate_layers)+'_'+str(cindex)
M.Vis(tmp,'c',out)