forked from yosinski/deep-visualization-toolbox
-
Notifications
You must be signed in to change notification settings - Fork 0
/
find_max_acts.py
46 lines (35 loc) · 1.81 KB
/
find_max_acts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
#! /usr/bin/env python
import argparse
import ipdb as pdb
import cPickle as pickle
from loaders import load_imagenet_mean, load_labels, caffe
from jby_misc import WithTimer
from max_tracker import scan_images_for_maxes
def main():
parser = argparse.ArgumentParser(description='Finds images in a training set that cause max activation for a network; saves results in a pickled NetMaxTracker.')
parser.add_argument('--N', type = int, default = 9, help = 'note and save top N activations')
parser.add_argument('--gpu', action = 'store_true', help = 'use gpu')
parser.add_argument('net_prototxt', type = str, default = '', help = 'network prototxt to load')
parser.add_argument('net_weights', type = str, default = '', help = 'network weights to load')
parser.add_argument('datadir', type = str, default = '.', help = 'directory to look for files in')
parser.add_argument('filelist', type = str, help = 'list of image files to consider, one per line')
parser.add_argument('outfile', type = str, help = 'output filename for pkl')
#parser.add_argument('--mean', type = str, default = '', help = 'data mean to load')
args = parser.parse_args()
imagenet_mean = load_imagenet_mean()
net = caffe.Classifier(args.net_prototxt, args.net_weights,
mean=imagenet_mean,
channel_swap=(2,1,0),
raw_scale=255,
image_dims=(256, 256))
if args.gpu:
caffe.set_mode_gpu()
else:
caffe.set_mode_cpu()
with WithTimer('Scanning images'):
max_tracker = scan_images_for_maxes(net, args.datadir, args.filelist, args.N)
with WithTimer('Saving maxes'):
with open(args.outfile, 'wb') as ff:
pickle.dump(max_tracker, ff, -1)
if __name__ == '__main__':
main()