-
Notifications
You must be signed in to change notification settings - Fork 81
/
train.py
65 lines (61 loc) · 2.64 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import argparse
import os
import torch
import pytorch_lightning as pl
import pytorch_lightning.loggers as pl_loggers
from core.utils import load_cfg, load_weights, select_weights
from core.distiller import Distiller
from core.model_zoo import model_zoo
def build_logger(cfg):
return getattr(pl_loggers, cfg.type)(
**cfg.params
)
def main(args):
cfg = load_cfg(args.cfg)
distiller = Distiller(cfg)
if args.ckpt is not None:
ckpt = model_zoo(args.ckpt)
load_weights(distiller, ckpt["state_dict"])
logger = build_logger(cfg.logger)
checkpoint_callback = pl.callbacks.ModelCheckpoint(
filepath=os.getcwd() if args.checkpoint_dir is None else args.checkpoint_dir,
save_top_k=True,
save_last=True,
verbose=True,
monitor=cfg.trainer.monitor,
mode=cfg.trainer.monitor_mode,
prefix=''
)
trainer = pl.Trainer(
gpus=args.gpus,
max_epochs=cfg.trainer.max_epochs,
accumulate_grad_batches=args.grad_batches,
distributed_backend=args.distributed_backend,
checkpoint_callback=checkpoint_callback,
val_check_interval=args.val_check_interval,
logger=logger
)
if args.export_model is None:
trainer.fit(distiller)
elif args.export_model == "onnx":
distiller.to_onnx(args.export_dir, args.export_w_plus)
elif args.export_model == "coreml":
distiller.to_coreml(args.export_dir, args.export_w_plus)
else:
raise "Unknown export format."
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# pipeline configure
parser.add_argument("--gpus", type=int, default=0, help="number of available GPUs")
parser.add_argument('--distributed-backend', type=str, default="ddp", choices=('dp', 'ddp', 'ddp2'),
help='supports three options dp, ddp, ddp2')
parser.add_argument("--checkpoint_dir", type=str, default=None, help="path to checkpoint_dir")
parser.add_argument("--val-check-interval", type=int, default=500, help="validation check interval")
parser.add_argument("--grad_batches", type=int, default=1, help="number of batches to accumulate")
parser.add_argument("--ckpt", type=str, default=None, help="path to checkpoint")
parser.add_argument("--cfg", type=str, help="path to config file")
parser.add_argument("--export-model", type=str, default=None, help="export model for deploy. ['onnx', 'coreml']")
parser.add_argument("--export-dir", type=str, default="./", help="path to export model")
parser.add_argument("--export-w-plus", action='store_true', help="export with W+ space")
args = parser.parse_args()
main(args)