Skip to content

Latest commit

 

History

History
49 lines (28 loc) · 1.39 KB

README.MD

File metadata and controls

49 lines (28 loc) · 1.39 KB

What is this

This tool given a coco annotations file and coco predictions file will let you explore your dataset, visualize results and calculate important metrics.

Running the explorer on example data

You can use the predictions i prepared and explore the results on the coco validation dataset the predictions are coming from a Mask RCNN model trained with mmdetection.

1 - Download (and extract in project directory) the labels, annotations and images:

https://drive.google.com/open?id=1wxIagenNdCt_qphEe8gZYK7H2_to9QXl

2 - Setup using docker

sudo docker run -p 8501:8501 -it -v "$(pwd)"/coco_data:/coco_data i008/coco_explorer  \
    streamlit run  coco_explorer.py -- \
    --coco_train /coco_data/ground_truth_annotations.json \
    --coco_predictions /coco_data/predictions.json  \
    --images_path /coco_data/images/

2 - Setup using conda

conda env update
conda activate cocoexplorer
streamlit run coco_explorer.py -- --coco_train ./coco_data/ground_truth_annotations.json --coco_predictions ./coco_data/predictions.json  --images_path ./coco_data/val2017/

3 - go to localhost:8501

Running on your own data

In the same way you can explore your own results. Just follow the official COCO dataset format for annotations and predictions.

Examples

alt text

alt text