forked from jerrychen44/face_landmark_detection_pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
models.py
109 lines (73 loc) · 3.13 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
## TODO: define the convolutional neural network architecture
import torch
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
# can use the below import should you choose to initialize the weights of your Net
import torch.nn.init as I
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
## TODO: Define all the layers of this CNN, the only requirements are:
## 1. This network takes in a square (same width and height), grayscale image as input
## 2. It ends with a linear layer that represents the keypoints
## it's suggested that you make this last layer output 136 values, 2 for each of the 68 keypoint (x, y) pairs
# input is torch.Size([1, 224, 224]) torch.Size([68, 2])
# As an example, you've been given a convolutional layer, which you may (but don't have to) change:
# 1 input image channel (grayscale), 32 output channels/feature maps, 5x5 square convolution kernel
self.conv1 = nn.Conv2d(1, 32, 5)
## Note that among the layers to add, consider including:
# maxpooling layers, multiple conv layers, fully-connected layers, and other layers (such as dropout or batch normalization) to avoid overfitting
self.conv1_bn = nn.BatchNorm2d(32)
# maxpool layer
# pool with kernel_size=2, stride=2
self.pool = nn.MaxPool2d(2, 2)
# second conv layer: 10 inputs, 20 outputs, 3x3 conv
self.conv2 = nn.Conv2d(32, 40, 5)
#self.pool = nn.MaxPool2d(2, 2)
self.conv2_bn = nn.BatchNorm2d(40)
self.conv3 = nn.Conv2d(40, 64, 4)
self.conv3_bn = nn.BatchNorm2d(64)
self.conv4 = nn.Conv2d(64, 128, 3)
self.conv4_bn = nn.BatchNorm2d(128)
self.conv4_drop = nn.Dropout(p=0.3)
#self.fc1 = nn.Linear(25*25*64, 3000)
self.fc1 = nn.Linear(11*11*128, 5000)
# dropout with p=0.5
self.fc1_drop = nn.Dropout(p=0.3)
#self.fc1_bn = nn.BatchNorm1d(5000)
self.fc2 = nn.Linear(5000, 136)
def forward(self, x):
## TODO: Define the feedforward behavior of this model
## x is the input image and, as an example, here you may choose to include a pool/conv step:
## x = self.pool(F.relu(self.conv1(x)))
x = self.conv1(x)
x = self.pool(x)
x = self.conv1_bn(x)
out1 = F.relu(x)
x = self.conv2(out1)
x = self.pool(x)
x = self.conv2_bn(x)
out2 = F.relu(x)
#x = self.drop(x)
x = self.conv3(out2)
x = self.pool(x)
x = self.conv3_bn(x)
out3 = F.relu(x)
#x = self.drop(x)
#25x25x64
x = self.conv4(out3)
x = self.pool(x)
x = self.conv4_bn(x)
out4 = F.relu(x)
#x = self.drop(x)
x = self.conv4_drop(out4)
#11x11x128
x = x.view(x.size(0), -1)
x = self.fc1(x)
#x = self.fc1_bn(x)
x = F.relu(x)
x = self.fc1_drop(x)
x = self.fc2(x)
# a modified x, having gone through all the layers of your model, should be returned
return x,out1,out2,out3,out4