forked from jerrychen44/face_landmark_detection_pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
data_load.py
420 lines (317 loc) · 13.3 KB
/
data_load.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
import glob
import os
import torch
from torch.utils.data import Dataset, DataLoader
import numpy as np
import matplotlib.image as mpimg
import pandas as pd
import cv2
import matplotlib.pyplot as plt
class FacialKeypointsDataset(Dataset):
"""Face Landmarks dataset."""
def __init__(self, csv_file, root_dir, transform=None):
"""
Args:
csv_file (string): Path to the csv file with annotations.
root_dir (string): Directory with all the images.
transform (callable, optional): Optional transform to be applied
on a sample.
"""
self.key_pts_frame = pd.read_csv(csv_file)
self.root_dir = root_dir
self.transform = transform
def __len__(self):
return len(self.key_pts_frame)
def __getitem__(self, idx):
image_name = os.path.join(self.root_dir,
self.key_pts_frame.iloc[idx, 0])
#print(image_name)
image = mpimg.imread(image_name)
# if image has an alpha color channel, get rid of it
#print(image_name)
#print(image.shape)
if (len(image.shape)==2):
#print(image_name)
#print("GRAY image")
image = np.stack((image,)*3, -1)
#print(image.shape)
#plt.imshow(image)
#plt.show()
if(image.shape[2] == 4):#remove alpha
image = image[:,:,0:3]
#print("RGBA image")
#if(image.shape[2] == 4):
# image = image[:,:,0:3]
key_pts = self.key_pts_frame.iloc[idx, 1:].as_matrix()
key_pts = key_pts.astype('float').reshape(-1, 2)
#print(type(key_pts))
sample = {'image': image, 'keypoints': key_pts}
if self.transform:
sample = self.transform(sample)
#print("END transform")
return sample
class FacialKeypointsInferenceDataset(Dataset):
"""Face Landmarks dataset."""
def __init__(self, roi_numpy_img, transform=None):
"""
Args:
csv_file (string): Path to the csv file with annotations.
root_dir (string): Directory with all the images.
transform (callable, optional): Optional transform to be applied
on a sample.
"""
#self.key_pts_frame = pd.read_csv(csv_file)
self.roi_numpy_img = roi_numpy_img
self.transform = transform
#def __len__(self):
# return len(self.key_pts_frame)
def __getitem__(self):
#image_name = os.path.join(self.root_dir,
# self.key_pts_frame.iloc[idx, 0])
#image = mpimg.imread(image_name)
# if image has an alpha color channel, get rid of it
#if(image.shape[2] == 4):
# image = image[:,:,0:3]
#key_pts = self.key_pts_frame.iloc[idx, 1:].as_matrix()
#key_pts = key_pts.astype('float').reshape(-1, 2)
sample = {'image': self.roi_numpy_img, 'keypoints': 0}
if self.transform:
sample = self.transform(sample)
return sample
# tranforms
class Normalize(object):
"""Convert a color image to grayscale and normalize the color range to [0,1]."""
def __init__(self, cropsize, rgb=False):
assert isinstance(cropsize, int)
self.cropsize = cropsize
def __call__(self, sample):
image, key_pts = sample['image'], sample['keypoints']
image_copy = np.copy(image)
key_pts_copy = np.copy(key_pts)
#print(type(key_pts_copy))
# convert image to grayscale
image_copy = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
# scale color range from [0, 255] to [0, 1]
image_copy= image_copy/255.0
# scale keypoints to be centered around 0 with a range of [-1, 1]
# mean = 100, sqrt = 50, so, pts should be (pts - 100)/50
#mean = (sum(key_pts_copy[0])+sum(key_pts_copy[1]))/len(key_pts_copy)
#mean = key_pts_copy.mean()
#print("mean",mean)
#std = key_pts_copy.std()
#print("std",std)
#mean = 50.0#100
#std = 15.0#50
#mean = 50
#std = 15
#key_pts_copy = (key_pts_copy - mean)/std
# scale keypoints to be centered around 0 with a range of [-1, 1]
s = self.cropsize / 2
key_pts_copy = (key_pts_copy - s)/s
return {'image': image_copy, 'keypoints': key_pts_copy}
class Rescale(object):
"""Rescale the image in a sample to a given size.
Args:
output_size (tuple or int): Desired output size. If tuple, output is
matched to output_size. If int, smaller of image edges is matched
to output_size keeping aspect ratio the same.
"""
def __init__(self, output_size):
assert isinstance(output_size, (int, tuple))
self.output_size = output_size
def __call__(self, sample):
image = sample['image']
key_pts = sample['keypoints']
h, w = image.shape[:2]
if isinstance(self.output_size, int):
if h > w:
new_h, new_w = self.output_size * h / w, self.output_size
else:
new_h, new_w = self.output_size, self.output_size * w / h
else:
new_h, new_w = self.output_size
new_h, new_w = int(new_h), int(new_w)
img = cv2.resize(image, (new_w, new_h))
# scale the pts, too
key_pts = key_pts * [new_w / w, new_h / h]
return {'image': img, 'keypoints': key_pts}
class RandomCrop(object):
"""Crop randomly the image in a sample.
Args:
output_size (tuple or int): Desired output size. If int, square crop
is made.
"""
def __init__(self, output_size, random_flip=False):
assert isinstance(output_size, (int, tuple))
if isinstance(output_size, int):
self.output_size = (output_size, output_size)
else:
assert len(output_size) == 2
self.output_size = output_size
def __call__(self, sample):
image, key_pts = sample['image'], sample['keypoints']
h, w = image.shape[:2]
new_h, new_w = self.output_size
top_max = min(max(key_pts[:,1].max() - new_h, 0), h - new_h - 1)
left_max = min(max(key_pts[:,0].max() - new_w, 0), w - new_w - 1)
top = np.random.randint(top_max, h - new_h)
left = np.random.randint(left_max, w - new_w)
image = image[top: top + new_h,
left: left + new_w]
key_pts = key_pts - [left, top]
return {'image': image, 'keypoints': key_pts}
'''
class Rotation(object):
"""Crop randomly the image in a sample.
Args:
output_size (tuple or int): Desired output size. If int, square crop
is made.
"""
def __init__(self, var=0.5):
self.var = var
def __call__(self, sample):
image, key_pts = sample['image'], sample['keypoints']
h, w = image.shape[:2]
flip_prob = np.random.random()
if flip_prob > self.var:
image = image[top: top + new_h,
left: left + new_w]
key_pts = key_pts - [left, top]
return {'image': image, 'keypoints': key_pts}
'''
class ToTensor(object):
"""Convert ndarrays in sample to Tensors."""
def __call__(self, sample):
image, key_pts = sample['image'], sample['keypoints']
# if image has no grayscale color channel, add one
if(len(image.shape) == 2):
# add that third color dim
image = image.reshape(image.shape[0], image.shape[1], 1)
# swap color axis because
# numpy image: H x W x C
# torch image: C X H X W
image = image.transpose((2, 0, 1))
#return {'image': torch.from_numpy(image),
# 'keypoints': torch.from_numpy(key_pts)}
#for ibug dataset
return {'image': torch.from_numpy(image).double(),
'keypoints': torch.from_numpy(key_pts).double()}
class RandomFlip(object):
"""Randomly flip image and keypoints to match"""
def __call__(self, sample):
image, key_pts = sample['image'], sample['keypoints']
#image1 = np.copy(image)
#key_pts1 = np.copy(key_pts)
h, w,_ = image.shape
if np.random.choice((True, False)):
#print("flip")
image =cv2.flip(image,1)
#key_pts = self.shuffle_lr(key_pts)
key_pts[:,0]=w-key_pts[:,0]
pairs = [[0, 16], [1, 15], [2, 14], [3, 13], [4, 12], [5, 11], [6, 10],
[7, 9], [17, 26], [18, 25], [19, 24], [20, 23], [21, 22], [36, 45],
[37, 44], [38, 43], [39, 42], [41, 46], [40, 47], [31, 35], [32, 34],
[50, 52], [49, 53], [48, 54], [61, 63], [60, 64], [67, 65], [59, 55], [58, 56]]
#print(key_pts[0],key_pts[16])
for matched_p in pairs:
idx1, idx2 = matched_p[0], matched_p[1]
tmp = np.copy(key_pts[idx1])
key_pts[idx1] =np.copy(key_pts[idx2])
key_pts[idx2] =tmp
#print(key_pts[0],key_pts[16])
return {'image': image, 'keypoints': key_pts}
class Brightness(object):
def __init__(self, var=0.8):
self.var = var
def __call__(self, sample):
image1, key_pts = sample['image'], sample['keypoints']
#h, w = image1.shape
#print("shape :",image1.shape)
#param image: Input image
#return: output image with reduced brightness
#print(image1[0][0])
#if png
if image1.any()<1:
image1=image1*255
# convert to HSV so that its easy to adjust brightness
image1 = cv2.cvtColor(image1,cv2.COLOR_RGB2HSV)
image1 = np.array(image1, dtype = np.float64)
#random_val = self.var+np.random.uniform()
random_bright = np.random.uniform(low=self.var, high=1.2)
#print(random_bright)
#print(image1[0][0][2])
image1[:,:,2] = (image1[:,:,2]*random_bright)
image1[:,:,2][image1[:,:,2]>255] = 255
image1[:,:,2][image1[:,:,2]<0] = 0
#print(image1[0][0][2])
image1 = np.array(image1, dtype = np.uint8)
image1 = cv2.cvtColor(image1,cv2.COLOR_HSV2RGB)
#print(image1[0][0])
# randomly generate the brightness reduction factor
# Add a constant so that it prevents the image from being completely dark
#random_bright = np.random.uniform(0, self.var)
#random_bright = np.random.uniform(low=0.7, high=1.2)
# Apply the brightness reduction to the V channel
#print(random_bright)
#print(image1[0][0][2])
#image1[:,:,2] = float(image1[:,:,2]*random_bright)
#print(image1[0][0][2])
# convert to RBG again
#image1 = cv2.cvtColor(image1,cv2.COLOR_HSV2RGB)
return {'image': image1, 'keypoints': key_pts}
'''
class RandomRotation(object):
"""Rotate the image by angle.
Args:
degrees (sequence or float or int): Range of degrees to select from.
If degrees is a number instead of sequence like (min, max), the range of degrees
will be (-degrees, +degrees).
resample ({PIL.Image.NEAREST, PIL.Image.BILINEAR, PIL.Image.BICUBIC}, optional):
An optional resampling filter.
See http://pillow.readthedocs.io/en/3.4.x/handbook/concepts.html#filters
If omitted, or if the image has mode "1" or "P", it is set to PIL.Image.NEAREST.
expand (bool, optional): Optional expansion flag.
If true, expands the output to make it large enough to hold the entire rotated image.
If false or omitted, make the output image the same size as the input image.
Note that the expand flag assumes rotation around the center and no translation.
center (2-tuple, optional): Optional center of rotation.
Origin is the upper left corner.
Default is the center of the image.
"""
def __init__(self, degrees, resample=False, expand=False, center=None):
if isinstance(degrees, numbers.Number):
if degrees < 0:
raise ValueError("If degrees is a single number, it must be positive.")
self.degrees = (-degrees, degrees)
else:
if len(degrees) != 2:
raise ValueError("If degrees is a sequence, it must be of len 2.")
self.degrees = degrees
self.resample = resample
self.expand = expand
self.center = center
@staticmethod
def get_params(degrees):
"""Get parameters for ``rotate`` for a random rotation.
Returns:
sequence: params to be passed to ``rotate`` for random rotation.
"""
angle = random.uniform(degrees[0], degrees[1])
return angle
def __call__(self, img):
"""
img (PIL Image): Image to be rotated.
Returns:
PIL Image: Rotated image.
"""
angle = self.get_params(self.degrees)
return F.rotate(img, angle, self.resample, self.expand, self.center)
def __repr__(self):
format_string = self.__class__.__name__ + '(degrees={0}'.format(self.degrees)
format_string += ', resample={0}'.format(self.resample)
format_string += ', expand={0}'.format(self.expand)
if self.center is not None:
format_string += ', center={0}'.format(self.center)
format_string += ')'
return format_string
'''