diff --git a/bempp/api/__init__.py b/bempp/api/__init__.py index 1218ee5a..b681869d 100644 --- a/bempp/api/__init__.py +++ b/bempp/api/__init__.py @@ -217,6 +217,19 @@ def _gmsh_path(): return gmp +def check_for_fmm(): + """Return true of compatible FMM found.""" + exafmm_found = False + try: + import exafmm + except: + exafmm_found = False + else: + exafmm_found = True + + return exafmm_found + + def _get_version(): """Get version string.""" from bempp import version diff --git a/bempp/api/assembly/assembler.py b/bempp/api/assembly/assembler.py index dcff7b56..dc73ce7f 100644 --- a/bempp/api/assembly/assembler.py +++ b/bempp/api/assembly/assembler.py @@ -9,6 +9,7 @@ def _create_assembler( from bempp.core.dense_assembler import DenseAssembler from bempp.core.diagonal_assembler import DiagonalAssembler from bempp.api.fmm.fmm_assembler import FmmAssembler + from bempp.api import check_for_fmm # from bempp.core.numba.dense_assembler import DenseAssembler from bempp.core.sparse_assembler import SparseAssembler @@ -29,6 +30,10 @@ def _create_assembler( if identifier == "sparse": return SparseAssembler(domain, dual_to_range, parameters) if identifier == "fmm": + if not check_for_fmm(): + raise ValueError( + "No compatible FMM library found. Please install Exafmm from github.com/exafmm/exafmm-t." + ) return FmmAssembler(domain, dual_to_range, parameters) else: raise ValueError("Unknown assembler type.") @@ -184,6 +189,11 @@ def select_potential_implementation( elif assembler == "fmm": from bempp.api.fmm.fmm_assembler import FmmPotentialAssembler + if not bempp.api.check_for_fmm(): + raise ValueError( + "No compatible FMM library found. Please install Exafmm from github.com/exafmm/exafmm-t." + ) + return FmmPotentialAssembler( space, operator_descriptor, points, device_interface, parameters ) diff --git a/bempp/api/grid/io.py b/bempp/api/grid/io.py index f1e7688f..53671ca4 100644 --- a/bempp/api/grid/io.py +++ b/bempp/api/grid/io.py @@ -90,12 +90,6 @@ def export( else: gmsh = False - if extension == ".vtk": - if write_binary: - file_format = "vtk-binary" - else: - file_format = "vtk-ascii" - if grid is not None and grid_function is not None: raise ValueError("Exactly one of 'grid' and 'grid_function' must be supplied.") @@ -144,7 +138,7 @@ def export( ) cell_data["gmsh:geometrical"] = geom_indices.reshape((1, -1)) else: - cell_data["domain_index"] = grid.domain_indices.astype("int32").reshape((-1, 1)) + cell_data["domain_index"] = grid.domain_indices.astype("int32").reshape((1, -1)) _meshio.write_points_cells( filename, diff --git a/bempp/core/numba_assemblers.py b/bempp/core/numba_assemblers.py index d938f8dc..42385286 100644 --- a/bempp/core/numba_assemblers.py +++ b/bempp/core/numba_assemblers.py @@ -28,7 +28,9 @@ def singular_assembler( operator_descriptor, mode="singular" ) - precision = operator_descriptor.precision + # Perform Numba assembly always in double precision + # precision = operator_descriptor.precision + precision = "double" dtype = get_type(precision).real numba_assembly_function( @@ -70,7 +72,9 @@ def dense_assembler( order = parameters.quadrature.regular quad_points, quad_weights = rule(order) - precision = operator_descriptor.precision + # Perform Numba assembly always in double precision + # precision = operator_descriptor.precision + precision = "double" data_type = get_type(precision).real @@ -129,7 +133,9 @@ def potential_assembler( quad_points, quad_weights = rule(parameters.quadrature.regular) - precision = operator_descriptor.precision + # Perform Numba assembly always in double precision + # precision = operator_descriptor.precision + precision = "double" dtype = _np.dtype(get_type(precision).real) diff --git a/bempp/core/opencl_assemblers.py b/bempp/core/opencl_assemblers.py index e62724eb..64fb2e97 100644 --- a/bempp/core/opencl_assemblers.py +++ b/bempp/core/opencl_assemblers.py @@ -63,13 +63,13 @@ def singular_assembler( ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=domain.normal_multipliers ) test_points_buffer = _cl.Buffer( - ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=test_points + ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=test_points.astype(dtype) ) trial_points_buffer = _cl.Buffer( - ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=trial_points + ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=trial_points.astype(dtype) ) quad_weights_buffer = _cl.Buffer( - ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=quad_weights + ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=quad_weights.astype(dtype) ) test_elements_buffer = _cl.Buffer( ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=test_elements @@ -399,7 +399,9 @@ def potential_assembler( ) points_buffer = _cl.Buffer( - ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=points.ravel(order="F") + ctx, + mf.READ_ONLY | mf.COPY_HOST_PTR, + hostbuf=points.ravel(order="F").astype(dtype), ) grid_buffer = _cl.Buffer( diff --git a/bempp/core/singular_assembler.py b/bempp/core/singular_assembler.py index f04f5698..a1c7f8c5 100644 --- a/bempp/core/singular_assembler.py +++ b/bempp/core/singular_assembler.py @@ -103,7 +103,7 @@ def assemble_singular_part( trial_offsets, weights_offsets, number_of_quad_points, - ] = rule.get_arrays(precision) + ] = rule.get_arrays() if is_complex: result_type = get_type(precision).complex @@ -282,11 +282,8 @@ def number_of_points(self, adjacency): """Return the number of quadrature points for given adjacency.""" return _duffy_galerkin.number_of_quadrature_points(self.order, adjacency) - def get_arrays(self, precision): + def get_arrays(self): """Return the arrays.""" - from bempp.api.utils.helpers import get_type - - types = get_type(precision) test_indices, trial_indices = self._vectorize_indices() test_points, trial_points = self._vectorize_points() @@ -298,9 +295,9 @@ def get_arrays(self, precision): self._trial_indices = trial_indices arrays = [ - test_points.astype(types.real), - trial_points.astype(types.real), - weights.astype(types.real), + test_points, + trial_points, + weights, test_indices, trial_indices, test_offsets, diff --git a/bempp/core/sparse_assembler.py b/bempp/core/sparse_assembler.py index cf135f60..5a5ee16e 100644 --- a/bempp/core/sparse_assembler.py +++ b/bempp/core/sparse_assembler.py @@ -100,7 +100,10 @@ def assemble_sparse( nshape_test = dual_to_range.number_of_shape_functions nshape_trial = domain.number_of_shape_functions - precision = operator_descriptor.precision + # Always assemble in double precision for sparse ops + # precision = operator_descriptor.precision + + precision = "double" if operator_descriptor.is_complex: result_type = get_type(precision).complex diff --git a/bempp/version.py b/bempp/version.py index d3ec452c..3ced3581 100644 --- a/bempp/version.py +++ b/bempp/version.py @@ -1 +1 @@ -__version__ = "0.2.0" +__version__ = "0.2.1" diff --git a/notebooks/maxwell/maxwell_dielectric.ipynb b/notebooks/maxwell/maxwell_dielectric.ipynb index a7313f80..d1da608c 100644 --- a/notebooks/maxwell/maxwell_dielectric.ipynb +++ b/notebooks/maxwell/maxwell_dielectric.ipynb @@ -11,75 +11,43 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Note that the following notebook is very compute intensive. To speed it up disable the near-field computations.\n", - "\n", "In this notebook, we consider the bistatic radar cross section generated from plane wave scattering by an array of dielectric spheres $\\Omega_j$, each with its individual permittivity $\\epsilon_j$ and permeability $\\mu_j$.\n", "\n", "We denote by $\\epsilon_{0}$ and $\\mu_0$ the electric permittivity and magnetic permeability in vacuum, and by $\\epsilon_{r, j} = \\frac{\\epsilon_j}{\\epsilon_0}$ and $\\mu_{r, j} = \\frac{\\mu_j}{\\mu_0}$ the relative permittivity and relative permeability for each dielectric object. Denote by $\\mathbf{E}^\\text{s}$, $\\mathbf{H}^\\text{s}$ the scattered electric and magnetic field in the exterior of the scatterers. Moreover, let $\\mathbf{E}$ and $\\mathbf{H}$ be the total exterior fields. Correspondingly, we denote the interior fields in the $j$th obstacle by $\\mathbf{E}_j$ and $\\mathbf{H}_j$.\n", "\n", - "For a given medium, we normalize the Maxwell equations by setting $\\hat{\\mathbf{H}} = \\sqrt{\\mu}\\mathbf{H}$ and $\\hat{\\mathbf{E}} = \\sqrt{\\epsilon}\\mathbf{E}$ and obtain\n", - "\n", - "\\begin{align}\n", - "\\nabla\\times \\hat{\\mathbf{E}} &= \\mathrm{i}k \\hat{\\mathbf{H}},\\nonumber\\\\\n", - "\\nabla\\times \\mathbf{H} &= -\\mathrm{i}k \\mathbf{E}.\\nonumber\n", - "\\end{align}\n", - "with $k=\\omega\\sqrt{\\mu\\epsilon}$.\n", - "\n", - "The electric field equations for the dielectric scattering problem now take the form\n", + "For a given medium, the Maxwell equations are given by\n", "\\begin{align}\n", - "\\nabla\\times\\nabla\\times \\hat{\\mathbf{E}}^{s}(x) - k_0^2\\hat{\\mathbf{E}}^{s}(x) &= 0,~x\\in\\Omega^{+}\\nonumber\\\\\n", - "\\nabla\\times\\nabla \\times \\hat{\\mathbf{E}}_{j}(x) - k_j^2\\hat{\\mathbf{E}}_{j}(x) &= 0,~x\\in\\Omega_j\\nonumber\\\\\n", + "\\nabla\\times \\mathbf{E} &= \\mathrm{i}\\omega\\mu \\mathbf{H},\\nonumber\\\\\n", + "\\nabla\\times \\mathbf{H} &= -\\mathrm{i}\\omega\\epsilon \\mathbf{E}.\\nonumber\n", "\\end{align}\n", - "with $k_0 = \\omega\\sqrt{\\epsilon_0\\mu_0}$ and $k_j = k_0\\sqrt{\\epsilon_{r,j}\\mu_{r,j}}$.\n", - "\n", - "We still have to fix the correct boundary conditions between the media.\n", + "We define the wavenumber $k$ by $k=\\omega\\sqrt{\\mu\\epsilon}$.\n", "\n", - "We denote the interior tangential trace of the electric field $\\mathbf{E}_{j}$ at the $j$th obstacle as $\\gamma_\\text{t}^{j, -} \\mathbf{E}_{j} = \\mathbf{E}_{j}\\times \\nu$ with $\\nu$ the exterior normal direction on the boundary of $\\Omega_j$. Correspondingly, we define the exterior tangential trace $\\gamma_\\text{t}^{j, +}\\mathbf{E} = \\mathbf{E}\\times \\nu$. Moreover, we define the interior Neumann trace as $\\gamma_\\text{N}^{j,-} \\mathbf{E}_{j} = \\frac{1}{\\mathrm{i}k_j}\\gamma_\\text{t}^{j,-}\\left(\\nabla\\times \\mathbf{E}_{j}\\right)$ and the exterior Neumann trace as $\\gamma_\\text{N}^{j,+} \\mathbf{E} = \\frac{1}{\\mathrm{i}k_0}\\gamma_\\text{t}^{j,+}\\left(\\nabla\\times \\mathbf{E}\\right)$.\n", "\n", - "The boundary conditions on the $j$th obstacles are that the tangential component of the electric and magnetic field is continuous across the boundary. Taking the rescaling into account this implies the conditions\n", + "The electric field equations for the dielectric scattering problem now take the form\n", "\\begin{align}\n", - "\\gamma_\\text{t}^{j, -}\\hat{\\mathbf{E}}_j &= \\sqrt{\\epsilon_{r,j}}\\gamma_\\text{t}^{j,+}\\hat{\\mathbf{E}}\\nonumber\\\\\n", - "\\gamma_\\text{N}^{j, -}\\hat{\\mathbf{E}}_j &= \\sqrt{\\mu_{r,j}}\\gamma_\\text{N}^{j,+}\\hat{\\mathbf{E}}.\n", + "\\nabla\\times\\nabla\\times \\mathbf{E}^{+}(x) - k_0^2\\mathbf{E}^{+}(x) &= 0,~x\\in\\Omega^{+}\\nonumber\\\\\n", + "\\nabla\\times\\nabla \\times \\mathbf{E}_{j}(x) - k_j^2\\mathbf{E}_{j}(x) &= 0,~x\\in\\Omega_j\\nonumber\\\\\n", "\\end{align}\n", - "Towards infinity we need to satisfy the Silver-Müller radiation conditions, which are given as\n", - "$$\n", - "\\lim_{|\\mathbf{x}|\\rightarrow\\infty}|\\mathbf{x}|\\left(\\hat{\\mathbf{H}}^\\text{s}(\\mathbf{x})\\times \\frac{x}{|x|} - \\hat{\\mathbf{E}}^\\text{s}(\\mathbf{x})\\right) = 0\n", - "$$\n", - "uniformly in all directions.\n", + "with $k_0 = \\omega\\sqrt{\\epsilon_0\\mu_0}$ and $k_j = k_0\\sqrt{\\epsilon_{r,j}\\mu_{r,j}}$. We define the normal trace $\\gamma_t\\mathbf{E} = \\mathbf{E}\\times n$ and the Neumann trace $\\gamma_N = \\frac{1}{ik}\\gamma_t\\left[\\nabla\\times \\mathbf{E}\\right]$. The exterior field $\\mathbf{E}^{s}$ is the sum of the incident wave $\\mathbf{E}^{inc}$ and the scattered wave $\\mathbf{E}^{s}$.\n", "\n", - "In the following we describe a formulation based on the multitrace operator $\\mathsf{A}:=\\begin{bmatrix}\\mathsf{H} & \\mathsf{E}\\\\ - \\mathsf{E} & \\mathsf{H}\\end{bmatrix}$ whose implementation in Bempp is described in more detail in [Scroggs, Betcke, Smigaj (2017)](https://bempp.com/publications/#scroggs). Here, the operator $\\mathsf{H}$ is the magnetic boundary operator and $\\mathsf{E}$ is the electric boundary operator. The operator $\\mathsf{A}_{j,+}$ associated with the exterior solution on the boundary of $\\Omega_j$ satisfies\n", - "$$\n", - "\\left[\\frac{1}{2}\\mathsf{Id} - \\mathsf{A}_{j,+}\\right]\\begin{bmatrix}\\gamma_\\text{t}^{j,+}{\\hat{\\mathbf{E}}^\\text{s}}\\\\ \\gamma_\\text{N}^{j,+}{\\hat{\\mathbf{E}}^\\text{s}}\\end{bmatrix} = \n", - "\\begin{bmatrix}\\gamma_\\text{t}^{j,+}{\\hat{\\mathbf{E}}^\\text{s}}\\\\ \\gamma_\\text{N}^{j,+}{\\hat{\\mathbf{E}}^\\text{s}}\\end{bmatrix},\n", - "$$\n", - "where $\\mathsf{A}_{j,+}$ is the multitrace operator on the boundary of $\\Omega_j$ with wavenumber $k_0$. The interior solutions $\\mathbf{E}^{j}$ satisfy\n", - "$$\n", - "\\left[\\frac{1}{2}\\mathsf{Id} + \\mathsf{A}_{j,-}\\right]\\begin{bmatrix}\\gamma_\\text{t}^{j,-}{\\hat{\\mathbf{E}}_j}\\\\ \\gamma_\\text{N}^{j,-}{\\hat{\\mathbf{E}}_j}\\end{bmatrix} = \n", - "\\begin{bmatrix}\\gamma_\\text{t}^{j,-}{\\hat{\\mathbf{E}}_j}\\\\ \\gamma_\\text{N}^{j,-}\\hat{\\mathbf{E}}_j\\end{bmatrix},\n", - "$$\n", - "where $\\mathsf{A}_{j,-}$ is the multitrace operator across the boundary of $\\Omega_j$ with wavenumber $k_j$. \n", - "\n", - "Now denote by $\\hat{V}_j^\\text{s}:=\\begin{bmatrix}\\gamma_\\text{t}^{j,+}\\hat{\\mathbf{E}}^{s}\\\\ \\gamma_\\text{N}^{j,+}\\hat{\\mathbf{E}}^\\text{s}\\end{bmatrix}$ the vector of trace data associated with the scattered field on the boundary of $\\Omega_j$. Correspondingly, we denote by $\\hat{V}_j$ the vector of the trace data of the interior solution in $\\Omega_j$ and by $\\hat{V}^\\text{inc}$ the vector of trace data of the incident field on the boundary of $\\Omega_j$.\n", "\n", - "We first consider the case of a single scatterer $\\Omega_1$. The boundary conditions are given by\n", + "Now let $ V := \\begin{bmatrix}\\gamma_t \\mathbf{E}\\\\ \\rho\\gamma_N\\mathbf{E}\\end{bmatrix}$, where $\\rho := \\sqrt{\\epsilon_r}/\\sqrt{\\mu_r}$. With $V_j^{+}$ being the exterior trace data (using $\\epsilon_0$ and $\\mu_0$) on the boundary the $j$th scatterer, and $V_j^{-}$ the corresponding interior trace data (using $\\epsilon_{r, j}$ and $\\mu_{r, j}$) the correct boundary condition for this scattering problem is\n", "$$\n", - "\\hat{V}_1 = \\begin{bmatrix}\\sqrt{\\epsilon_{r, 1}} & \\\\ & \\sqrt{\\mu_{r, 1}}\\end{bmatrix}\\left(\\hat{V}_1^\\text{s} + \\hat{V}_1^\\text{inc}\\right)=: D_1\\left(\\hat{V}_1^\\text{s} + \\hat{V}_1^\\text{inc}\\right).\n", + "V_j^{-} = V_j^{+}.\n", "$$\n", - "From $\\left(\\frac{1}{2}\\mathsf{Id} + \\mathsf{A}_{1,-}\\right)\\hat{V}_1 = \\hat{V}_1$ together with the above relationship for the exterior multitrace operator, and the boundary condition, we obtain that\n", + "It is immediately visible that this condition satisfies $\\gamma_t\\mathbf{E}_j^{-} = \\gamma_t\\mathbf{E}_j^{+}$. Furthermore, this condition implies that $\\rho^{-}\\gamma_N \\mathbf{E}_j^{-} = \\rho^{+}\\gamma_N \\mathbf{E}_j^{+}$, which is equivalent to $\\mathbf{H}_j^{-} = \\mathbf{H}_j^{+}$. We now define the scaled multitrace operator $A = \\begin{bmatrix} M & \\rho^{-1}T\\\\ -\\rho T & M\\end{bmatrix}$ with $M$ the magnetic field operator and $T$ the electric field operator. For this scaled multitrace operator it holds that\n", "$$\n", - "\\left(\\frac{1}{2}\\mathsf{Id} + \\mathsf{A}_{1,-}\\right)D_1\\left(\\hat{V}_1^\\text{s} + \\hat{V}_1^\\text{inc}\\right) = D_1\\left(\\frac{1}{2}\\mathsf{Id} - \\mathsf{A}_{1,+}\\right)\\hat{V}_1^\\text{s} + D_1\\hat{V}_1^\\text{inc}.\n", + "\\begin{bmatrix}\\frac{1}{2}I - A^{+}_{j}\\end{bmatrix}V_j^{+} - \\sum_{i\\neq j}A_{j, i}V_i^{+} = V_j^{s}.\n", "$$\n", - "Simplifying the above equation leads to\n", + "Here, $A_j^{+}$ is the multitrace operator in vacuum ($\\rho = 1$) and $A_{j, i}$ is the multitrace operator with domain on the boundary of the $i$th scatterer and range on the boundary of the $j$th scatterer. This accounts for the influence of the other scatterers in a multi-scattering configuration. The data $V_j^{s}$ is the trace data of the scattered wave on the $j$th scatterer. Further, on the boundary of $\\Omega_j$ we have for the interior trace data that \n", "$$\n", - "\\left(D_1^{-1}\\mathsf{A}_{1,-}\\mathsf{D}_1 + \\mathsf{A}_{1, +}\\right)\\hat{V}_1^\\text{s} = \\left(\\frac{1}{2}\\mathsf{Id} - D_1^{-1}\\mathsf{A}_{1, -}D_1\\right)\\hat{V}^\\text{inc}.\n", + "\\begin{bmatrix}\\frac{1}{2}I + A_j^{-}\\end{bmatrix}V_j^{-} = V_j^{-}\n", + "$$ \n", + "with $A_j^{-}$ being the scaled multitrace operator for the interior problem and $V_j^{-}$ the corresponding interior trace data. Using the boundary conditions $V_j^{-} = V_j^{+}$ and the fact that $V_j^{inc} = V_j^{+} + V_j^{s}$ for the trace data $V_j^{inc}$ of the incident wave the interior and exterior equations combined result in\n", "$$\n", - "Now assume that we have a whole array of scatterers. Then the equation for each scatterer becomes\n", + "\\begin{bmatrix}A_j^{-} + A_j^{+}\\end{bmatrix}V_j^{+} + \\sum_{i\\neq j}A_{j, i}V_i^{+} = V_j^{inc}.\n", "$$\n", - "\\left(D_j^{-1}\\mathsf{A}_{j,-}D_j + \\mathsf{A}_{j, +}\\right)\\hat{V}_j^\\text{s} = \\left(\\frac{1}{2}\\mathsf{Id} - D_j^{-1}\\mathsf{A}_{j, -}D_j\\right)\\hat{V}^\\text{inc} - \\sum_{i\\neq j}\\mathsf{A}_{i,j}\\hat{V}_i^\\text{s}\n", - "$$\n", - "for each scatterer $j$. The operator $-\\mathsf{A}_{i, j}$ maps scattered trace data on the $j$th scatterer to exterior trace data on the $i$th scatterer. It is just the exterior Stratton-Chu formula, hence the minus sign. To implement $\\mathsf{A}_{i, j}$ one just implements the multitrace operator with domain space on one obstacle and test space on the other obstacle.\n", - "\n", - "If there are $N$ obstacles then the above formula leads to a block operator system with $2N$ equations in $2N$ unknowns, whch is fully determined. In the following we demonstrate the implementation of this system in Bempp." + "Taking all corresponding equations over the $N$ scatterers we arrive at a complete system of equations for the unknown data $V_j$ on each scatterer." ] }, { @@ -95,12 +63,14 @@ "metadata": {}, "outputs": [ { - "name": "stderr", - "output_type": "stream", - "text": [ - "bempp:HOST:INFO: Creating pool for Platform: AMD Accelerated Parallel Processing\n", - "bempp:HOST:INFO: Created pool with 2 workers.\n" - ] + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ @@ -115,7 +85,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "For this notebook we will use three spheres of radius 0.4, centered at $-1$, $0$, and $1$ on the x-axis." + "For this notebook we will use two spheres of radius 0.4, centered at $-1$ and $1$ on the x-axis." ] }, { @@ -127,21 +97,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "bempp:HOST:INFO: Created grid with id f77f25a6-74f7-4424-9904-8615c88b367c. Elements: 638. Edges: 957. Vertices: 321\n", - "bempp:HOST:INFO: Created grid with id a953552d-c0d3-4559-aaf5-6ce41ad2af98. Elements: 652. Edges: 978. Vertices: 328\n", - "bempp:HOST:INFO: Created grid with id 6fee21ee-62cf-44c5-a3a6-1a047c5375f7. Elements: 640. Edges: 960. Vertices: 322\n" + "bempp:HOST:INFO: Created grid with id 6adb0780-2f24-4df1-a879-c36c71913dbd. Elements: 224. Edges: 336. Vertices: 114\n", + "bempp:HOST:INFO: Created grid with id c002fa49-b687-4702-bfc8-c9c3b7afc936. Elements: 224. Edges: 336. Vertices: 114\n" ] } ], "source": [ - "centers = [-1, 0, 1]\n", - "\n", - "radius = .4\n", - "\n", - "number_of_scatterers = len(centers)\n", - "\n", - "grids = [bempp.api.shapes.sphere(r=radius, origin=(c, 0, 0), h=0.1)\n", - " for c in centers]" + "sphere0 = bempp.api.shapes.sphere(r=.4, origin=(-1., 0, 0), h=.2)\n", + "sphere1 = bempp.api.shapes.sphere(r=.4, origin=(1., 0, 0), h=.2)\n" ] }, { @@ -155,38 +118,25 @@ "cell_type": "code", "execution_count": 3, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The exterior wavenumber is: 6.287535065634769\n", - "The interior wavenumbers are:\n", - "[9.111503944099038, 9.111503944099038, 9.111503944099038]\n" - ] - } - ], + "outputs": [], "source": [ "frequency = 300E6 # 300Mhz\n", "\n", "vacuum_permittivity = 8.854187817E-12\n", "vacuum_permeability = 4 * np.pi * 1E-7\n", "\n", - "rel_permittivities = number_of_scatterers * [2.1]\n", - "rel_permeabilities = number_of_scatterers * [1.0]\n", + "eps_r = 2.1\n", + "mu_r = 1.0\n", "\n", - "k0 = 2 * np.pi * frequency * np.sqrt(vacuum_permittivity * vacuum_permeability)\n", - "wavenumbers = [k0 * np.sqrt(er * mr) for er, mr in zip(rel_permittivities, rel_permeabilities)]\n", - "print(\"The exterior wavenumber is: {0}\".format(k0))\n", - "print(\"The interior wavenumbers are:\")\n", - "print(wavenumbers)" + "k_ext = 2 * np.pi * frequency * np.sqrt(vacuum_permittivity * vacuum_permeability)\n", + "k_int = k_ext * np.sqrt(eps_r * mu_r)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "We now assemble the incident wave field. To that affect we choose a z-polarized plane wave travelling at an inciden angle theta in the (x,y) plane. Note that we already scale it with $\\sqrt{\\epsilon_0}$ to obtain the field $\\hat{\\mathbf{E}}^\\text{inc}$." + "We now assemble the incident wave field. To that affect we choose a z-polarized plane wave travelling at an inciden angle theta in the (x,y) plane." ] }, { @@ -200,122 +150,58 @@ "polarization = np.array([0, 0, 1.0])\n", "\n", "def plane_wave(point):\n", - " return polarization * np.exp(1j * k0 * np.dot(point, direction))\n", - "\n", - "def scaled_plane_wave(point):\n", - " return np.sqrt(vacuum_permittivity) * plane_wave(point)\n", + " return polarization * np.exp(1j * k_ext * np.dot(point, direction))\n", "\n", "@bempp.api.complex_callable\n", "def tangential_trace(point, n, domain_index, result):\n", - " value = np.sqrt(vacuum_permittivity) * polarization * np.exp(1j * k0 * np.dot(point, direction))\n", + " value = polarization * np.exp(1j * k_ext * np.dot(point, direction))\n", " result[:] = np.cross(value, n)\n", "\n", - "def scaled_plane_wave_curl(point):\n", - " return np.cross(direction, polarization) * 1j * k0 * np.sqrt(vacuum_permittivity) * np.exp(1j * k0 * np.dot(point, direction))\n", - "\n", "@bempp.api.complex_callable\n", "def neumann_trace(point, n, domain_index, result):\n", - " value = np.cross(direction, polarization) * 1j * k0 * np.sqrt(vacuum_permittivity) * np.exp(1j * k0 * np.dot(point, direction))\n", - " result[:] = 1./ (1j * k0) * np.cross(value, n)\n" + " value = np.cross(direction, polarization) * 1j * k_ext * np.exp(1j * k_ext * np.dot(point, direction))\n", + " result[:] = 1./ (1j * k_ext) * np.cross(value, n)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Before we setup the left-hand side block operator matrix we write a small routine that rescales a given $2\\times 2$ block operator matrix $A$ to $D^{-1}AD$, where $D$ is a diagonal matrix defined by its diagonal elements $d_1$ and $d_2$." + "We now create all the interior and exterior multitrace operators and setup the left-hand side blocked operator." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, - "outputs": [], - "source": [ - "def rescale(A, d1, d2):\n", - " \"\"\"Rescale the 2x2 block operator matrix A\"\"\"\n", - " \n", - " A[0, 1] = A[0, 1] * (d2 / d1)\n", - " A[1, 0] = A[1, 0] * (d1 / d2)\n", - " \n", - " return A" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We now create all the scaled interior multitrace operators and the non-scaled exterior multitrace operators." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "bempp:HOST:INFO: Created grid with id 0634a55a-42b3-4a90-97ef-c1b4f534ca2d. Elements: 3828. Edges: 5742. Vertices: 1916\n", - "bempp:HOST:INFO: OpenCL Device set to: pthread-Intel(R) Xeon(R) W-2155 CPU @ 3.30GHz\n", - "bempp:HOST:INFO: Created grid with id 0ff6bd7b-9a70-4fe4-a3ef-d8622a939a42. Elements: 3912. Edges: 5868. Vertices: 1958\n", - "bempp:HOST:INFO: Created grid with id 4f2f7d91-d56b-4762-b8cb-33fb85d6e6ad. Elements: 3840. Edges: 5760. Vertices: 1922\n" + "bempp:HOST:INFO: Created grid with id 082f5630-7e93-4771-8705-fa48cc9c56ca. Elements: 1344. Edges: 2016. Vertices: 674\n", + "bempp:HOST:INFO: Created grid with id 854d8621-4818-4fe1-a162-dd4fc6cb67e4. Elements: 1344. Edges: 2016. Vertices: 674\n" ] } ], "source": [ - "scaled_interior_operators = [\n", - " rescale(bempp.api.operators.boundary.maxwell.multitrace_operator(\n", - " grid, wavenumber, space_type='electric_dual', assembler='dense_evaluator', precision='single'), \n", - " np.sqrt(epsr), np.sqrt(mur)) for grid, wavenumber, epsr, mur in\n", - " zip(grids, wavenumbers, rel_permittivities, rel_permeabilities)\n", - "]\n", - "\n", - "identity_operators = [\n", - " bempp.api.operators.boundary.sparse.multitrace_identity(op)\n", - " for op in scaled_interior_operators\n", - "]\n", - "\n", - "exterior_operators = [\n", - " bempp.api.operators.boundary.maxwell.multitrace_operator(\n", - " grid, k0, space_type='electric_dual', assembler='dense_evaluator', precision='single') for grid in grids\n", - "]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can now loop through the rows of the left-hand side block system to create all block operator entries. We will store the filter operators $\\frac{1}{2}\\mathsf{Id} - D_j^{-1}\\mathsf{A}_{j, -}D_j$ and the transfer operators $\\mathsf{A}_{i,j}$. The filter operators will be needed for the right-hand side, and the transfer operators will be needed to compute the interior near-field in each obstacle." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "from bempp.api.assembly.blocked_operator import GeneralizedBlockedOperator\n", - "\n", - "filter_operators = number_of_scatterers * [None]\n", - "transfer_operators = np.empty((number_of_scatterers, number_of_scatterers), dtype=np.object)\n", - "\n", - "#The following will contain the left-hand side block operator\n", - "op = np.empty((number_of_scatterers, number_of_scatterers), dtype=np.object)\n", - "\n", - "for i in range(number_of_scatterers):\n", - " filter_operators[i] = .5 * identity_operators[i]- scaled_interior_operators[i]\n", - " for j in range(number_of_scatterers):\n", - " if i == j:\n", - " # Create the diagonal elements\n", - " op[i, j] = scaled_interior_operators[j] + exterior_operators[j]\n", - " else:\n", - " # Do the off-diagonal elements\n", - " transfer_operators[i, j] = bempp.api.operators.boundary.maxwell.multitrace_operator(\n", - " grids[j], k0, target=grids[i], space_type=\"electric_dual\", assembler=\"dense_evaluator\", precision='single')\n", - " op[i, j] = transfer_operators[i, j]\n", - "blocked_operator = GeneralizedBlockedOperator(op)" + "from bempp.api.operators.boundary.maxwell import multitrace_operator\n", + "from bempp.api.operators.boundary.sparse import multitrace_identity\n", + "\n", + "A0_int = multitrace_operator(\n", + " sphere0, k_int, epsilon_r=eps_r, mu_r=mu_r, space_type='all_rwg')\n", + "A1_int = multitrace_operator(\n", + " sphere1, k_int, epsilon_r=eps_r, mu_r=mu_r, space_type='all_rwg')\n", + "A0_ext = multitrace_operator(\n", + " sphere0, k_ext, space_type='all_rwg')\n", + "A1_ext = multitrace_operator(\n", + " sphere1, k_ext, space_type='all_rwg')\n", + "A01 = multitrace_operator(sphere1, k_ext, target=sphere0, space_type='all_rwg')\n", + "A10 = multitrace_operator(sphere0, k_ext, target=sphere1, space_type='all_rwg')\n", + "\n", + "\n", + "A = bempp.api.GeneralizedBlockedOperator([[A0_int + A0_ext, A01],\n", + " [A10, A1_int + A1_ext]])" ] }, { @@ -327,31 +213,26 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ - "rhs = 2 * number_of_scatterers * [None]\n", - "incident_trace_data = number_of_scatterers * [None]\n", - "\n", - "for i in range(number_of_scatterers):\n", - " incident_trace_data[i] = (\n", - " bempp.api.GridFunction(blocked_operator.domain_spaces[2 * i], fun=tangential_trace, dual_space=blocked_operator.dual_to_range_spaces[2 * i]),\n", - " bempp.api.GridFunction(blocked_operator.domain_spaces[2 * i + 1], fun=neumann_trace, \n", - " dual_space=blocked_operator.dual_to_range_spaces[2 * i + 1]))\n", - " rhs[2 * i], rhs[2 * i + 1] = filter_operators[i] * incident_trace_data[i]" + "rhs = [bempp.api.GridFunction(space=A.range_spaces[0], dual_space=A.dual_to_range_spaces[0], fun=tangential_trace),\n", + " bempp.api.GridFunction(space=A.range_spaces[1], dual_space=A.dual_to_range_spaces[1], fun=neumann_trace),\n", + " bempp.api.GridFunction(space=A.range_spaces[2], dual_space=A.dual_to_range_spaces[2], fun=tangential_trace),\n", + " bempp.api.GridFunction(space=A.range_spaces[3], dual_space=A.dual_to_range_spaces[3], fun=neumann_trace)]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "We now have everything in place to solve the resulting scattering problem. We use mass matrix preconditioning to precondition the system." + "We now have everything in place to solve the resulting scattering problem. Here, we solve directly with LU decomposition. For larger problems iterative solvers with preconditioning is appropriate." ] }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 7, "metadata": { "scrolled": true }, @@ -360,74 +241,25 @@ "name": "stderr", "output_type": "stream", "text": [ - "bempp:HOST:INFO: Starting GMRES iteration\n", - "bempp:HOST:INFO: GMRES Iteration 1 with residual 0.43583039705163845\n", - "bempp:HOST:INFO: GMRES Iteration 2 with residual 0.2755373752267419\n", - "bempp:HOST:INFO: GMRES Iteration 3 with residual 0.1383105356552037\n", - "bempp:HOST:INFO: GMRES Iteration 4 with residual 0.09826500580926656\n", - "bempp:HOST:INFO: GMRES Iteration 5 with residual 0.06240219348917185\n", - "bempp:HOST:INFO: GMRES Iteration 6 with residual 0.05606766660903622\n", - "bempp:HOST:INFO: GMRES Iteration 7 with residual 0.032865749172841976\n", - "bempp:HOST:INFO: GMRES Iteration 8 with residual 0.02152089331466054\n", - "bempp:HOST:INFO: GMRES Iteration 9 with residual 0.011508024941734456\n", - "bempp:HOST:INFO: GMRES Iteration 10 with residual 0.008568157553557483\n", - "bempp:HOST:INFO: GMRES Iteration 11 with residual 0.004277455935141667\n", - "bempp:HOST:INFO: GMRES Iteration 12 with residual 0.0026102296490043008\n", - "bempp:HOST:INFO: GMRES Iteration 13 with residual 0.0011855811398403151\n", - "bempp:HOST:INFO: GMRES Iteration 14 with residual 0.0008821372223869267\n", - "bempp:HOST:INFO: GMRES Iteration 15 with residual 0.0005540376069927982\n", - "bempp:HOST:INFO: GMRES Iteration 16 with residual 0.0004091951471039425\n", - "bempp:HOST:INFO: GMRES Iteration 17 with residual 0.00020440861847224016\n", - "bempp:HOST:INFO: GMRES Iteration 18 with residual 0.00012199668491780794\n", - "bempp:HOST:INFO: GMRES Iteration 19 with residual 6.50654188922274e-05\n", - "bempp:HOST:INFO: GMRES Iteration 20 with residual 3.600735510934312e-05\n", - "bempp:HOST:INFO: GMRES Iteration 21 with residual 3.567966757313431e-05\n", - "bempp:HOST:INFO: GMRES Iteration 22 with residual 2.6732316503010026e-05\n", - "bempp:HOST:INFO: GMRES Iteration 23 with residual 2.6393172169991727e-05\n", - "bempp:HOST:INFO: GMRES Iteration 24 with residual 1.577727573482283e-05\n", - "bempp:HOST:INFO: GMRES Iteration 25 with residual 1.564863428560281e-05\n", - "bempp:HOST:INFO: GMRES Iteration 26 with residual 9.599005427967441e-06\n", - "bempp:HOST:INFO: GMRES finished in 26 iterations and took 9.88E+01 sec.\n" + "bempp:HOST:INFO: OpenCL Device set to: pthread-Intel(R) Core(TM) i9-9980HK CPU @ 2.40GHz\n" ] } ], "source": [ "bempp.api.enable_console_logging()\n", - "sol, info, _ = bempp.api.linalg.gmres(blocked_operator, rhs, use_strong_form=True, return_residuals=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In the following we visualize the near-field. The above code has computed the exterior trace data. But we also want to visualize the interior solutions. So we have to compute the interior trace data as well, which is done in the following code." - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "interior_trace_data = number_of_scatterers * [None]\n", - "\n", - "for i in range(number_of_scatterers):\n", - " interior_trace_data[i] = [np.sqrt(rel_permittivities[i]) * incident_trace_data[i][0],\n", - " np.sqrt(rel_permeabilities[i]) * incident_trace_data[i][1]]\n", - " interior_trace_data[i][0] += np.sqrt(rel_permittivities[i]) * sol[2 * i]\n", - " interior_trace_data[i][1] += np.sqrt(rel_permeabilities[i]) * sol[2 * i + 1] " + "sol = bempp.api.linalg.lu(A, rhs)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "We now create a grid of plotting points in the $(\\mathbf{x},\\mathbf{y})$ plane and assign the indices in the sets associated with one of the obstacles or the exterior." + "In the following we visualize the near-field. For this we evaluate the interior and exterior field using the Stratton-Chu representation formula." ] }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -444,66 +276,47 @@ "\n", "# Compute interior and exterior indices\n", "all_indices = np.ones(points.shape[1], dtype='uint32')\n", - "index_sets = number_of_scatterers * [None]\n", - "\n", - "index = 0\n", - "for c in centers:\n", - " shifted_points = points - np.array([[c, 0, 0]]).T\n", - " found_indices = np.arange(points.shape[1], dtype='uint32')[\n", - " np.sum(shifted_points**2, axis=0) < radius**2]\n", - " all_indices[found_indices] = 0\n", - " index_sets[index] = found_indices\n", - " index += 1\n", - "ext_indices = np.arange(points.shape[1], dtype='uint32')[all_indices == 1]\n", - "int_indices = np.arange(points.shape[1], dtype='uint32')[all_indices == 0]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For each scatterer we now evaluate the interior and exterior potentials on the associated points." - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [], - "source": [ - "exterior_values = np.zeros((3, len(ext_indices)), dtype='complex128')\n", - "interior_values = number_of_scatterers * [None]\n", - "\n", - "ext_points = points[:, ext_indices]\n", - "\n", - "for i in range(number_of_scatterers):\n", - " int_points = points[:, index_sets[i]]\n", - " epot_int = bempp.api.operators.potential.maxwell.electric_field(interior_trace_data[i][1].space, int_points,\n", - " wavenumbers[i])\n", - " mpot_int = bempp.api.operators.potential.maxwell.magnetic_field(interior_trace_data[i][0].space, int_points,\n", - " wavenumbers[i])\n", - " epot_ext = bempp.api.operators.potential.maxwell.electric_field(sol[2 * i + 1].space, ext_points, k0)\n", - " mpot_ext = bempp.api.operators.potential.maxwell.magnetic_field(sol[2 * i].space, ext_points, k0)\n", - " \n", - " exterior_values += -epot_ext * sol[2 * i + 1] - mpot_ext * sol[2 * i] \n", - " interior_values[i] = (epot_int * interior_trace_data[i][1] + mpot_int * interior_trace_data[i][0])" + "\n", + "interior_indices0 = np.sum((points - np.array([[-1, 0, 0]]).T)**2, axis=0) < .4**2\n", + "interior_indices1 = np.sum((points - np.array([[1, 0, 0]]).T)**2, axis=0) < .4**2\n", + "exterior_indices = ~interior_indices0 & ~interior_indices1\n", + "\n", + "ext_points = points[:, exterior_indices]\n", + "int_points0 = points[:, interior_indices0]\n", + "int_points1 = points[:, interior_indices1]\n", + "\n", + "\n", + "mpot0_int = bempp.api.operators.potential.maxwell.magnetic_field(sol[0].space, int_points0, k_int)\n", + "epot0_int = bempp.api.operators.potential.maxwell.electric_field(sol[1].space, int_points0, k_int)\n", + "mpot0_ext = bempp.api.operators.potential.maxwell.magnetic_field(sol[0].space, ext_points, k_ext)\n", + "epot0_ext = bempp.api.operators.potential.maxwell.electric_field(sol[1].space, ext_points, k_ext)\n", + "\n", + "mpot1_int = bempp.api.operators.potential.maxwell.magnetic_field(sol[2].space, int_points1, k_int)\n", + "epot1_int = bempp.api.operators.potential.maxwell.electric_field(sol[3].space, int_points1, k_int)\n", + "mpot1_ext = bempp.api.operators.potential.maxwell.magnetic_field(sol[2].space, ext_points, k_ext)\n", + "epot1_ext = bempp.api.operators.potential.maxwell.electric_field(sol[3].space, ext_points, k_ext)\n", + "\n", + "exterior_values = -epot0_ext * sol[1] - mpot0_ext * sol[0]\n", + "exterior_values += -epot1_ext * sol[3] - mpot1_ext * sol[2]\n", + "interior_values0 = (np.sqrt(mu_r) / np.sqrt(eps_r) * epot0_int * sol[1] + mpot0_int * sol[0])\n", + "interior_values1 = (np.sqrt(mu_r) / np.sqrt(eps_r) * epot1_int * sol[3] + mpot1_int * sol[2])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "The following code now plots the squared absolute value of the electric near field." + "Now that we have computed the interior and exterior values we can plot them." ] }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 9, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABJcAAAIPCAYAAADO7D/8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOy9e7Q1z1nX+dTe+7y/hFy4BQK5EBaDqMAocosKzoS1GC4hgjpBQECJQoSBAZ0wQWQJyAKVWQMDrCwNASFgJFwFAaOgC2MGNFySAYYQxHDJJOQXkt8PyIVA+L1n1/zR9VQ/VfXtp6v37n3O2ef9ftZ63967qrq6d1df6nR9n2+FGKMQQgghhBBCCCGEEHIIm+veAUIIIYQQQgghhBByvvDlEiGEEEIIIYQQQgg5GL5cIoQQQgghhBBCCCEHw5dLhBBCCCGEEEIIIeRg+HKJEEIIIYQQQgghhBwMXy4RQgghhBBCCCGEkIPhyyVCbhAhhBhCeN/r3o+rJITwmyGEj57Ie3gI4UdCCG8KIXxfCOHTQwg/3lnv80MIX+3k34pjHUJ4Sgjhtde9H4QQQsi9ynX2KUIIXxlCeIGT/3khhN8OIbw1hPCuafk+HfW6/Yu5ftY54fVFCSH98OUSuXWEED4yhPCf0wuJ3wkh/FQI4cOue79uGiGEzwoh/GSVdtM6Ck8XkceKyLvGGD85xvgvY4wfc107g47ZNezDrXgpRgghhFhua/8thPDiEMJnn6r8TF0XIvL1IvIxMcZHxhgfTMtfX6P+A/fpWvsxN7CvS8itYXfdO0DImoQQHi0iPyoinyci3ysid0TkL4jI269hX7Yxxsur3u51EkLYxRjvrljlk0TkV1eu86Tci+1OCCGEHAP7byfjsSLyMBF5xXXvSC8n6EsSQq4IKpfIbeP9RERijC+MMV7GGP8gxvjjMcZfFBk6DCGE/zOE8EAI4ddDCJ+fRlB2Kb+QxdZS4xSa9fo0qvaSEMIHmLznhxD+WQjhRSGE3xeRjwoh3Je29/8lSfJzQwgPN+v87yGE+0MIrwsh/E3vhyXVzK+HEN4SQviNEMKnm7zPCSG8MuX9cgjhg1P63wsh/JpJ/8sp/U+KyHNF5M8lefTvhRCeKSKfLiLPTmk/kso+LoTwAyGEN6btfmF1fL4/hPCCEMKbReSzQggbs90HQwjfG0J4F7POZ4YQXp3yvsz5vf9QRL5cRD4l7c/fqpVDIYQ/EUL492mE87+GEP6qU99Rxxods1R2UbuHJDMPITwrhPCGtE/PMNt+1zCEAr45hPCzIYSv1t8cQnhJKvYLaR8+xawH6yOEEELOgFvZfwshfI0ML8mek57bz0npfz4949+Uln9+pvw3hhBek/oGLwsh/IW5AxpCeD8R+a/p6++FEH4ipWfl0NzvrOr7MyGEl6e+0ffI8NJqatvvG0L4T+n3PZDKw36M6Rd9SQjh9SLy7ans00IIPx+GPup/DiH8KVP/b4YQvjiE8ItpG98TQniYyX+2aZ/P1t8cJvq6iQ+aqo8Q0kmMkf/479b8E5FHi8iDIvIdIvLxIvLOVf7nisiviMgTReRdROQ/ikgUkV3K/00R+WhT/itF5AXm+98UkUeJyH0i8g0i8vMm7/ki8iYR+QgZXtw+LJX54bStR4nIj4jIP07lP05EfltEPlBEHiEi35X25X3B73qEiLxZRP54+v6eIvIB6fMni8hviciHiUgQkfcVkSeZvMel/fkUEfl9EXnPlPdZIvKT1XaeLyJfbb5vRORlMrzkuSMi7yMivy4iH2uOz0Mi8pdS2YeLyN8RkZeKyBPScfpmEXlhKv/+IvJWEfkfUt7Xi8hde8yr/amPf97ndExeIyLPkEGF+cEi8oA5Lvm3rHisp47ZknZ/SvrNXyUiFyLyVBF5m6RzVUS+O/17h3S8XmO3We/3XH38x3/8x3/8x383/Z/c0v5bKv9iEfls8/1dROR3ReQzU//l09L3d0XlU9pniMi7pvLPEpHXi8jD0G+t1ntve5xSWt7Xjv7Ka9PnOyLyahH5u6mv8XQZ+n9fPbHdF4rIl5nj+ZFo+2Y7d0Xka1P7PFyGPt0bROTJIrIVkb+R2vg+094/I0Mf911E5JUi8rmmfV4vIh8gQ1/qX1S/+fn1fnv18R//8V//PyqXyK0ixvhmEflIGR4i3yIibwwh/HAI4bGpyF8VkW+IMb4mxvg7IvKPF9b/bTHGt8QY3y7Dw/xPhxDe0RT51zHGn4ox7mWQcn+OiPzdGOPvxBjfIiL/SEQ+1ezLt8cYfynG+PupPo+9iHxgCOHhMcb7Y4wqcf5sEfk/Yow/GwdeFWN8ddrf74sxvi7GuI8xfo+I/DcR+fAFP/nDROTdYoxfFWP8ozjE6H+L+Q0iIv8lxvhDaRt/ICJ/W0S+LMb4WnOcnp5GF58uIj8aY3xJyvsH6XcdwtNE5DdjjN8eY7wbY3y5iPxA2kbNWsd6iiXtLjJ0yL4qxvhQjPFFMrxw++MhhK2I/M8i8hUxxrfFGH9Zho72HLC+jvUIIYSQa+eW999qPkFE/luM8V+k/ssLZXhx9hed/X9BHPyS7sYYv06GlzBHPedDCEHm+yvKn5XhpdI3pL7G94vIzzrVPySDtcHjYox/GGOc86vcy9D3eXvqS36OiHxzjPGn46Bk+w4Z2uXPmnW+KfVxf0eGl2IflNK1fV4RY3ybiPzDmW3P1UcI6YQvl8itI8b4yhjjZ8UYnyDDqNLjZBiZkfT5Nab4q3vrTZLsfxKGcK83yzDKISLyGFPM1v1uMoyYvCxJen9PRP5dSl+0L6nz8ikyjNzdH0L4NyGEP5Gynygivzaxz3/dSIp/T4bj8RhUdoInicjjdP1Ux9+XIYZfeQ1Y5wdN+VeKyGVap/jN6Xc9uGB/6u08udq3TxeR9wBl1zrWUyxpdxGRB2PpJ/A2EXlkKrOr6quPL2KqPkIIIeQsuI39twkeB9Z5tYg83vkNzwqD/cGb0v68oyzrzyF6+it2n38rxhirfZ7i2TKo6X8mhPAKL3Qw8cYY4x+a708SkWdVfbwnpv1QXm8+235P3T49/SivPkJIJ3y5RG41McZfkUH++oEp6X4ZHk7Ke1Wr/L4MD1rFvqj4ayLySSLy0TI81N87pQe7SfP5ARH5AxlCqt4p/XvHGKM+rOb2pf4tPxZj/J9kCNP6FRlG9kSGh+Z/V5cPITwplfkCGaTW7yQiv2T2N9brgLTXiMhvmP1/pxjjo2KMT51Z5+OrdR4WY/yt+jeHEN5BBpn3IbxGRP5TtZ1Hxhg/D5Rd61ijY1anz7W7xxtlkIY/waQ9caIsIYQQciu5Tf03afsOr5Ph5YnlvWSwOGjKJ3+lL5FBkfPOqT/3pmr/D2FJf+V+EXl8UjvZfYbEGF8fY/ycGOPjZFC0/9PgzxCH+pJfU/Xx3iGpvOa4X/x+1FRfjhByJHy5RG4VYTB4flYI4Qnp+xNliGV/aSryvSLyhSGEJ4QQ3llE/l5Vxc+LyKeGEC5CCB8qZYjVo2SQ5D4oQwfmH3n7kqTV3yIi/1cI4d3T/jw+hPCxZl8+K4Tw/ukly1c4v+uxIYRPDCE8Iu3DW2VQA4mIfKuIfHEI4UPCwPumF0uPkOEB+sZUxzNk7KSJDH4BTwgh3KnS3sd8/xkReXMyWXx4Gv37wOBPDfxcEfmatA8SQni3EMInpbzvF5GnhWG64Tsy+AQdeh/6URF5vzAYhF+kfx8WBuPtmrWONTpmBR3tPkkcZqf5VyLylSGEd0iKqb9eFavbiBBCCDlrbmv/LVE/t18kQ//lr4UQdmGYnOP9ZejXoPKPkmHg6Y0isgshfLkMHlVHsbC/8l/SPnxh2ue/Io7NQgjhk7UtZfCTilL2peb6Md8iIp8bQnhy6ts+IoTwCSGER3X8tO8VkWeEEP5kap8vr/LZjyLkRPDlErltvEUG87+fDsOMHy+VQa3zrJT/LSLyYyLyCyLychn+kLf8AxlUQL8rQ4z2d5m875RBAvxbIvLLMnZ4PL5ERF4lIi9NUuz/IClGPsb4b2WQe/9EKvMTTj2b9BteJyK/IyL/o4j8L6me7xORr0n7+hYR+SEReZfk1/N1MnQIfltE/nsR+SlT50/IMDXt60MID6S0fy4i758kyD+UXnb8RRnizn9DhlGub5Vh5G+Kb5TBHPLHQwhvkeE4PTnt6ytE5PPTvt4vw3F+rVPXJMkb4GNk8AZ4nQxyZjWDrMuucqwFHzPEZLt38AUyHN/Xy2BC+UIpp2L+ShH5jtRGk7PjEUIIIWfEbe2/iQz9oqeHEH43hPBNMcYHZfCNfJYML7yeLSJPizE+gMqn3/1vReRX0+/4Q+kP9Tr4d1pijH8kIn9FholNflcG+4C6DSwfJkNbvlWGPuEXxRh/I+V9pcz0Y2KMPyeD79Jz0vZelbY9S2qfb5LB9P1VMvSDRca+VNHX7amTENJHKENnCbm3CCG8twwvTS4qzxpCbgQhhK8VkfeIMf6N694XQggh5CbA/hvpJSnaf0mGmeZ4rhByQqhcIoSQG0QKDfhTSQb+4SLyt0TkB697vwghhBBCzoEQwl8OIdxJIZRfKyI/whdLhJyeo18uhRCeGEL4j2GYweAVIYQvAmVCCOGbQgivCiH8Ygjhg4/dLiGE3FIeJYPU/Pdl8A34OhH519e6R4QQQggh58PflsGj6tdk8HpCk70QQlbm6LC4EMJ7ish7xhhfnkzWXiYifyn5vWiZp4rI/yoiT5UhnvobY4xPPmrDhBBCCCGEEEIIIeTaOVq5FGO8P8b48vT5LSLyShF5fFXsk0TkO+PAS0XkndJLKUIIIYQQQgghhBByxqzquZTM9f6MiPx0lfV4KWc1eK20L6AIIYQQQgghhBBCyJmxW6uiEMIjReQHROTvxBjfXGeDVWA8XgjhmSLyzPT1Q9bav9sJOqznwCn2+1yPRQ9LQ1ePCXW9qbNH9ravV25ZHbB0uKHnGQhvxi15inNp7XOm5xgvbYfQfnLbss0DNZjMheWdbXnf8Orrn5OX+z+U/f6hXPHHfuyHxwcffNPq21Fe9rJf/bEY48edbAOkC9v/2sjFh7zD9p2rqzua/2s0b+5eVH87/P4R4PVR3r/LMqFJqz+VpaefBTAv1HU2WYuZOzqaPz4CYptXlI9VXgR5+8m0ufK6I3Fi63UKena5hPoOie69Ji1sirSy/KZJCzJdHqc5254os4T66MxdX2ObtMe/zWvLxbn2Ovh6Rcd/+hh7eTitXn8ireMa9R6pazxtvSOILgdUHlzu4MpH5w+qq69N1+jp9fXull1DsDzqpnXsT+96Y/ml++qj1d3/9tc9EGN8N00/tz7YKi+XQggXMrxY+pcxxn8FirxWRJ5ovj9BRF6H6ooxPk9EnpfqjSLbNXbxirmqP0DXE57hTlrvykv3Y758OEGdx9V/WmLcO7leHloXlAf14weKt62revGEzsWNya3yi7Zs23Vs6031fexIovpQXnDy2u2tQ92+EbQROn9QOT0PeutA50PX+XYU5fHDx3Nh24A2R+VzGthmSM+i4vwB5Zv6Q/sMQ9tUNkWev+7UviLCgmfpA299WfH9wQffJD/9M9/cvf5SdtuPeszJKifd2P7Xo3aPjR/0yE8v7hV35VJERPb25UPYp7Th+XApD+U8LbcP9mWFlm/rqssg7Pmv18rGnNuav4tD93YrF6b88Oy4iHdy2jatu0vrbU39F+n625pnzi5db9v0V8DW/HGx3WjauL+b/MdsKL7PsU+PW/uczmnmUXyZvtxNy0uT+dB+n/JsGw6fH0rH/yEZJ896KPyRiIi8Xf7QpL09lXt7Wv/tZtsPpfpt2tuLvL2ZnCvGS5BWPd/Md3gfru7bm83Yvpq2DeOfNtvNfSltKLeTh+W8Xbgvpd2X0y7S54uoeeO5pefNhfnTqT5vtsGen+0LyE3HYMA+ti8H8vVljs9lasu7YtOGY/xH6Tq8DJc5T9vwMozH/66Wq5bDftxN2x7rGF8yjmk16Fkzts3YXnpt2mt0K+V1q+0wfB7S7pjy2hYXaZv2+F+kzxc2bVNet1tzio3X9Jim7RXyd/ObFv7ZpM26By+E9vn6HfPQPeAyNbVe53twL9jb8rmc3p/NuQXK62f098G+I20z87fkeE205TTP1qEvb7b5/hma8vYerB932m72/pw+2jbcVu27M5n6yZ4j+lGrtdvWVe1dK1TbLO8F02lf/Wtf8WqTfHZ9sKNfLoWh5f65iLwyxvj1E8V+WES+IITw3TIYer8pxnj/sdsmx3PwS6UTv/w5Vb037aUSsfgvlRbVNPPCqV1h+oXT3MuonnPKK+O/WBzX1XJ2H7SjZ+ufq2997G87dNuHX5fu8fdeIHVus36pBF8uwRdU0x3sUPwBUp9v8y+U6jrqffXY9Jyv9bUYRWR/1ecVISO916tbR5yuA/1hk/PAHy/1Hw3DuleDvRLrF04R/OFq0T8a93kJXh6al4H7/DIhLWP7otB70VBs+8TPJv/eCwYH8stJcz+uzhF7zqBzIzjnzfhCYvoPaQv6430pa9SxJuMx7hvc0HLaDkXbSPu8ra9b+yI4vzgoXgiVaUjpVFzvOU2K9YZtzrP0jEe94P3CJu1VP/Uwdz7NvUyaK2Pz8osn8AJJ26R88VQuUR3FXwJum5ffbRp6WaTnFrr/F/tT1Vu8nARpk4MPZ9YHW0O59BEi8pki8v+GEH4+pf19EXkvEZEY43NF5EUyzBT3KhF5m4g8Y4XtEkIIIYQQQgghhJBr5uiXSzHGn5SZOLA4aO8+/9htEUIIIeSqiWc1akYIIYQQcjs4rz7YaobehNxmlkryPc8IWL8b1rRG2NEtZGGI4+JwKKf+Q/N6y199aNt1sfQ4OuU1b85Ty9nOeI5s27QOf6Xhcyn/RyFzdSicXW+NELie0DdCPKIMz7HeMBvknbQGS5+9dVjTbPnOkI2bgOd9vZdp/xTsqTK0l/Xf0fC20tC79si6bMvbULlYpun3OZY+89xncOHRWN5Xe8+n0c8LhdEdfs6c4pzyrtG56zJWYY/H0BOWHcDxRGkbcKxRWjb0zmFKbUjVrkgbwP5KWidIc0KkEHqtFr13UMflkVGMNy0M0tITRor8lcr2rdYHIXDFOVId4yIkUqbbHIW5bau2H/LLcp6/kt1/N+zuZj1mVoEvlwghhBDic0ajZoQQQgght4Yz6oPx5RK5UZzCcPuYOg81EUXrrTEyRBBHnDM9s7/N1H/qczYbeVfG3nbf0LnVkzeVf1qWHk9fybNYnVSpjcq8+Rnh1jDv7i1f7xeiV6W0ZLY4Qq4T75ouDX4dtZ8aA88oH9r6+5QnyHw2lwGj5b3UM0QhM98YWyXSuH7fbFBY1VSqlOxnpHDZg9lHuwzAC6XTQsVSPQECMHy2ePfHbB5t7o31OVKeb0ApUZ0HpTJh2uwb708rb7j05GoOMUwf171jwH6q/sCo2rXHWo9/a6ien8XAUB0df6yE0WWbhlQjSL1SK5Z6Z4jTcnPNt6ZoBc7m5uwAugecgqX3QO8aQu1btldp2A5nc3OUSAG1PTJ4l7Z8z4xwc+bdt0XExJdLhBBCCJkmynwvmRBCCCGErMuZ9cFozEAIIYQQQgghhBBCDobKJXJiTvH+8nhDZne9E71z9cKUinIg/Olep1dWO7Z5G7rUvS0nVA6FUjVljgg/io5c/Tw47XiF25Ze2BoMZZs370Z1eObdqFxhCLtCOJwX5nG60LfzmqmEkF5yWBM0ny3LXDd6BdpQOR3MzsuivJp3t2Fxd+Vu+m5C2sK+SatD2SI09DZpC428e1hjkgwUAocNpctwLM+U2OajcnDdKukYMcLScKa9Eyq3FO9ZU4Yqzj+TUJleQ/VtauvRoHvM2+WQKjHly/DFDQibsm20rdpr0xkX54WjHcOxLRhPrH45JqzYu4YCaBtcR1q65tptmBsybN9U54qtr8e8G6WhPMu0ufd59cGoXCKEEEIIIYQQQgghB0PlElnGLZ7i+lSKpVPTKp2KyU+vfH9uKt5U9a4SCahYynrXU4toXXZ0uG5fZPZd1HGGyjd8/DtN1j1lEVQbVYahjnk3qsOqjzx1GzLvdtVwnSqlpdM9HwYYPjujUTNy74JMnWvcCRx6HXvhutN53nTTyLRbmRMaeAbddRkRo0QKSImEDLovy+VCM25b16hqWmHa+4Du32rwbu+5ZTlkAL6JIA2omrzp05EqYizj/Y7x8xqikn3V57spamisEnPaBBiq79LnrdMmpSFzUjOZy71WkNim8dQr4z77aBPqevba26SPa7SId8+Yuwd4xAPNvT2FX+8EClBZFMpyhZk7aK+scJLyurTlbZqeG8igGymRts7546WhvLrMLGfUB+PLJUIIIYQQQgghhBCSCSH8poi8RYZ3o3djjB/qlefLpXuQpdNCnpr+ePrTeC1dtWLpuGngdd2F69ljcuMULfX5ONMewFdpTbrUTJ7fwMLzD6qPTP068niOiqQ5ehRLSEV0lQrKWrHkqY9EWsUS8nsq1lUvkIUqpSu9b0U5q1EzcnWcehprxVMkWeVJXT4AVQquf7pfhKennix+FKocQMoE9Uvxphy3nipIzXQ3K5E0b1qlNOxPq2aq8zyPprXxn8voHlqqY6y/z+jDhJQwrb8PVE9U5w2aKn0qX+QA36QVrre5Nq/zevup6BiPSt7W8wopx2rPq21RHijH8nakyctqlMKjSZdA1aRlNm39uczMda/XrddKxXlxZHOeegIxezzRuVefz3N/XyKfpJwXpq8v6HEUyjyRsV2Rx1GdN9SvdZVlijqKfUzlq+9TaT2Kpa5Hyc3og31UjPGBnoLnGQdECCGEEEIIIYQQQm4EVC4RQgghxOG8ZiohhBBCCLkdXHsfLIrIj4cQooh8c4zxeV5hvlw6S2664Oym79/Vh8JNofuBZMe3MQzqFJQy+WlD5t6p6r36UZjS0jA4b/1D27o71FK3dcQ5dex52Wve3XtcG8Nt1L6gDWFex/mA9rGYLrkKh5s7f+pwOHiOueE86xnKj9uruBmSbHILsddObUY8xxrPcS+sqWfa8VP3JOwRySE3JjolOmE4EYTF7atQNjs9/R6EwGUT7hwiZULm4mVRxqbV69efj2UMwQIhkUWYchmOhQ2lTRhXrA2lbYiUY0zsnCtz07P3sHQKeRTCtNyG4bSgsMRdStulP0/R8bchVbvU1mOYmwmBU7PmIkypCpsy+6PrIkPmcZ9b7FHV8nqt2vPi8sQxbKj6U2yx93z2DPBzuBsoD8OQQdtngwwnDG0DwtxwmPN8yFxZb/ndpqFQuboMyqvzC07fB3tMCOHnzPfnVS+QPiLG+LoQwruLyL8PIfxKjPElU5Xx5RIhhBBCCCGEEELIvcUDnkl3jPF1afmGEMIPisiHiwhfLl0t+q74ZhlnH8yJzHPXNPI+Vj1CbibXYT5fK1p61UqHnoN2NBepgnT7aErhc1K3dSuRGiWP+d6hPsNKpNZgFKuaUB3TSqTavBuVs9vuMe1Gaoyl6qTeY91/3kQJZ3COkdvP3LXgmeCjkfQ67yrxphPvFTnUpt2lSimZfFslUqiVSK0ZtzV3zobPqmCKvtKprmspS5Wkxb3Xu98DpdMmgjSZ3iZST4Qmry1f7u+w1Pa1ZS4P1JmsqUhauy9RG6ofoxzTz1tgmj6Wt9tO5YFaJE9ZP2fI7Pw2VMY7enlb3nXfsb3rwp30YOH9EymL0HZyuwKlWW5DYPC+Ayq0AOrQ7Y/XcVvenj+eobenZqr3T5wymOvrg4UQHiEimxjjW9LnjxGRr/LW4cslQgghhBBCCCGEEKI8VkR+ML1U34nId8UY/523Al8uEUIIIcSHnkuEEEIIIVfPNfXBYoy/LiJ/esk6fLlE7ikONgA9JuzuhoaTqJQ03mghbuKY4++FTTmhVLCqFcPh0PoqSfdMvtcwAPf2Y3VZvHt8nGNdGbEfsr3avNt+9g3Ap8PcPPPust5kVjoTClffk2bDflYMAZ6u65aEdJOzBxk2962nYTL++q5JsxOaE1A4BwjT6ME+g+tQOWvkDEPfqvg5FBZ3twhz0zqmQ+BQqBwKo4O/5cT9nXzPde6rKPSqNvYePpchWCgNhug4pu9eKBxKs83XEzY1R22Kv9Qkfyn2WG/A87Y+7kvDEu3x3OozOLRtombcW3NaaDiTLa/5mrcFhs8oNMrDtmFeN613eURb6n2hNPBv7wE19T2hyFu5v1/f6+buld4ECihUcTThbsNOt8iE2wtb0/VMYg6jc7aNTLh78ixeHip37vDlEiGEEEKmieIbxBBCCCGEkPU5sz4YXy6RFVnTVPsw819Y5pj9WkMl0DH9e/dU8pleC8HbSK02WmYA2gtSvdTbmUvrYc7Qu94fZOztsfzc6qzX29eFaqVus+9O9Vldr2cS65l32/xtuGjy0P7XiiVoCA9Ge1FdHmuc4zdtampyHsRwmvPmcJXSsvV8Y9rTssbfB3DK8ajm3Ujp1Jpw78O+ycsqpWjTLou0GMfnD0yr6kDPB/TM80D3e2S8jVSiTV3S3qvVRHqot1QnFWbBlflvUc5RJ52KQ1UoSJl2VSxVjm2lbRurNsrqlfTdtpeqRLZAvdI79XyP2bI9gvW1efL7Sec5EMFNY00Vk3dPLdRJmgaUSEgZGKr2nTfQLtu1MHN3DLez2TdQIqHyPebdNt/Lu43w5RIhhBBCHCI9lwghhBBCrpzz6oPx5RK5ctb0DDkJp9q/DgUTXK3TY+ecpqXH7+xPe174Hju+T49Xvikz8zvqkcK59j20Xdc5H3Tf5s+7Q8C+GaXXEvYz8jyUgFLIUTp5/koirWIJnSuWWrGEp7Rup8pGrKFO8kD1U81ElLX9OY4BeZFtIrq2DruekIdSD72rLVUs6VW4L/xWNG9MjFKmlXlJPRSAEil7KVlV02WxHLZflptTOnksfoZ13P/Q/bNUx5T34U2hUmo9f2qvHzwtOvDbAgomT81x6msLeS3tHdXz0vu+ey2B41kvh8/TyrEd9FxCnlcpr/JSsuULn55qinrkr4TUKwhtQVt+X2deIeicOsV51uNTJ4LvqZuqDZHnkqcmK5SEabkDHkrYv0fALIwAACAASURBVGlareYpkXo9neBfNVViT5nbAF8uEUIIIWSaKGc1akYIIYQQcis4sz7YDZeQEEIIIYQQQgghhJCbDJVLZJprCV87TAYNyy19d3pVv9duBxo3p3CmawlPmQ+DOjVLp3Eu1y1Dqoq0Q+sEZtBwm731VeVRO/eGQsL9itP1Xi+d4SqOKTs24a7C0Bzz7iKtw7wbbdOGwvWYdqNwnt7zCK27JihMYvJ8PotwW7I2yAx6DfTc9kJ1EL332wCmOcf74Zh7O9NTn4rad9eGtXhhLygsDqdpeFsbAodC5UZD79LY26aV+z9v6L2UInS5uX/bsGbwDKhC38pp78NkWpA2bAfvW7mcK38K3GnpVzDf9645FOKNwhLz8e8MS9Tjj6axR4beub3AtboFoUto6vktaDrvet/nvhZYT8tMr34yThWRh/rmjQE+aC/PAB+Fkdo6Qm7D6fa19Wt4ZG3cPtRR5tnyKMwtlwfnD9p2vV9T+ahcF2fUB6NyiRBCCCGEEEIIIYQcDJVL9xDHKEJ81lMbrcGNVSyR5eS2QeqheXPtoqoO1UuR5ph3z01H71GP5JaqHVymqN8OSznlbw7lcUGjyh5zx7UerYbtW6SViiXPvLuoQ0dgkfm7ozpaQ6V0jPrOU7D1q0fOa6YSQjzcabNPPX+8IaqyCEgN0NTh2dDb5Gm56KqUjPoslGmFSimbd182aeM+t/eBNVSyPZNlFOU9ZWuhRNoWy+JZn9VtwLQbqSiqMvXnGqRM0LbW9fbBOrZPVtVNXEGpdApqBdPwuVWO1UbeW2ToXRh0a15ZxqbZa7qeet6qlXqmi7dNpOWXmvX3ovXuQVqslqfiuEiCAc8AH5mz2yu7NtUuDbenDbpr43abZ3fHUyL1pi3JO5zz6oPx5RIhhBBCpolyuh40IYQQQgjBnFkfjJINQgghhBBCCCGEEHIwVC6dFH3LePUGf+dFpwx6zfC1FepCsuzF8vAc6nQqueP1G3RfByisCZdzTKCdcKZjzsV6XTcEbqbczWVh2CAIlfPNuKfTUNhdYQhb1Q/NREHoGzLvRqbd9e/sDYE71nh+ih4Debs/OETuvCTZ5PbQY2qPDPVxXU4I08J+2qlGZvUqq8NfLDapNu221/cY+jZt2m2v92zybU27QWhdzgOm3esaeaMwt+r+HWxeGQJn193GXbF+URcM1UJhO6UZsf2cy8+cRseGUsUVYueWmugjUNg3Ckus03rDEre5fafNnYf6yuO+AW1jQ9+2VZpn1ozYz0Qx6rqXBzbTMeKU/Yoxcl44HGovDR9F91Gb1hjgF+0Frq/KFHxnVthWdRX167bRteqYgs+dD/WvmzPvrs+lw8PjzqsPRuUSIYQQQgghhBBCCDkYKpfIjadHJdI96r9QcXLsNPMih5tdal12fT0W56VimeO4d9xoGnuUv9QwFNUP1Uyhb9S8Bk3jjNr81PRt0/7u3nKpfk/J46mTDjVgd+qyaXka5GTiPVV/rVhCZrGeSXmvSqlHoXEI9Si13fa0igk50d6mew65Lur7DVLN9V8zKK00Cb6OqeE9kPKkV3BQq5RQms2LoVUdZXVSVindNXkPpX20ht6Xabkvvg/l1r8nzPW56uctfBYAdRI6H1BaVkqEUjFhy0F1BjKDBkbGyKj9UPaOiikCdRJSn62hYlKQciwf41i2g/28LZRm5TG2KqUdULbURt6lSknrMvvoGkSXyzmyObspXyuWvLyrQM8371yx9CqWptc35UF7eYb5m7yeraNc2vqxKXupZEOG7TatVid5qiaLd/4gjjf0lrPqg1G5RAghhBBCCCGEEEIOhsolclJW9UlC9fe8Hz2xWqm3PneUz+7jYlXSOfkqrfH6/jBPpB7VS1kO5R3vlaPnAarrPBRph10fh15XyP+ot71UlVSkVYolz1+p2Kbjr4TUTOP6y1RKx9x/5vyURMqR6m6lXBQJZzRqRs6THvWeKiDW2+b1KZuQv0qtNChUSinPql9io1war9O7qk4KVrnkeC4Bv6S6PHpGIc+lpXiqYOzr0ypJ0T06q0t1Ge29Gvgq1Z5LwPMHKTHGMld/PiFFkrK2uqzn+YbK9yrHdqpmAh4+IauTrA/WsNxudDmdN6yr+522B3YftaBecUiBYhVJmp13sVeV6JSz17unVKzLwO2s4NmF2mTOa2ksn/J0afK0nax6alQWlYoku669RrehzjPbrpbFfiBlVLP3vkdTXWZVzqwPRuUSIYQQQgghhBBCCDkYKpcIIYQQ4hD7jWEIIYQQQshKnFcfjC+XzhKVxp1IeNYVRrbGtqfrWCWcrrOOU00BPrWdqzRrPieyFLZotw4T7pl29tb1p6/XZV8oHNoOChHwzoNcRyxWmEanq17xnLK/Y80QhzFz+lijtNkwRqe9avNum99j3m3r3xrj7zoPTX2d6+w0Jx7L992PUChEz4QCyEB5zuSbkGOwoWw2RGu1+hc+w5dOs33q0DnviMz9PaFhLmOYmwlRS9d3LNKGz5fZvHumfGXkjfI8YhGGC+6F9YQP4N4OjdtDe+/dgFC5bdwVdRTPAhiqVRp5z50POUwGmEcr9iiN5VJY08p/L64R9tSDa0sAjjEKS9zmkLnpMKstCHnyTLvtlVqHwNnPGg7Xa8i8z32tllPdHZa+SzhFy8/d+5rrBYSRwusLmH2H3OZj2m5TphXlkam2l9dh2j0X5nZoOFzvOXI+r498+HKJEEIIIT5nFO9PCCGEEHJrOKM+GF8uXQm9MoTbwbWbeHds/6rUSnPb7lEJUFWA8dRDMK/DDLpIC+0oaF1mdh8dNVOuN9i8w6YFXqw2OspAvm8/clr+nc6xhsffaV/UhkHNuMfHmo5SWzWT5iPz7o1cpOW0afecEgmNntcsVVosrcOqF6iYJOfM0md1cAy/vVH43p5Zj2FzNH0+HY2PYEwaKROyQiItrRJFP3kmvhGYdxem3apOUkUSmIoePYc8I2+Y50xxv7SPiNSo8HkO1Em1aXSZp6oLoJxBygrQ9J5iadzOiHcX1v25XGjSfCq6DPaBcqw4xrFsE3T8t1ZpVimWkEG3VYjURt67QtVULkVaxRJSpSC0nFWaobSl1Kui+0SRX90frpJadVTkAWPvsbwtp3nl9yIPmXCDtkQm33W5DTgfPCUSUjrNqZ9qjvkr/7a8IeDLJUIIIYRME+WsRs0IIYQQQm4FZ9YH42xxhBBCCCGEEEIIIeRgqFwi18BhRt5rhLIdWsdSGfehRsjDxtTUeboOLwxqDUPm07O0HdowqPx9JmytDqXywq2Gz/PhcEvDmoowpVQHNPsG5uFL29Cr/xS4oXBH1Ncfxli2FzLvtqFydTichsINn71Qi/a88ELkvHOkJ9yglz0IP7Hb1nMPhcfpfqA6SuL6zrPk1qPnoWc+3xuuWYfXDHVMX0c5JPaax1DrMBd0GUUQ4+KFvtm8MW3f5gVk8l2Gyu3Nc0KfGah8XWYKLxzOY5yYYTokefhc3ofR/Xhr7um1kfSsQXeVBvO8kBiQ54Uw2fpROFxNb3gcuubWwLMeUMpQufK474o8ZJBehlLZreRQuWDbRPPS0qzghVl5IU8WvV5RGN3lio9EVJW2oPfo3Z8oPs6bzKAwYK/yUBgpMmwfDbfbuqwpeBtGN+ahsMe6zXvD3LwwSRS6V5c5PefVB+PLJUIIIYRMc2aSbEIIIYSQW8GZ9cH4concDlZUPK1hSN6rHro3zHaXvtufVimV1fYpZurRbaRK8eqw5ZEaBamNajbIuFUPi8lD50Ft/N2rSELn1tLzDamgFqsLq5FOdPzLtFI9NF++VqZt2zw7WlopljzzbpuPDL3dqbIdVcUxaoq67ex25hVIhNwsrltZ1GPQfZXUyhSrTFCFU3SVS63qyN4zsqF3zrtsyxdqpksnb9oUvBfveQLvq6G8D9v73zb9SbOJ7TNbl9uifEornie6X+Vy2LamtcoZ7zQq6khNt8ademm/EZ0Px1KqyhylWWzz0PFXVdIuG3qLyZM2bVMaqttmQMqW2tR57ur3TLuRskWLeaqmU5txWyXkUiN4d9KDDiPvOaVfbeSNVEF2K/V1WKiOqvVsfq8SqUfJhhRt3nmzCdPHfB9v1vPmVPDlEiGEEEJ8zmjUjBBCCCHk1nBGfTC+XCILOcwv6fD1ZkY2V1AsraFU6ql/sQdOh/fSYTt0onoPJMdcd7aDpyxCaY3nElBGIfUR8leC5ZzzTEcI7Xr1NM/F/us0s53TOPecU2t4cC2+RjxlETz+02mFX1JOu2jStimtUB2ltI2pv1YsIRXUFvkwQXVSq2aq60JsnOnSEfvQqs+UOQ+l2vfGrj+llLs3xtbIKbAqwWMULUtYesZexxmuygerWkCeKvVU43YMHHkuZTVKaFVE2VcJqZNUweSolGz+mh5+3jMb+ul5ylagMkXT3e9y3oznkqPECDnP7reuh37pwKmtUvaFMm1f5R1/DXoehNBfCSjHdqoqA8e/VKOUvkrbwmOnPf61msnz37GfkYoFoW3nKZiOofZMQvVjj7U+n7ZD8byW0CHzlH5FG27KtFJV5qjVtO2BpxNSq43bbven13OpR7HkqZQQtvxtVjHx5RIhhBBCHOLptfyEEEIIIaTivPpg1xvsTgghhBBCCCGEEELOGiqXrhx983h75XBrcGgo3Oy6WubEoXDeNuEU9DOhKnW5220A3uJNdw/DrFCYEgzBakOe6nA4ZBDt7Vthfg0NroeFGnvCabpB+B08b/I5tYL0/cBzq/iNC68r1F5NGCNqL2CynuX6JmSuNu8ePpd1lNNWz5t294bAeaFvyKhWQecDqktD5dC9Y3WT7zObqYSsQTzJdOZ6LttQz57yMM8JVcXlT9vvqkNojqoLhL/0pKEQKRTmto9tXi4f2zC6ev0hb9m9xX2Og3v7WAZN0jB9/7blt3FX5PWGZXnhbij0ZynZHPmM1AgW1P/ywhLH8ERr3p1C5oChNzRwziFwNlSuXO5gSJXd77ZcD4eGw/Wuh8rFjnNjjbPnUBNvu64XRhqK419ec0Vdes2BbaEwtzoErqgD5PUYeqM8y9IwuKVM1n5mfTAqlwghhBBCCCGEEELIwVC5RK6NNdVDpzLvPnSaZFd9tILBMkbrvclvt5eqypDyp1W01OtCg2ikOpK2fK1YQqqm/v0fgGqmSsEkInJ5o9uuxLs2sJoMtA0y1W7KG8PQoKagrWn3aPY9bd5ty+mINxp5LdM203lAVeEpJ3qYW1/VBUgB4qnPamPvxZzalZacNUefX531I1UqLt+OpF8VvZeKKhOQEsmtvyi/L5fBKos0rzX5Rqojrz+yNM9TEXsUE2gIuqcP9W3zvb29H++QyXRWTACDbmgaHYoyQ1paQqPfNjGmdrLlvSnqEYeaNPcqA2vm+jhIuZvXBddoiNXzHCjHSsPnMm3nqJRQGjJ3njN19qiNvG1basv0tmmPSA2VsWmHCt16z6P6flkokUD52si7UBEJSKvK2TqRKXhWFjl1eQbdXt7c/oxlpo/d3Hm0aq/pjPpgq/x1H0L4thDCG0IIvzSR/5QQwptCCD+f/n35GtslhBBCCCGEEEIIIdfLWsql54vIc0TkO50y/3eM8WkrbY8QQgghV0I8q3h/QgghhJDbwXn1wVZ5uRRjfEkI4b3XqIvcNlYMQzswjK43FO7QELi5ug41SD5/027HJNDm5fbpDLOqyqEwK5Q/LtsQqUKKX4XDzdXfhZVSO+EFeVtWBp3CF7zzwu7XsecNOnd7r0t8zDyD7o7yKETNmHbnMDcNjytCItqwuzoczsr8t7Jr0urfbkPhUAjbwecIAIWu1OFHdn9QKIT+llWMvQlZCc/Y2zPxRoSF5a8DDWeZuzvncumDNfXVMCtowp3D3Wxem6af9TmEzLsL0+5YlV/hPtIbBo1C68bQ6G2xFDH39uIe7RhKQxNi3Y6uL01e8Vs6+jnRPNBzHQeGxx0aJncMcMIKZN4d2/7ULj1T9biXht6t4XMdylaEwOWQObMfVXsh825s4Nx3HPexNJRGIXBLwx5tdJN+jqBdvSioPYiPQ2G2HocaeSNTfBRGOpqyt6F1tVH3UEeZZ/ORwTsyZ9c0ZPaNzoel4XBXH2R9nlyl59KfCyH8goi8TkS+OMb4iivcNiGEEEIO4cxmKiGEEEIIuRWcWR/sql4uvVxEnhRjfGsI4aki8kMi8sdQwRDCM0XkmVe0X2QFFptkL1UgOeVdU+ED11sbV3GSp5J3bhr2d6xqAH7z6WlDz9i7LDdt1lyMljbKGTtqeth5U4xA1SOXdigEGqMO29dzZHVD+KyWQoqo9ZSE6Hh6aqbaqHv4DJRIlWKpmJq6Mu8eypVp5bTJ06bdvSqlYw29rSEyql+VA56B8jHKSXLvYvtfd8IjV6vXXhP1+bpUpXQqNkBFgchKolTQCgjm1q3JqgVk4qtlZsy+Y6gMvWVGiVSpmWx7qIqpUDodaPK9FPgchxMsVMpiOPmCVSfpc0GfNVYV0bZ5rcAIUOXQKisQp/bf1fMhHmjePYc7CQpQ/tbm6fYzNkhPajKgVNkBlVKPobfNU0XL1ihQ6uay7TeqiFpqY+9TgVrSuwcsVbL1TnAwGuC3FIbbjtKvVpXZz7XCSAQr07z2XWrQjfbHU7KtoVLqESqej013P1fycinG+Gbz+UUhhH8aQnhMjPEBUPZ5IvI8EZEQOnWLhBBCCDkdZzRTCTkM2/965O7d2eCEEELITeCM+mBX8nIphPAeIvLbMcYYQvhwGV5uPngV2765ICnDNeKqEE47srhURTRXfk3F0lKVleuncyIvpS7101kBjvmMT4+X13o6TPsriYyKGaRSWuqnk1Umpq59pViy7aYjf5c3WW1SHZfCDwv4JNWKJa9thrSy3Nb4K6nfRqF+qhRLyF8JKZc2YOQ15wFfpQA8JsYyx9/DdQQS1Y/UTGt4nyAi1kdcu2oyDCfGz4nIb3FykHsHTwmIrrulysFDr129Gua2VnstWQ8l5KNTp3l5RVpolUiqYrJqpn11HXv+SkU5VTwdcR/w7vfjfdY+i9tnQH3/3sXxz5jRV2nbpNVL+3kLlDOb6vuw7dYnZswbOObPvzX8lA59Lnh941KdNN1e+Vls2mRUOqVjbY6/Hnd7/Me09H1j88olSrP+O6pYguoV8Du1oP0bXhUtl3G9v9PixOca73xY8zVD6TlW/s4NUJqhawgp/bTNbY25fTcCymuddvt4OZUWquWcv1KtWJpr5fraX/q+Zz9zHk3Xd/19sCWs8nIphPBCEXmKiDwmhPBaEfkKkaE3H2N8rog8XUQ+L4RwV0T+QEQ+NUYkBCaEEEIIafgiEXmliDz6uneEEEIIIYS0rDVb3KfN5D9HRJ6zxrYIIYQQcoVEuVZJdgjhCSLyCSLyNSLyv13bjhBCCCGEXCXX3AdbylXOFkdWp1eYfdWssD8wJOk05t2LDcYX1lXLyOFU78Cked0wOrtfp5ZWNpaJM+WdMDcgvW7LoKmL+8KsUKjcpgrjQvuzFE+qXp4Pl83+1Ebec2EJJwmT9NoGmqdPhzGi8ptNG/rmyu5NG9bhcDYELucB09ds6O2EwNm08Xsraz5mKnQ1Y0X1olA5ZOCd982Z3v3M+QYRebaIPOq6d4Qch2dE7+GFpeLyrblwDms6kRVBjx5/7u8DnWJcxf0RhsXZ0LcUylYtp9M0vK0170Yc+xyZ6181E27YZzG8f1dh0OZereFYZXkNs9Lnvw0BKssMaWV4DzLv9s4eFIJVhsKczx+IihsyB56f9hrdafii5oEQOBsa5Rk449C3cmmPtH7eAQNq/FuqFWW8XqGx9XRVGdva3pU0mvuf5vxYes/zjLyRyT0KI63N2XF5cH11hrmhNte0Ncy7PbN+VAbd28/val8HvlwihBBCiM9pp8F9TAjh58z35yVzaQkhPE1E3hBjfFkI4Smn3AlCCCGEkBvHaftgq8KXS+RK8FQpa9fbU/+aaqU5TqEkOdepxvMooNduNq9DMeOpZGx5qISBaqZttd4yE28Lapl6Slvbfjp6a437RgVbq3469NyC50/nNdFz3ZbHvxyRnjP0zqOf2VjdKJFCO5JdK5aQefcOGXrHdpQVqSOyYSVQJy01D0bUo112WmndNjL2HPfV1HVG94KKB2KMHzqR9xEi8okhhKeKyMNE5NEhhBfEGD/j6nbv3mXunOo5R5eaDC835b5p6u0RZOQtOa1czqH36j1QIo3bG79ng26QlhVP0eTlNKR0Aibflap2Du8ZoBQTOOR7nFEnpT9b9P69AyrTnTkftpWCzSo4VDlTqC106SgfLMca/J6aY54JqO9T94vstbeNmoZM01vl2Dj1/LSayTPvRmlbo0pRxVIA7YvYa5ubNqyPnm3vS6ete6/pvXMPQPeHfVUQTRDQS23GbdPQd3QNeUo/qCar2qS3fZFq0DPt7jHvnqrjqtC92Rfte/X7cQr4cokQQggh01xjvH+M8UtF5EtFRJJy6Yv5YokQQggh9wRn5rl0c4d7CCGEEEIIIYQQQsiNh8qlGwFwkbtX6Qif6zWI7C2/tJyHF56EQpiQabcb6qT7uKZZczd6fqK352ucu32hcmMoVWsAWpuDFuWBYegYAmfKV7Lv3pBOFJ6o8mrcWtNm7lZqfnlDQ52weXpriF2HQqhh95AG2qRK24D2RYbeyLx7h9Ky6evxIXCHhuPYUIXa4NhuOwJj7kMNkY8j3oh4/xjji0Xkxde8G2QF+o25Dw9LPoQi6qTjsWavig1Ia8u3z0+bFqs0m6ef7X1hn0PlWoNuTdsXYW5l6FsRAgfSanpDsL12s8/nOlx9boKOxtDb3C+34oVltebRKCxou9H9T3lmv5ca/HphUx429Kk2di/Ph+PvyXo89VzZOH2h4fN0e42TZdgwRi2XvhchWJo27o8efy1n83abtvyYNhyXHQipQibem3w8zf5ofw2E0fW2pScu0WatQ9vm1p+7Z5yCDbhesgF+Zxjpxgk7zSGpxTZRHVp+Og9do73m3VcVDlea+h/CzeiD9ULlEiGEEEIIIYQQQgg5GCqXyEGc2hB7qdk3Ku+afZ9o/1G9q04Jf1Ycphgrp5531DELDaLRSBsyiK4VSygPAVvZMYhURY4dqQp56uhpA9xeM3eolFvBALw+LrOG6k15M9KZVEyFiWuVtpHW0NuadteKJWTerWqlIa1ULBXmlMDku1ZYHDONuY422jp19NlTJNltnnrEcpIzivcntw/vei3LrT8Uba85rV8VJVb1gu6qWm6pIgErl/ZtWthXecCguzD0bhVOY950WrdiqX6eI2UxUoGiyRqyEgZMyJDv9+O9PauUrMl0KM8bbCht9ldKtQVSNmyc+eytKuWqYhHQeeT2DUAfwuvboD6QZ6iOlGO71A47oBKzU9VrW6gCad7wOT1TQV5W2tjrt24Ua4itK4BrVRUwlwsVKEilZO8FoyINrAvb9TjQ/bG4p1ZpqC3tPa828i6vpbKMyHjNZYURKm/3rboOUf3IdH+peXfvX4TH/jVn90rPg/J88DZ+Pn0wKpcIIYQQQgghhBBCyMFQuURWpE891IxaHeGJdArF0lKPh7lplmu1CPLY8dQovUqVnm2vw7KRGzs16djWTrvNKWEcZdGhHj6Fp0BSznjT8CJQTj7q9pClkePxPPPbpvYxOkZ1hM6f2vfrmGsK+mDVSjNHVVbUAaahhkq2SrG0jXYkux35rn2VkEoJje4tVVMiNrCtS8VSoWrSqYiB99KVEuWafN7IuYFUefaZOve8rMvfNPSa9Lw6ouOpYrOQB4vnsZP3wdxHRnVSuRw+J5WSuXZ1XVfB1NFGhwD7cOn5vAnts1jv2/acUhUqmvZ+B+7fo3cPUmKkpePjglRKqOl7NQVa/6F+TKcGqpTA8zY/u6MtP60cGz2vUNtIk6ZeSruNzRNQvlza5tol9YrXYy2u43ztjYnaTEuvCKhE6mhzeL2D+0lWRM74MXlKzgDO7dprKYBrA/kkjZ5IYTJPxCqj2rysWtu05XtUTcPn8njM+Sst7dVpea83dJJL+8z6YFQuEUIIIYQQQgghhJCDoXKJEEIIIQ7xrOL9CSGEEEJuB+fVB+PLJXKj6AnJ6Q3bcUN5VpTdo7qQrHypwfLhIW32d5+DjHKZgNI19NYwqE6D6Cz7DrsmDYXM+ZRT+g7rSkoTkzaUu9QwKBsmmcO+zDY72r8MtTwspKE37Ks28oZTR5v9yWGGasZtj7W2SZg27bZto2k2zK0Oh7MS/jGswkjxq3JzIXDHGgRbiXodgljWP23ofSqmpy9H7sPn07Eh9xa16f6QdjV2yl4InIgxbYUG3RqGI03amAdC2swzRq/hPQiBy/toQ+Uqg25b3ktbCp7cAYRNV8+84tmR0kpD7zJUC017vw3t/VujdbYmNqY2Ix4+D6jJdO9ZhMLoNJzJhuPctHA477kPjddjGWpePm/bUMVtFWY1Z9BdG3nj8hGk6fptXrH/+foaMu1jTdupOON7QtmcMuj2gEydczgsCJsttnWCoKvuc7xqy2HdyqDblHdD5Tbl9/k6+sqP+wXKg3KnZp8M4GP+bvOkyKvzQWVr7tpJYVgcIYQQQgghhBBCCDkYKpduFPpWcumIW6mLOBs6jbxz8RMrlnrMvhFQdbTQwLRct1U3nBI7ahdXGRXpME13zNmRWbNb3kxtr6qYXoNoZN5dK5bg6B0wrR3zxOQp4zmQR3SjtvNpzFPXAJumO23SYbJu2wuZrNeKJTtqrZ93Ni2W5YqR1NgaktaKpTmV0poKCB11PMak/1gO2l4Ukf05qCDJTWepahipkm4CnrE3GmD2BE6eKa/NU2P/PVQzaZ5RNWUl0phWX/+FSsl5FnmTQXjMPT9VtZpVx4VKKd2rjWn0Lp0/4xIYSgPT6F029JYmb+uoITzjdgtq8+sw7z5WKdwSZAAAIABJREFU+YqU2kWfqXp+buDxb9N2YbptrJpMFS1q6gwNn2FabMqrSgn4VstGL0iTidopq9s62xApVOq8Ig1MR68gZaNHj6rJmnh7/Z16OXxOS3D8N7kt7bbSUtry/QbdZTmbN6ZFkFbu8xTo3FBmRKkisr6YaLK6M+uD3cynNiGEEEIIIYQQQgg5C6hcIoQQQojPGcX7E0IIIYTcGs6oD8aXS/cQMYdkXI3RpaXXLDiX90LbOkPhThEC11tXYdqd9kMl56X58n4yrXv7emzDYeufinyeFcfHaTtoANqaRm82uyrPNwzVkCuV288bhqrse6mh9wAKUi1NWctt27yQPgeTpvuBWvVQ0/fe898LRc1hhptdmwcMW/PxtAbdwGQ9VO3lmXfb/GzwGlsJ/w6GPbay73G94++RKlFHdSH5em3sXZS3xcNhYZS94RJXHaZHSA85jDXa+/f8faz3Wh7Nl40hc7pOt9Kmab1z/f36WrehFvts4tuafI/f903ePthQtjIcrjDvzmbfvsl3k3dEHwIZc495bWi0Pp9RGPoOPAPGMGgtb8Os2kkaRkPpNmwHheFo+RyOM3P6aNMdGgI3F8rUY/DuYa+RPImIeR7qeYOOv64LbQaysXdrqI6OPwpB1LbwTL7LvDb0rQ6Hs2bf3t1hr21fXHvaJxjTLo+e0MN8Ttvy7hlz54PeK5Yae3v3QXvPC9V5X4Sh5RC11qAb9V42OSRVmvK63JkV6pA5+1nLlWF0EaS1+1Hv/zF4V9wYEhlAWrlEebcJvlwihBBCyDTxvKbBJYQQQgi5FZxZH4wvl8jqLFUFzama3KlSOxRL3SqNNQ29kTqpUjDZcr0jhdns276BP4lSCdtS95VfVn/dvnPm0fXop53avp7WeNhSqVhCBtFotM4z9LboaB0aCdaUso7DlCfI3Nwzk19TgeKadzttIzK2z2jc2raNKphErBJJDVunzbuH/HIkdWcea9lgtNjmtGIJqTq9ET9v9HADymAV0/T5swb7jvOtpwwhSxlVl8vO7WNMvJeqpHuwaqOe0e/ChDuWaUUe2lZVzjPvLtfTPGPeDZ4Pau4ds9n33i9/5H0JK5FbJQycwCHd73cybShtDb1rlcxQr+ZJk4fSasXS3NmkCpjsDz1T3kPrONWfkGiyGE+ZrXkboBas28F+xqbdw/fdBh1/mUwrVUqaFkF5VRSa/c9KGHvNaYMNi72pX9ftVZ/1TC+PTKHtxDn7vIxN+X2HSmmpgskyqo3aNsxKUXBtlIbbZfsG0JY2LdR5YH98g/1p8+5hv0vWUCutiW2t+lyxaecOXy4RQgghxOeMZiohhBBCCLk1nFEfjC+XbiSFwcYVbdKctCv6EUEW+il15YHRl0PrmitXj+7Nei5V6iS7r97Uv7WXEtr2TaRVf/hKpHG9aRWaN/qJpra3SpjaVwn5K+1mpj8e6wJ+OOp54Yx0xqLN04hx8s0oPETS/p9q9AKNXE6VEZlSJ5VtUqi+Nkl1ZNVklQ+W1zb28zY9npC/kh3J1vzsuTSjUsojcifyXNKRxLH+Nu/UeO1rVUr0VyI3iWMUS1fN0mt5nHK89VfaS5tWPyeGNPVQujTlSyXS3iqRZFqdlJcrqBbh8zm0z+fs4QM9+bZFmaK8eUZu8zNDnye+cqlOK/1ZSn+lYd902+V3i1WXZIWqljtT5UHtjTiVNirGVFlsj7+2iTn+G8dzKaVdmMteP2u5iw1SKY3l1R9JVU1WpbSBj3HNLxVMIqOmvFDCrNie0HcntoqlnIfq6DjBXH+lwi9J1Uljfu21ZI+19mnKNK1Xy9u+VlvHtqq/VEF5aX3+Sp5SCT1dDu0BYdVRAGnl0oKUb2d6+2jgyyVCCCGE+KDeLyGEEEIIOS1n1Ac7n2EiQgghhBBCCCGEEHLjoHKJrMBh7yhdo+6FJt5e/tLyc3jlc+gbMvR2zLt7wu9uJs6xg8cJpDUy+pmwrMrIOxSybGDQXZVDUx0XaVHLTxtdwl/kGERaU9Z6P8ppgR8a8uyxO3Cwwjuneq+vMfStDT30DL034Phr29gQOGjiKmUaMu+2oXJ1ONwOSPiLqXM9Q++F7o+eZL4Ojxu2OV1uDewU5TXu1ONSh83EusDtcZokV469Hyw3956/JnvDWHvK2etxC8pn42anqsKUF4S+jeWmw+JQ+RyCLW3oWw6PKwy9L4sy9ed2f6YNw5eCnrfjs7sNjQ75Pt6GSNtJGvT+rktsHm3DsjQvrQ8MpZEJcd4/0NDIsP06WXpNoed/PZGJyGgNEEAY+ti+5nhCQ2+8FGlD4ObLawhcGyqn4XB1+02h5W37blJjXh4RFl+Hv86FPOWwqY77RLFeZ78BGXMvKY9D1Nrrqw6nm0qrDbqRoXdRh5Pnha72/lU39tFPQx0+54XHTeXnQmfUB6NyiRBCCCGEEEIIIYQcDJVLtw59/3oz3hv2TAvcqyzCJtCt4bNXr28Kftgxs6N8SJ3UGHoDVcoappqno6MNnZGeOfPueoRzfuri0ih0E6wZ9/TI6DgK2k51XJpYlsaiePp4O4Kg+5jaPD40lsuGg0bJluofR5zvNtsWGevIhqhxLHcKeg3wewzVUZtsVCVmDVgr826btgPTUKOpqUdTdh35bpVLtg3rEbyjzLvRiFk1uDQ3wqjbP/QOMDdq7eXvu7caz2rUjNxcDjXtVlNnZPiMt3P8ZChZhWCUElqvp1jxlC1otQiVS/vi+7AfrbJoVCy117nWoQqmYpuVsfch9PSxkLLVKmFq9aqdSGMb9dltngGVkXdpIDxtGg0NipFBdPV8sN8iKLOXUppglRU67f3lCvKmpQrXsc/k3+PrayiA68s+bzfV89YqhXepTXaOoTpSjiHlkqqUPFXT8LksZ6eqR4beo5JE22bMy7vdeaiRqbMSQV4u7907gOH/mhSG2GjCk8ok2/btkdqoNvK2Z9OoKmvToDk7KK/t2WvefYq/fO0dslUijTvhqZOwAXhbfrqbdV59ML5cIoQQQojPGU2DSwghhBByazijPtjNkLcQQgghhBBCCCGEkLOEyiVyo+gKowPmwkV+h6H3MYbhtYwc1mWl0R2G3teC/s619ycfP6dtHNNu1L6bzUVbXsPWYJhVawqajZ+hGbQNo0uGhnH6PLBW3zHUoagXJvOhVMaadlfnDwiTLM3E75blgDIWGcgjvLBN9B2FndbtpWENIsZQ3baJGnkDQ29o2h0rQ+9ozVzbMIldDrUIxfdhPxzz7iZlwrzV0bBrvUi+7uUhvDCG6Bh1I1C4mxc+Y8+HvVy2e3xmZpLkeKIsMwpeer731HUV6P4i826v/Hy4dJm27zTvHsOl5827bZqG1s/1L7x8796AQtQVNPlFfj4IeHYUoVc6EQOY8AGFXlVG3oV59MYzlFajYmny7H0fGQcrXhhUXxBaH+gcmfo+xwa0jVfOhiXm53+07VU+U7dF30CX4PinYrvZMLdyWZp3x2JZlNvoBBozYehp3/a5r2XLB/P/YdRXEOo/FGFWafsojK4uU39eQm43e66Hcjl8Lq8Tex1oSON2Y8uX5WzeJrdNm1YvRXBoY74eq+1ZvL/YbPmrMt/3TNxR3pzpe844oz4YlUuEEEIIIYQQQggh5GCoXLrx6JvKqxvJOwkzaqCmOFBK9Jav0+BI28L96V0XTvUeyjxYVzt4Yiq1H2+I6inhGXmPtIaeZR2VcgkagLZKGDWN3oCp7Yvy1dT2myJP1TGtYaVnFluM6OuoXlDDbWvevUnl+9RzfQb4Rtl14NTR/vXSKsdseT3G4/Fv86yheq1OKlRKlXm3zb+IasBuzVx1lNu2YWm8XoyagvNz46iZEHmkE6kSYqti2OfrHeTlT8ePQKFJAKDywJt6fLK840hJyBXiKUgRV6V68hQEaIQ85jxfuZSVDKFUJA1508bce/AsQKbdOc1ROq1h8q3PqeJ5BSbc0Pv9ODGDVaWqUtU+/0vlkjWPxlPbl2oLz+xbZGbEPZWzt0J9PvSado+mzqViReQ0Bs5zqGIpgH4P6gttqzYpzZpbQ/WsdgHKFlW0XJi02si7qAul5fL6vG0pDZlLg+hof0HH4ffMmu1ndAWpcb+9B+RJA8DGo3NOaV1zffB6AhNEYeitS2CuXauIRFojb2TejepACkFVLJWG3t5+t3g/V/O8S7W8HtMSqo1C8d2W89J6y0POqA9G5RIhhBBCCCGEEEIIORgql8iV06POwOtN+78U5RYqluzI2iHYaX6hp43uB3ijvnSEECmd1lQz6ShIdIZw4EhJcVynlUhjHciHIcX8b3ZtHlAzbbKng1Ud6ahaOzJae/mIjIqlnVgfpvL3ofOoVKPo8EOqIyuYRPbZx2BsI93vWI0YTnHo9ZLXn/Fjcj2XwLU0jkhrOxg/LP29QE02KpeMSsltk2l/JTSSnZVL5rcglVLHQB5kE1sF0+jfYNJ0iuMTjULXPjh74MeEvHKQX8tYfsYpJJ7XNLjkPPFUR56S9Nh7pIjvdbKJ0/cPNApeKJEqr6XSXwkpl/ZV+X2TF4u08tq1/ZEIyo/lju839KiNkeq4eJ6oYkmfBYWKFShVK6+l0l8pqZnsdPeVYsmW753ePJcHgQSXN+y2qNcJegYg/6Xcn4qtcrl+Fg91lF5LO9P2qiK7sMc/fbyoFExDeWnScvmkYrkAnku7TZtmfZhqyl9dKk5s+3l3EVQ7UqPkPFUkIVUTUKv1e7KVW7PfPRXTqDqyKqVWuZd9mEBeVjOBNL3OUHkvDSqjgJIwLLxWrwrUvpbaV2nufJj2XDqvPhiVS4QQQgghhBBCCCHkYKhcIoQQQohLPKNRM0IIIYSQ28I59cH4colcGzjkZjqUqqcuW19vCNzRkvoZaWZj8j1bfuFktjlUrlfmrr/XmbLe7GSvceD0dmzFQEZfpRXTFFfT2Ns0Db3SsCsREwLnTm1vw6ySObX5bVsgHW+xZbS9khzdTtubpNrR/qa07qWM4XM1G3N8lj5P6tBJawjrXVfedNLo+sohDiZvC9qrDodDIYu2Te7k8tPm3Xb6422Wb0+HwKFwG09SDUNd1DDUhMh4BqzBcY9EYZUodMWbCh7l9YS8IcPfMn+NybQJ6WOpAXdpOLx+XEQR4gpuEp4ZbB3iItIaeUPzbhD6lpcm7BWFto6hb5fFesM2W9Pu+pqfux/04D7PUUh7EepcTvSwQ2HQxTOmNPK2BtH+1Pa6nt3vYemZBlvy0THnQDYoDm3eTcD2p7Stiz5WLE27kaF3AM/gMTyuDUvEx39YXsD2ik3aDoS7oRC42sh7A8Lj9uaZncOUDuzXIvNlb3p5Wx6Zd8eqnGfi3Yt3Xwzg/A8gVBSFkcLQUq2rKjOVVp8Ptr28MNU6PG4t9Jp2Tb5teWDkXZdDoW8ozzP5Pnf4cokQQgghPit0egkhhBBCyELOqA/Gl0v3IL0GcEtZqjbqrrcy8p43HK4Niu1UuH0m34tA1/sR5t1ZQZKFD73rqVH0egbfQ73e3J55vGhMqo8/MO8s05a1b62OKZUwyBS0VMdY825Vx0CTQ+d3l4oVPb8u03rtSOFe2nMQjeLq5708NLnttXGPf1YBGpPPpBSrFUwiVqU0nXYR78t5F1FHq6dNXC+swWg+H0Z2eb+H773KJY89GP3Mht52pE1HRAuD13JdaP6+EHfac8e8u6xjWtW09j2DkGMI8TR9iUMpTPyre8ncNV3n2/4XNOwNpRIJmXcXaiNp1UkexyoTy+fDtMp3VL3MTLiRjbzbCS5Gpeq0afduVjlTKpas0gk9FVQ9gRQEefr6wpC5pFBWLLzdq+KtmKoenCPNfpljdqn9kHQNWeUbnpykbKeyL5RMu816u6pNirbJ5uk2rWyTwtA7lbdqpousTmrLI+XSDkxf3/zGYK+5RFzWJ+glt2H+bvJ008DQG9aVlY2Hv1QYTbvb3zv2dUdqI29k9m3TasP8Ig+Ydo/1tu2G1EmeYmnjHrvD2tdez56KyDPoLtRqTh5Uvp3P+yMXvlwihBBCyDRRbo9emxBCCCHkXDizPtjNGh4ihBBCCCGEEEIIIddOCGEbQvh/Qgg/OleWyqWzwb6x7JH7WXHfvfkOUUN5vJA5kVJSfAh70xyNeffwpWSmKWt5u93nHul7WV7TpusXe0x6pPWzYYRVeJVj9mk/qzH3xoZZqXm3ScvhWB0hWCJtOJw17FaJdxFK1REWF0pxa956zT4dz8K0UA00F4Zj6nm6NIDJhiVoSIRNcw1Yq7YZ0pJ8vjJWt+Xs8VfDVjVWLw1bh7QL8yiqw+GQmWtpKBnSfpXfh/2RhlDpq6GBJpDMI0PvSyDL7rs7e3Juv4W9sBa0bh3yNmfivY97LMM/o1EzcvM5hRk34pjQfw1xsSEl7rVbhcSIYCPvuq59EfpWpkHzbnMN6zMG5elneM0faN6NKJ8Z22Jpn3Pj82G834+hV0PaHRAGbe/3F5sybWdu8jlEx6TV4XDIcBih5WyrXYL+1KbKW8qhodIiYwilx2YmxHQMh0vHNfq2AaF6BttjPaaN9V9URt5FWFwVAlemDcvdZjw+F+nzDhh6o7YcQ5JaA+qlJu5aBwyDAmFN473AmncDU/8qrQiRde4Z6P7p3VOR3YMeg+J8zmFrAeShMLqqLrtNFFo3sZ7dFjL0Hn/HEdfLwlXR+eMatld59rNn/u6F2RZcfx/si0TklSLy6LmC9+ZbB0IIIYT0EePQsTnVP0IIIYQQ0nLNfbAQwhNE5BNE5Ft7dpfKJbI6yDSwe91s2NuprKhVMtIqlubUStas+BDMwEqhYspofqfJt+6vTiNc5J3ItLsLqLSZN+FGht6FEqmjfbdAzRTyiKdRyTjqGG9q+11xPkyP/uBpYnVdHWk2I7Xp86WjNkHKuhDb898bsOlVt3kGrEilNKqTwOhzZawuYpVjZvQzlmomNDJqj3+tWMJTHQMD9jwK145SuhSqBF0PjBiC459H2qKtY72XJToyjRRJ+9AqG8Z9uGw+e9OYF9s80vCX3NusYWBf1ne1Y6BIWLw3930dvd+DZ0EeuXZVSlaZ0F7fWbEErn29dtE1r/2F0ux7PcWSNxmKN2lHoWzNShijThJ9xqR7u30WpPovCvUqXoqIXKSHwIVJqxVLW/B4RyoWpDTwTaOH3HpChylO/U59VDq37b0BfRRVeJd5bZtspXwGo+O/dY6/Ne9WVdlFoUTScrHJq1VN9ecaVZxY5fhlpUouVOUd89xDpYrdZt52ubSfC6WTLjsUjigNqZVsH6jOtT9Ry7nKIrNuvoY2bdoGXF9InaTHO6uaTP2HmncvxbZXVpppHtiMTarz5wy96zSUZ/fnUAXkFfANIvJsEXlUT2G+XCKEEEKIDxVGhBBCCCFXz2n7YI8JIfyc+f68GOPzRERCCE8TkTfEGF8WQnhKT2V8uUROCxrZqpUtC71nYF1GfVTXi0Y+UfmDsW/l85toM/1rViIBlZJuG/o2DfuIRh+X+jB109UWyMMKrOd4+Ni02mvJKmFymuOrVCph5tUxdmr7PDJXqKWmiRqHbqemrkYqy2mrW0+nMa0dxe2h93xF5x261trrsVVNlZ5XpTJw1vMqfb6IaWny1F/Dtsm2Gq1GyqUNGn3L38e8Hl8F+7zO16+pREcUtQ33AQw7HgFSNPjlS48VS/TyHK+lfe3TclvmwyU3DtfLzvGHWapgOpWnU61YKkaidepwU6aeTrzwW9G8YNVGpQLJu85t+XxfAIpnfO1P+zFZ6mfG3PO8fmYglVLxfI76DFBFLPDYMzfyrE7aqOeSmPJpidIc5RICPTuQ+kCbulfv2XNr7X0W5OsljFsf+41DGuz/gj5QVjABT0rbJrv0eQdUxKPqCHhe5aVRIm20zJimiqWto1LaFmoj/U3tMdO8uyakYAO8E3tALeJNJR+r7yL4WV+nRZC3BtCTUvOADxPyLxvLS1se+CttQJvXiqg5sVitWPJUhmtQKovajXlKpFiVQWk27xKkIUXsFfFAjPFDJ/I+QkQ+MYTwVBF5mIg8OoTwghjjZ0xVxpdLhBBCCHGJVC4RQgghhFw519UHizF+qYh8qYhIUi59sfdiSYSG3oQQQgghhBBCCCHkCKhcIjeSOel1Ux6Eam1QmI9jSonrLSXGEOAAWph8i4a5tSFwuQoQupTD404VArcY5zghk3Vg6K1Sea99raG0hsgVaRpmJfcV30VGif0OSLvh1PbZDLo1iEaoTNlGRl1Wps52fZWY343295ZhZZalIZpe6Bs6f+oy9jMyZx2vIRuqUIYv2uOv5uo7E/ag4XA7ac27t0B2X4fDFbL7TTsV7rb6eUunHreGntnQuzDp120m+boNo0vbulzVbLKdlty7/yDDX0tt5G1DasZpzGeCOqLQc4kczJohasW06DDs+LBtIYPcnjN+zoC3Dnsp8/ZOWmvePYbKmTSnT3CK/gKaFML2sXLYN3qeSzm5g4idcEPDstAEDmLS0nJTlhEZzaJ3pvxuU67Xe3ZoyIoNw9Fb4NIzzLt1InPnYt0qFRl0I7zJO4oJbWLZXy77L16baHiimLxyKTIefy1nzdZHg25bR0x55Xf7uQyL8wy9tcyYFpxwODi9fBW6BKeSB3Xo0hq862cb+lQbefcaems7zfV3Nrn/giwFpEnb1jYD4pffVNeVLY+uuXHiFf0doH4nxHEpKMqsDFVMS8fIuzfMzTVxR9t2zje4MzegDxZjfLGIvHiuHJVLhBBCCCGEEEIIIeRgqFwiNwp3qnSgorAjZkqtWEKqJm+bG6hkGtP29WhgMfVmUo3Y97bxoWE9LVe8Bb9s9lFHJ0cFiq8qGLe5dJRStzm33rShp+YViptaibQZbzPedPeqhAnIALQwiB7WVXWMVSndyaomo5ypp7Y3DbbL+2p/kWM4i8pk9Uca0bPnSh4Nb9VAY53HK5h6gQas9fVSmK23JuuNobpYc9bh84XcyWk6Mn2Rl2N7XaRtllNNl4atdmRaP9q0ekSrd4BrHIFqzT7tFaEqJr0Kbdv3KJbKqcePH3kapyhvlUjjNqeVDUilZMtM3kduwKgZOS9OZaq9JqocCHPOshVITYCmE6+NvAvlYFYpmbRQphXm3ek63YPrVfNibc4v/Uonj57JIESMOhlMWLGRVllcT7ixsyrWTVIdO4beSDkDTb47lUt1q9qpwXU3bFoA/boe1jRr7sWbYKRuB1tuB57PSDm2y89sMeXxUkTkIj1vL4xUeJvT9sV3+9kagIdKuRStMinlXQK10rief0bUVwtWKbXqpHzd2/4+UKogI+86r5fRnL1VcmozBdB38pRFO6ct7ecNuPayeXrRvy6XZd+7Lb8m3p0P9Qe7lEgynWc/X+7bfRjzWvU85Iz6YKv8BRNC+LYQwhtCCL80kR9CCN8UQnhVCOEXQwgfvMZ2CSGEEEIIIYQQQsj1stbw+PNF5OOc/I8XkT+W/j1TRP7ZStslhBBCyCmJcRg1O9U/QgghhBDScmZ9sFXC4mKMLwkhvLdT5JNE5DvjoBl+aQjhnUII7xljvH+N7ZPzxjPURvnIoBuFysE8lWp3hMdNsQ21yTcImStC5dI2VWIJ8jxD5mIfnbzD6XvHPB5HEGYIwqw09M0eVw2R22xMmFUqp+VtCFZOk+mwrIt4x+SlEDhrGp32rTaKHn5JG3rloaVsONSmCoezEulRptxKzTdq8j2zaT1++byPd/v2daEBvqbZ4z+a40+3iW2bbLJuDb0rw9aLYMPi2japw+GsYbemIRn3+H1G5p5NNdv1VRJtTUI1BCLLyScdF/spw2aqMJjgh83U5S0RhNI06xUhNShE7lIWx3iQW0eQ4b7VayC8JnXo8FWyB/f2qXyRMRQO5dk0ZNir13qEpt1l+Kv9XIa5XcL11qIO0cYh1e3zBIa0p+eCfT7s8nMnhcWZG7IXhqPG0DYsDhl612E7cyE39d9ZKMTF1pGfD361XXimzl67lufp9LWT+yrF8d+WeaDvhCbV2IHn8w60yZiGQuB0OaZpfg6BM+U1HC4Uht7lbyyu3/w8F1NeY5cWhsGCEKkc5gbCpsYwqPb+0G/4354Hx4YaFwbaGvZoDlBtPVCErYFrSD+isNPRRsKkNYbe0215KuyV5F3vKG0Mn2vXr/OKcjAvFnkiq3QvbwRX5bn0eBF5jfn+2pTGl0uEEELITee29HoIIYQQQs6JM+qDXdXLJfQ+Eh6lEMIzZQidI5Poobv5ZpkerrJiZvr0Og2NdI6KDKOcAWmeebIaUKIpvpGRtr55L6Yr1zT9Xrzpbkf+6inkQ9ya8s6opNYxo2paqn6qFUtw5LIw9NwV5ebLl6bRu3BfztNRz51Vx0RVx6hKyShhRA2ip9UxhQFlHp2xaqYSZO6M0FEIZKbojTaVqqY+9VxNaag+LDzlW5lWGnmHYuTyotmvrBhLKqVdtIbe6fgXaqayTYpR0Mq8W8SagrbmoOPImRlpq34Pmjq6zC8dWOG1akY18yjpiZ/raFpyVSjsCzXTZbUeUDbEtrxn5F2bDJ9PF4asie1/3QmPvOa9uX68KwGZdyNz3trIuzDvzmqF9npFhv3YvF+NvJ3rGzwLvOe/a94NVErF1PbiPE/y87x9Zuv9fgdUrPD5kA2lx30cp683aZVAGE1dX07qoGnlevbzMT3v+qif+m5r+x4hovZKijFg9o36TFkdBtoGtkmVVhh6AzWTqpO2eTkesW0qFwq1S3n8gtl/vSJC8Uf5fOt5Bs5Fnm4HqVf0O1CqWLVjbfi/xvlQnLNZITStREK6N0+lhJTj47JVIpWm3bqMTf1o/2vmjs4+ra2HeE4VNLZrSEtTF1AnueeDqtaAum3Mi00eUr6dO1f1cum1IvJE8/0JIvI6VDDG+DwReZ6ISKinASCEEELIlRJl9p01uQXY/tcjd+/O/hchhBByzZxbH+yqXi79sIh8QQjhu0WqlAEoAAAgAElEQVTkySLyJvotnSdz/khddThKIThi5kzdvslqGuDDBPyV8qiaoxZB+7AF+5ynBQa/A6kngpYsRgL2xX6JiASgJqix+7+2x4JIv1+POKOZ+fhvxtuMei2pz5LIqFzadHr46KjnnVTujjl22b8BjL5lBZNpHDgdajVsYl9xR2dMJaoizKTdVRWaHSnU0cMDr6WibZw//7xrCanJskrJel6Jphl1krZTapMLGT2vvDbR439htq2jnqXPRqlYKvwAdL/sNeQMc21BXszXY6lgEjn9qFGvr0IPyGOlx2sJ+rsA1UNVye0ZUiP3PMhXSdUEYcazLTqhCbUKwX7GKqV0bQKftfHabD3SPNXRnCL50P4C8qQcVa9G2RrK57hVHeuz26qNa09E5LlkpzevfZWsv88Wpk0rJMbfZpUkibSCPZyXoOm9evfeudJ5Oz10OnpF+xtDXqtOGvtMpffV8FlVYtPPZ6QcKz2XkjqpWg7rliollGbztJ12noTcHK/Lpb5KeTmuVytU7JZdZUtq4EKpkpZ3oXqxVDhavL+ZinJBPaaAet5RItk0bWvdoqdCs5+hqqlaDvvo7P901iog3yMFKZFitUTlUF6hROrIs9u8nLoxnFkfbJWXSyGEF4rIU0TkMSGE14rIV4gMT5QY43NF5EUi8lQReZWIvE1EnrHGdgkhhBBCCCGEEELI9bLWbHGfNpMfReTz19gWIYQQQq6YMxo1I4QQQgi5NZxRH+yqwuLIPY4fZoXk1vPGw2UdwGTSMe+2062jOhRksKxGm8iwcgyVs6FjDw15mmYNhLMpOAormw5hcs04Ycic/W2lYfg81X50GnRrONymCIHbFWVEjIw+gKmLK/NoEZGLeCellVPci4jsVGK/MaFXVThcKektJcMImxVVor0fU3PYo06TW7Rva+idQznzFMDt+dlr7K3XRO/5MJqy2rCEXbntQhbftsmuCl+0IYvbHPYA2iS3TWvOegFCIUZJ/vhbUBhjD4UUORtcpjyxbdmGUNRy5pkAMrPNPoPOHAYTkOEvNtwelqXx77DNdvryWBl6o3PFbnPIP59ODCFr4oW9WTwD3tKUv7yuYwBhbiC0FV3fexAy75p2d4TRzVH3E+Ym6KjTiudD+rwz5TWEHZtHt88HDbmqw+PKPBv2qPtdfhcR2Du6m8Omy6UIDi3quVVag/f6/NrHNi86lVozbj2nbOibVx6FJW7y8de+sTnWOW2srw5VtCFwddvYz+NzvQ2B25k0bbva2HvYZupjAUPv0ZS9NWffFKF1y9B6UdjUZW6vNu0ueP5f5ut3WVh8+fxvQxs9tDk1ZM4anmv/y/an9KP2uwpz8LS05399jJFlQWnoXZY7dSicZ+It0hp594Y9Xjp59m47lott3n56m+cOXy4RQgghxOWczCQJIYQQQm4L59QH48slclIWm3d7U+DmN/ZWidGqmVRtEfIozYUpD5Q2wOTbQ1UZ4wij3dlUZ2EKt0/7NXy/lIdMcd323q6wCP1N3tTzy0cuHSVVoVJKSiRj2j0qx6ZVSkVaNv4c1EmlSimlRWvyXSqWLowKRxVLyDR6nCa3VclY1AxRRxrKQcq2gdX8cZ8kMZfWTDFOK5d6USURMhNV+k2+1eR+B9JKY3WRGeVY1DzbNkNdsE2AefcFUJPVaaXZuo6+9ZFHG+1IZyU+K5Rmeo0eMXrkreqZdo55RqkQkBJpD5flPpiRzuraL1UPrbLhFBMEkHsTPad7R9nPgdaAd9q8u0zbg7z2+t5XaqZS1aTXq3M/WEGlhNWu03nlJBBlv2sLDb3t87l8PhRm0B3qmDJP1S5jmn7egDuzqjjwPTu1r3leXfbKVjtYY8p57UvswT17g/rLQPWSjbwrBZnIqPa+gM9spATXZWzStG2sqqxWKQ3lU39Z8zZtHlIub/L12CqRvR7D3ph+o6nha8USmmb+rpGb1HVYZZp3f4jg/qB498+yb9n2N8e8tEQqJaBEgmbfQG1U11HUlZdWadbWUedZPCXPqBRq2xDdBXuNvOs8T81k82KVN3yORR4+t2KTdu7w5RIhhBBCpolye/TahBBCCCHnwpn1wZYNoRNCCCGEEEIIIYQQYqByidxISun1tLnxGKplTZHLMDdkQOmZKPeGx6mMFRloX4Yx9G2bwodUUW1D4PRzYdKooX6xNd4OUcMAW0PPfrQ+tN70MZMA8oBpejby3qhRd2vovQv3NWnIIFpl9DtTv5qBauhVEQLnmEaPRpRjHpL+KtscHjemXQKZ9T5Jui+BJFlNFDcRyZSXvdvvPS+b9eD5D9KyeWcbFodM1nfp8XHHtI3XJsi8G4XFaSjEBsjue44AvhpMe0mpZy7Nu1NoY6epb1MnAJmzotAY9L02Ax4+l0a/9vrfV+bd9vNo/GtDcEBIXbwUKM5mtBy5R+kNYUJhr65hP0irw9siNOxvQ1vrMvXnY6nD40RM6JVN02d8fk6YySNA2LQ+Z73ngzXt1s/IvPvCCcvCITf67C5+6ZCn30DYNAotOpQi5ObAoBjUlxjD4tqwKRuWqEbe9cQbQ165tJ898+4LU/4iHcALZNCtht5F6JuW2xdLkTFUDqGhUaF4dh/WOvaqqcOfislBpMwTGfsOeTkTNluHw9lre2kfUSkNtEvTbntExvO5tYrYgLbXtN3GpmnosxRLu03vevEm0zkGFB43hqHZ0Mk6T5o8m1aHyl2aDaDzIU8E44TMoW1CzqgPRuUSIYQQQgghhBBCCDkYKpfIgQDj7UrhMoU7ta2zLppGfTSUbJUYo7G3nfZWTYuRcqlVNSFG883W4BKZ4aqKSaeLtfsadV3ztrpRXJ0szHbePH344hl6p+O5adVJyNB7Fx4mIqU65kIelpbI0DuZR5tb1WgaXSpiRKZMoyVtszT2FvGnttcRhyJvX5p9D78v1a8qHDMqooqlAEYP84gSMpfvNOhGtNdXe73YtNrIu1QppVHoYjrpdPwrY3URv03QtNK73Dbj/uaRbGjoXf/aFjvSjP08k4krHLUGxQ+kx9xXBCsaxvLTU5V7Rt57oF5AKqg6b5IYJZ5RvD9Zj7mpz2OYH04tDPVvmLm3ZzqOlCS1kTe6vsvy+2q9aTPuoVypTNwDs32kSDpUpTQ3sUqonkno2REKdVKpQC6VyNo3s88HTUtlHPNu+3mXFTE2Dxl6T9+37K8c0XZNKtZiGvvQlM51OWbESJngiWPnzimPWrG0BarvXdEnrgy6nWe3iFWYpe/g+Ns23IWyTazSbFeplIbPpcLJqpVCVsnY46P9qQEgEofEVLBUjmnfwKRl024tM6KqFat0Hk2m1ch5zLuEpv5lnwD1A6Ror2m88xKq7hw1E1L8BWnL1xOvlKop59rrbCct19v9qI+eZ9Rt86FBN6ijLo9UbqWJ+3T90CR+6pidWR+MyiVCCCGEEEIIIYQQcjBULpGj8dRG7nrOO3jPJ6bwY8o+SWY0rfJOskqMcZrc3WR5yyb6o3rD+uO767vyULNNs7MDRcx28lwySp48cpGVM0DZBV5g6/4jFYKtox7hnGu/0ZNHvZTsNPZlnv0tqk7abUYl0ujXY9RJqliKurSqpqHe+0x73dls01L9lcb9r0fVhs+ld48dmXMHT1Jm4b+TD/+4ph5Oja23Izdb4Ll0qHfSuAtA+WZ9g5IHh44wl8oopD4rlX7IX8mm3UmfL4B/xuh5hdpEVWXjviLPpdrnYWlMvi2eNYbAJwGN2i1ViXnKBpSHrs1a0bAPVsXgTFUe27wIPJdyXgRpWQlR+rrAw3BG8f6EIJaqlA7N8xVM0yolkVbNVHouoet6RcUS8lyslMv2Wa953jPDei7pM2MLPF6gSqby9xk+xyKt9Fxaply6BJ0yfbZrtUjVsSZrqJTKtFIRbc91VRlvTfvu8vN//lksYpXgbV5Wn5ljPrbTvsnbZaUZSNtof8qqHts+1kZ9a3KaUYmDtq9ToCoFlM8eO8B/B/ly6vJucb2rWrr1PcTK5daTVakV8ChPZPT9VNWd9VfKPklAnaRptvbRD9O2Sb1sVf3eNYRUaEtBKkB0V1SvJc9DCaoMBZQHqkRtc7s/sarDqprGbbfKN8gZ9cGoXCKEEEIIIYQQQgghB0PlEiGEEEJ8zifcnxBCCCHk9nBGfTC+XCJXghcKhELgPBPiYipcYECdQ7WSBHtTmE2W096LjKFvY8iQb+i9zTJHlbQbraKaz4GwFE2z+6P7H22YUtqfvf5eIHsvjlmswuGKPCnzBMvhx91vTdnrKYiLEMSNhsoZWXySzW/DEOa2EWvo7Zh2Rw23GstrONzO7E8denUHmHdj0+jSKHr4TTLJqF5tzT6taaTKsdUofLO3suNWupxl69V512zqQOpwuDLEIV0TwYaKlmEMNmRUjbxRqKKGw9mpiy9gWGKqC7TNRXXsRIxBpO4fMPRG0mFNQ6EL9mrMxp9q2Gpkyoce/kLqXGm05wy9a1m8Z9SN8gszYDXoBibAuf4ZM2Bo7h3lrMwkyRoE2chmwmD2cLzQtHMAGXmPecA0P5ThbSjstbi+Y1keXq/I4L9ab6r8Uurnv31eaSh1ERafTaPVgsD0v8B09/UzA05tb9PSaXNfCpu6UxhE63bGtDoszk5DnsN7zDM7G/CqebQNIwKh2j2hcuX09dPnz6EUYVCVabedcCObfBdhiaWRd/F8diZI8drmwoa5pc+4bfbTaZs2D4W55VCqxSHtLV0GzqYx7+41BM7WW7avDXm6BH8z5HsAmBghAFsODz1XS1NtzUt1mvJbx5YgVN8n0yojby/Ebtif6Yba5GNnrscmrGwsj8Lo6hA5FNLmtS8y3PZCJ4v6QVhlfd5420b7b3f+nPpgDIsjhBBCCCGEEEIIIQdD5RI5KXPT3PZQmxBb5UzIBpHThpJWiaFp1qg7pwEDRI993h/znlpNIM1v1JEJ3Y4dodgkRYgdycjKE89MfMUX2IWqDCnBspFnOk4ba969K5YiIttk4J0NvcOoUtpV5t0iIhcyKJfuS3nWvDurYza9I53zptF21MWbPlgHOIvBsjTCGU3iZTZMTPXbw5nPB+u43W4zlwfv++upoD0zd8QGtmU7+ozMu7VtLoq0UrG0K1Riqg5rRz/z0hyKUVXWpqFRr3Gfx8+1YumuuRw1zR6yywOvnTyibc1fnbpchQMYpVRFAzL3xfvTmnePht5WCVEqIGBerZzodcgk5ATY5yEys726/Zi+wJECBSsTyzSkOkKG/XugWBrVh606CdFj9o1U30Ufq1GOg/4XMvRW1augCR+m1THl1PaS0owSRp/7Ke2iMI8ePpdql/L3WuXJpRr82ueJ5gGD66VaO3T2NMqKwuB3maqpNu+2aUg1va3Mu0VQf6pVfds+1mjarXnt8bfldzlt35TXdtrZtI0qG1U5ZpTFQLmUlci5r9UUgYxKlWmVjMjYX6iXRdrenlOqZhp+LzL0tveHyzB9LW+0T2Cu4+1MZEVNPXFJ0T/N27HbTOWgSk/bxqTlZSzqtOt6aqU12IPPoyrIb99YLe+2f85hdRJQsuV7B6hjD84fvd5LZaPDGfXBqFwihBBCCCGEEEIIIQdD5RIhhBBCXA6c8ZwQQgghhBzBOfXB+HKJOBwmbPNCdIpylVFkkYbCg0Ib0hOkLa+fkXm3GhRb2bcaT0KDZW//k0axMHxM617Gh3JaHQKDZPH2N+1jZaBtwwhV+ltIY+8W5ZAU3h4f3SY0785hUyb0LYXBjcffhsW1oW91ONyFPCznqZG3NfS+L4XI3Um/6T5T/50UDnefCYu7k/S6auR9Zwsk3tagsAq92gLZtJX+1iZ7VrSsCtv4/7P35nF2HOW58FPdZ5sZjXbJkrzLNnjFeAMbMGDigFmu4d4QQoAADiQOHzHZIJdwAxf4yJebX0JIcolNnMAvEMcEEpBjg4kx2GazMLZsy5YAb5KwtViLZWn2c0531/dH11v1Vvc7PWekkaUZ1TO//lVPVXX1Ul1ddep93qfYAbEmKr4pi5crEOkdXX3y9226bUis84I7A4/jIuvF9kJtBHCuDTV2PUVR1qbgsthkD5nqh+rEd1mkMl2cRMeuAmUjujEvnyjOHlXbhFnhfwCCFG5v8DwnS4Kekng3d4XwXdN8l5rUC4GyexunzEvvQVGQmbvU9OI2ExBAoG/VTIt8H+ngorxFlyWpfWtBtNv9X3aBEwW6RRdXQbC/EHcwbVockxXGBJ4LvJUUYOMp22fEJuR9B4lHu3MWXa+mEvRuFlyvJLcszy2ucI+psEAHz6SNj1wq9eeKXH8m75x69SjOqnyqvSv0j55KtsG5ypFbn/D8BUHvmuAGSGlVdcLHWuSiyJ9/MS5mbUOKI9c3co9TUwh6p7rHgYJBVsgvCUTzMinZucCBpZXdGK1bnNDX07eAu8IVvw/TdQNW3u+PsitkUYTef59NGUKcJF5Pu9z1UBLydtdTrq+i22KPzUBEtSyBHwJTCHQLLnNi/mL5ghi3X4b28/P3gcrn130wD+QIQphcCggICAgICJgcGrPK3z8gICAgICAgYE5glo3BwuRSwMyhaol7zxLmCxT7gpJxOb9dWt0PAbYULo8rWNNk8W7OPDEWOUHQu4pB4pgDbqY5MSwibgqwzALlHwcAmbFgKC2wS8x1ZwLzhKOKvSKh6p5ky6V5jobBFEWMCWbEu/nS9jXDVKqJLKU+E7I4UycNRUvcu3MTK4azk4qMJS5A2RCYMEV2zFSMGMpnhfe4pcqUlWXl/NYKJFl1ULYuHSg4E4l4stJ7URTCz6918vZCIYl45/sUN7koay0q143HTjLJDVOEJA4qiab2ylwqggsmRsW6BKufAzQQTbWsdNVS0465JLGZqlgMZTaTFgW9y4K/RaaTx3qQ4gKbKYCBW9IlxhIxfiWR+ipQ++DfQypjuktwV4FbiqsYJ8Xrmql81D6dYP8U7a/An/Ta8gz+urCs74qxGd+n94AvnkIsJr5oCvUfJDzMmTO2z6gUlHbX2DDslSZnJxn2SsMIRDcFgeiq5esjxkpRtO/1575osRIUoiU2R69wjFb/f77f67ulhDEr7RNjLPYEvcvPv1boxyVmsSfQXRDy9pljEOJ8IW+P1WTSYqEOHYOp/M5rXoe2vHJNEEspE5hIJOTNS6dxAmeqEPtZFPvO6DjOXPIZSylrz6lKTNrk7b3IYwLQs4S3xCKibx55WPDXmapVYo5bAXAupi+y830hb2ncViWy7q1108Nrnwn17I3JCkLevC5Fge7ScS6N3ge5fGqrk6dJ5XrXY8sv55/tCJNLAQEBAQEBAZNCY3b5+wcEBAQEBAQEzAXMtjFYmFwKmBISK8JLr2LCHKBuU9Xy6bK+Ur10LDGSvGVyNekAMN0g8k0nhk6PtiiaQVeSlYlHkR4RzVwzf+tUWMo3Ra7XZBkqQvGSDpNN4/pKlqUhfJUqnicv3zKWBM0F2ueaS7TfRD8AoGHYSoBjLDXZ/RJjqWnut8UEGYr6SlLcVBoNRXbMVLVbsoN5egx5yJcudtYishBxvQd6R8pwzKK4FNcrJA0UW67EAqR3XNDNIK2MmGkukfWzrsrMpVrl8+eWUT+tJljJuLXUWcAE5o95oauMO5JVilvT0mlahjLBulQ6Z8Vy0p6+kvL1VIAyo0HUZBHYRpmov0IaTRI7oqwoNbmGyxwxnwUcFCKonlkUswn8nqbLJC0+D0lTRYqrYiF6bb7QJr22rCt0mCoU43phK/N9r/8ntqsJlcB6rTMmMvUfxHblTGTXZzDmkmXC+KGXxvqCRoExU2fMlhqxjjzmUuF+haGQZvSJ1LKfSL9mesw3DqnvKHYjM9G+PCa+ZZiZfpozxwp9d54PJs7kEZjgvM9uxua5C3VDLBcpjnSVJFYZ11yKhDp0aXnoPbMD1FxyS8MzVpONc/mt1pJJTBi1xOorecvRm3ymjVpvBpbm9f8iV0n+j8MykoR30tNhKox7uUYsDbUlJh69D7x0OtRjPxU1mnh7OTiSvgeJ0ZMVQkBmJ1WVVWSkeeNH+s0mlS+wmoosKL9cYTwrXdsc6W/D5FJAQEBAQEDA5NCYVf7+AQEBAQEBAQFzArNsDDZzju0BAQEBAQEBAQEBAQEBAQEBAUcdAnPpKIRI7Z3C9c2hTJsuFVUhOs33q5a9lZZPV1Ygkrm5oe4dx+Osuw9fJhfkKsfjfFFE/nyqKPOO4upojIlAVe1Yd7i6OY4txWoos6nqlq4/093SvUn0dvt8SFhVmt6W6kQS9CTxTkG0k+J8F7hWKa6B3A2urnNhT0m8u8k+PeQO1+hBvJvHNWO6BndPVW5x0rKrEqg2SciRk1TJHS5lhbjlfUnYkFOSieItiIj2CFVyn0tKeSR3uvJxXACUv/+TtxfJtaER+4LevgscuSy66yjWk+yyOLkbAwfl8wS6CzWaeWl+OFX5hEpKtbeU7NQUZl+8W5fiiu4ykqB35ol2FwW9JcHTyeMOVBR4jqyQGzADmErkezqYykWtXD5z2bLtY/LxyFRub1VuCNJS471AeiaSC5zU5ktpFW15svReUBxX8TjuNl0cp3kyA4W+A3D9B42ruAtWUbw7T8/Dhg3LLnANQSC6acIGc4uj/qEmuFTZ++EdQGbcyj03rjyUlmLvdQxRhOzSI7nJTP2eKe/9L483i674secGJbglFuKmkhlwboxayF92VSwKede4eLfZ5+5TJOCt7NgJ04LvpqS8EHDkj1QQfE4k0WWb3w/z/GW3uNScgYS8+UIHJHnhjQmKfpqsfGqZvX5j3fvgYN8Dyc2Njqt4x700G3JXUT9OEgyX0OtXq9gipjsOkVzgpHRJcNu9Kzy/9tIyIc37zVAo13s/qSwvTr6PqdKONATmUkBAQEBAQEBAQEBAQEBAQEDAASMwlwJmDJWsGmExzWqWEmMiKZ+d5FtuyErGLGdGUJIsaMSgARxjqcbLJwubvZ7pMZdSZjmUWGE1y3AiS6Rrdqkqi447Qe/JmUVVgt4c9Ky4ZbTIWPKeJ4l3Rky0OzKMlqjphYBjLDWMeDfgxD0bOmc1NdnS9sRYarHyibHUMtQWT9CbrJkec8mcR7CqSewYJxqJnmCtFE490oKYS7Fk6RHSlBUFLb9TVe9WJLQXWyZvZ6YILtZcFPKOVLkt+SL3JORt2gtfVtqU5VufKSyzyoilJNWJYzDpUtrBWbuofZnn2qN4d68WUS1YtPwzy8tJO9YRZy6ZOMXjUjHMzy2IABcEf3ndF8WDebq47Lkk6I1U/KTMppVKAg4NpAUEDgW4tZ8YuUcapPatBbXoomC/JMbtl0si/pOLdx8MxDFEKY2JdlOfYYW9+YIPEtuVFvkghisTlC4se5/HFUKPiay9EACals1ES9yXWTLiIit0jwJzmIs61wpM5NgbD04Nn/UyOTtJW5ZDOU+v7FKJbV8U8ubXT8849p6xCU0cZx1TGmeO1QpxvD+v22fGmWC+kDcX77ZprA6LjCXFytLTZH0TfGaIz1jyBJxN6Al6Z4WQs5Qsc8ldf1HIOxHEu1NVZp87lFmhceV4UIiTBLfN/zUhjb8PjrlXHjdLY9zi+Hd6PjAHJyMkjc2Kgu1S/Yrjm0KZxXKL59RC+fIYUXv5MyF/r8zY2TQGC5NLAQEBAQEBAZNjlolJBgQEBAQEBATMCcyyMdiRaRIKCAgICAgICAgICAgICAgICJgVCMylAAHTnHMs0Ksl9zgvvSJ/hDJluyjk7QtKkktPjcXVvThOKW1QWZ7bHQlVklvN9NzieJ60grdI7iyeeKShzsZMpJlcoui+PfFUJbkX+kLP/NkRjV50WSRx50gQ7/Rc5WpeWEPLptWQu8DVwUW7yR0uj+tj9UXucJ7rW+y7wzXZLTat65WLc1Rt/3+AU695nLkPe48uTRLIs/mIqhrx+vXL5PtFIdDJzlk+X9nNc7rwXEsLQt4Re/6UFqPcXhomrHMXB8G1gdwG7PNn90aUa1nQuywA6upmckFvX6C7oj1qyuMgibJWMZB7EfL2aNOC4G8xjrvKSCLcRXcZP80X75bKyAS3Ge4qV3SlEd3iSq54gqvGLLKaBRw8FPLvReS9j4dWUVTqU2cS5KJQ9R2ZCr08Ay2IdvecX5fbdbGsSsH+aTZUcUEVYRGRSBDvpjEWlx6wi0BE1He4c5FLFe/jqa+g/qEhuMA1PZFv3x2OC3rXrHi04J5ILlUZGx/ZPomJLmvfLc4TLyY3d8EtqArSIhBVfUcVJBf7mldfMNdv7oNdIMWJi3AILu3SGIvqoi48u7qtG+4W5+eLI/48zX0IC3ooQZTdxgnucRnIHYqJd1u3qbKgN7nRJyyN6t4X7aY0XUqjuIS11aKQN8lcAM4djru+F8HbYzzNz600zqTfM0qV89D4SxozFcfN+b7vsujFCddT1TYkF7KqNFu/XlwOyfVNFOgW4np5xHzhlqKQN08rntvLR3mEHx3SmFLCbBqDBeZSQEBAQEBAQEBAQEBAQEBAQMABIzCXAiZFpeBjhXi3mL9ClJqnRVa8W2Ji9LYULgkTF5fEzfMZa5onWKm8kFuGqhgnJAwoLcvpWUbtzHV+jRmbfq6ZJtj1noEv8p1yVoqeWoyTWy6lfMU0/qyJxUQi3oBjjNVUy4ScpZQLeTd1n41rmX1iLDUiV75jJ0UszrectQTxbm7pLIp2cytZXbDOkEVUqkprzOTsGDrYPEYuuBlXWC4jIU2yvjkRzunN7ZMwt+bHCUaOopA3Z0NVLR1NDL+YvTNk1fSXG/ZFWTmrjOrJt0yTpdNcQ8Wyz/n1kkWXnlM5jceS1YfKTVnlSytS98JZkJajdf9LAqwScykr5XdxZWaDZSl54tomTRThLls/p7uk+XQwm5bBDXjuQX2TJGp9MKDyZEs3feP4OX32J29/vTCiJIFlCcV2XjxXudxy27ci/kKbr2rnfrnV6cAk4y9itqdyxQkAACAASURBVAqLd8RMtDsqCHpzlnLdMpfLi0DUrbA0F5Q2fYcgKN2U+vOCeHce5zOWPOZM7C9jz1ElBs3ZK1FJUNrlm641Xlx+nNIE5pIW+gx37vL10ziTL0JTFPKW+24XV1yEwxf0LjPHHGPJD/Nzl5ljRcaSJ+gdletLqjuCVIcUZ0PPk0B5Id93jCRXVpKV44qMpZR9iGwa+waQgDeFfPGOxLCYpH5aCd8y17brpfwS7GIxfAxKaZVjVyE//S96AZTZZ8UyDzd0IeT7VWymTMjvtV/tp0ll8T6kOG7yx5bCN6Ci+5lNY7DAXAoICAgICAgICAgICAgICAgIOGAE5lJAD5hCQ6mQLuklSX79dtl7lK1qZCXj+8S24PlrmnSAuK4SWdiMHoCnIeNb1fLyC8wlj3ky+TQ8+c7GzCpCRpeI++HaJWfzc6es2aV2Kd96KS5B21wPb6Z5nBKemWV4saWbqywkIqvM1g3T5DFMJWIs1ZjlsmFYSk3N2UxGV8lYRPtj9/yJscTZSa0aaS6ZMgWff5+5RBaz/P/6FEyYuNISloeZ4pYtU1+q7ONNFr+EFVn0Wxc1fzw2nNnX5TSbR9BhypjvfhVUQbPL8+Gn941rlNk2RKy+sr4Stz43Cuwkqb785YlNWNBqyK8tD6UvTExWHfZ4nAWSta9CPU1lmTtQuGVvy21btj6XtVOKy5Ln+0UNJUlfSWI6lRlJdvnyHjVZtMSWkhhOGn5FBBw18L9FtpWV8kkaQVWQ8lPfPl22kV+u/72XjueW5UodN8Gy3Ns1lNt3sZ3zfV9zyWciiRppMyC+IbHQi2MzgDGXTb/PWa91TWmuDKfTV9b3ob5AYrY2etBXyo/NTJg/p1rMl7Yn1lG5vjKJ9UKaRRkfQ2gv5CwrVdGfSEufHwpImks8rqi1FHNWk2WHcaZTHjp9Jf78TZzicX498bQqzSWqE48JVmCJcRCDqYqtBPCl5ylEKY3XCaVL+kqWnSTGaS/M9/P79TSXjK4SaS1xzSWpjydQC/KZjaa9czZoYdwYCb9R+DfNMvDgh3zf1xD160nSw5TYfO481S1AT/d7XmD/efpEdkymSnHS/1IbLbKT/Pz0/ZfOSb/rJr9mfuxUWktTYpaNwQJzKSAgICAgICAgICAgICAgICDggBGYSwEBAQEBAQGTQmN2rVQSEBAQEBAQEDAXMNvGYGFyKeDAIAlKQ3Cz6kHQm1OwlRUXnly0u85csFxcg8UZ1zcKFXeLMyKTHi3Ypw/HAp9Pos4TozFlDT4yLmldxovMDM2UaJRc/DLRiblmLqBJS8j77k35NdZMmY5qa5+tLvzPL5LfSw+Cnly0u+gOx8W7yR2uD+75txS5xeXlc/HufsPBbnK3uNgP/WXsdSmubmnr5n9GwaZskiscVbm3DCm5VHn8VBNH9cZd2mz5xdzVLljiErFTuMP1gkrBdkEAn9xO+DtVK7UXSdB7clFWf+liosyX46ieagIFWwLVk/+cqC1xN0OTj97/SUucGo7qPLnrm0exr1hOmqjskkub6Bqjy2mZ5MpWdJuB4DYjxLn85WXPZ8LNJmCuQSGCmrZL2FSocp+jtEj4DlYJe0cFEe/JyzduOHxBgBm8v+m6BtprkNxYpW9FhburBNn1PZ40jcYXfExG/b80/qrToh3Mjd4t9EChux7alwS9JfHuptlvsrhG5LvDNWL3PSOBaN4HO7eacs9A/QgfD8YZCSvn4G4+5CJU5UrJYV1tpP6hou/g75Hrsyfv67nrmyr0y1Lf7Y+x4MV5aQWXxbyMTAz5vi/arb24mOWfrng3gff/RXep1JOFIPHusqA3ubvx74kT7WZxWSFkY0Vyh0tZn0pC3s49LnFlVUgb0Cnjg/hZLgp0F+J8F7hy/mI+nj+y389yfmonVS6jhwqS26N0TimtKOTtucwJrni0K5VFbVpyd3PnEb4FnhvdoXasfW4QJpcCAgICAgICKqAqB/sBAQEBAQEBAQGHArNrDBYml452VDAfxOyC9aS35e6ZKGhByNu3nNXLcQXRa0lQMuai3QXGkszE4Oc0x5k0SZBZAllP+O1LhpjM3CcZGDlLhsS7ux5Ti6yHJvTEu2Mv5CCLpCjiXcEc8+umbLksLkHcRMumNQ1jqcXyt4yAd59Rj+xnZso+s9/HLr/IXOKCniRA2RQEIosMpvy6J7eeECSrhbSYcyYIeluxQ0EwUVq6lfJJIpzThRPqLgsycyZSRIxAm19qS4wNR2zBwhLGALN0svqyS0cLTDO3nLF7yM0Cc4mzlSQRSLI2OuFNMBiBTsXzm3xWkF+z3OU2XcTBcHZk5lJWSJtc3FeK06KgNy9j6qXKD0YEWPp+BAQcCOhbdzDWWIltNFmePB+1v/K45EC/vRzF9uGJ7dL1KKG9SgL8Qs/j2rfUK01+XK/t2zHGy3097XsLqsDv/2nMBQANge1KYyvqO5qsM3YLdJT7h2KY5y+zk+oFxlKdCXpHlrlUft/SrPw+pJa5xMeDfj8lsTo4inF8fOfEfF16mQlbfleq4It3R6W4IhO/xvtngW3sGMjl52/rRKgvWrSDs8rs2IzHEZspoucp9P89MpgkFlpmxwtlQe8kI5ZSmbmUFMI8zRznsZm0FyasnaUgQe8yOykRBL0lUX8rom/zlBcAqfp8SovFeL9hiqHwPvP8ls0kMJEkQfsqxlLxPIBrH5Eq11dW+Y33Q0B+LHqSUMoDlIW8pfYriXxL5RZZUHn5fs6pRLyzaal8H7kIk0sBAQEBAQEBk0PPLn//gICAgICAgIA5gVk2BgurxQUEBAQEBAQcsVBKtZRSP1FKrVdKbVRKfeJwX1NAQEBAQEBAQICPwFya1SD63KH1w5Tc3qrc47iLTpWgdxUFm8Sj87j8NSXRbk7LJveeBneLK7jDcbHGpqE/xx4t2Bd1jAUaqAQnIOjiEnFmOSrk525Kcemeusp3/4uYy5xC24S9ubkV8+TpvpA3iXgDri64oHcD/QCckHeTCXr2mWsj8W4A6C+4ww14bnEm9NziiF5tzlfhUpVfo09br3n1NTWllFOqE6Locl9mU4dULq/fmnW9cnH0vljKMDtXJVWYXLbY+wBbRrkNieLsgpBtUbCVl0WC87F2n/6ikLckAFoXXBusi4NEo/dcG3yq/FT1ZWnKBaHuPJLSeB2afFRmqcTpQ3KdlMRZdYVrgw0rXGSK+/n5JJc2wQ1GdLOZ3LRlXeyk8ntwxzjMVrM2gFdprUeUUnUAP1RKfUtr/ePDelVzHEU3ssy6cGReLi8PdwESXMZ6gSRobN3jeHsSvom9iHv7bnTFe+zNLeFAxbu9MnoR4BfaaxXk8drkYzKeP1Jl6YGadYfLwwaXJRDc4hoF0WjuliWJRjcKQt6eoLd1gWOC3gV3uHqtLOgtgboM3v9Tn5Swd6pm3eHIBb4M3+1u6h5HFu0uu1S7POX3XwK9u9yVnfalvrsmPH9yeWsJ4t1SndB+09RDTRL0FsZrqhBOBS24uZFrIxf0pjgn1C2Jd5fHC9YFjot32zRdiqOxYsrqywp6K/cOkpC3tuMA5gKvnfucvU+qa1X4n8Efc/TgOin8hqHfPL5Lm0njroqFMiJ2bhq7eSL3gmtdEdN19PKHfBWucsI74tJQShNd2QppvgurcD2FQvzFXyquQzi7NKaswmxiLoXJpYCAgICAgIBJoVG9es8hP38uXDBi/q2bbW6IEwQEBAQEBAQETILDPQabLsLkUkAFevOaJKaMvOytz1ICHDvGCXtzQcn8lfRFu43lzIhHc8tZU1gKt8hYajKxRifo7a6/XmAsxWxqv5fZ+JRNZVctUVsj8UjGVKnr3PLXZU2xpklo0zCMpmKCFerJY7OoclyR4RSxZxfTssOKWyeNxVLnQt5N9vxbhv3Ux8yTfcZEQoylAZfdMpb6mUBkq8Jy5pa75dYT36LoCziXQalk5eBi0Io+1swikKnC+yBZgQRRRCdOyfIX8kx2jbYsejcqxRHdsybLdyS8D8UQkAW9a/CFvGuCpdNvLxRKls5yHFmfHdNsivoy6Zm0dLTyw7y8POwKrLIq5pgE0QJWsDBrT/BRsEYpYiOUxTsla2YVe0iM60HIe7psh1IZR6CopMpXMVgH4FQAf6+1vucwX1LAcwBicVQxOPz8hnnSo7D3c730cyYuH1FGVbudrni3vKAHLeRQzVwuCnnz/r9hGMsNRgVvms6xYcIWG440LUt5crZrk4t32/7fxTUMU4kYSzXGXIqiiro0pBHNric1HYnHtCksPDHV+KIKRTFfQGIuVQt6U1xsF+goj0/5mIOqwi5Uw9JoEY4mewZFBnJLrJsyO6leYCQDjk0WMyZYXBBZn6pPLjKW+A9qLbGTrGh3fiNdJtzeJdFuNmBwbCZ44eRxuhByQe/UhE60uyjkzdlKVYLeyjI0+YIe0+u7pS9kVBD55o+fxnci00ka/0oi3/Y8wruu/XPPBKpYSlK6lCaXQe2x+ly9lCW1+yqWEhfxPvJGXgeGMLkUEBAQEBAQMDk0oLOZHCKWsFQpdR/7/3qt9fXeJeSzaS9USi0EsEYpdbbWesOhvKiAgICAgICAgMOKQz8Gm1GEyaUAg7JlS0SVJayg9eKlCcyKWNBcqptl7uuQLGdGcwmT68UAQMMwlYix1GBT78RS8pZnLTKXemQ+2KXSmdlIWesMs7ZQqMk3nPlsp+ZZeEvDk+4BMZjc/SpNbKbqZ1w8eVWdiJZL/vzNc2+auBbL34pJX8mVP1D3GUsD7CszYCyX/UxDwTKXSEOBWUAk5pKznpCFugzf+mAYSyhbsQia11dEFiqY87g0549eZqvJ2gwmDy+DGDbmuqayyBctW3wZ6qjQ9vLy4kLINDUkNpN9D/x2ALD2wuKKuhmc1eSsz0w3g3QYClpZ+fWX79cuH1xOsowlv83RvdH7wJ/15OcpailxyL7zvsWZ78txguaCuPQ4WTP90M8zua7SVNbNotZSrxpNzzH2aK0v7CWj1nqfUuouAFcACJNLhwgKZT0iQuZ9UzK7l6dNkyk3BZOHvm1Z4TyA01+SLczUt5ZRpbkk5ZsJdlMVY4mzEEvt22uvk7MVe0WRsewxlwXNy6LWUp09URprNQRNPmIs+fpKFHK2q6/rw/t60ldqMHZSLfYZS3GNs2QmZwwQOCPWsZRYGWZfYh33oi8jMyU4M8EwYAvafMAkGmV68vEBjSVqrD90GqLwQkB+/kXGOO+7K3WwIl/7CnDPjtdD1IPWEmcnFRlLKWMiWZYSjzP5upbBVGYpJSyum1GaH+bl5iHXYXL5zbiQ1Vdi6HCJcuwkqte0wGDK06q+AaZ/9jQaUxNOrSXGwcesxffYZyKV46zmmMBScmVUj+Ecyix0yp9O85MqjtMmPeMUaRVMJwkSs0gLZ8hsfh7n59MVaXMJYXIpICAgICAgoBKH01NOKbUMQNdMLPUBuBzAXxy+KwoICAgICAgIeG5wBKoVTIowuRQQEBAQEBBwJGMlgC8a3aUIwFe11t84zNcUEBAQEBAQEBDAECaX5gT4dObM+2RKS9uL+ZRPt873y65vxeVua6ILHKdl+0KSTfbaWkFJJtpddIfzKNuGqs2XZ7XCh4KWsuRWUxRy4/ROR7Fn1O6CQGGdCw6aZ9ZgKpNd7T8zLuhNcaniAt2+OyKnycvLDRMdvu79D7g64W6JTsg7z9eK3LlJyLuP+U2RGxyF82ruWcwzFOp+RmXvJ+o7LXEblWnunLbuqOkCBR7+swac0CNRqpVXmaRoyKjIWdFNjLnAFcQR+fW4kKdObmqQxN8lt7Xyce75V9GsrfspF8w356yx8i01Wli6uF5oG/l+QYBVcHFoCksXi4LeZp/T4mNze1aYk7UXovynrIxawZ1PoolzVNG4qVROQi+5VVS4wPH9TAluDxCWHqf8ohh32lOcSyuX0QuKrnIipfzwrhb3EIDzDtsFBABw348qOj93w7XfYbZUdzRN9zn6xpXd4/LSAOcelx/gfzu11zZNfkHQu8o9rleIbmsV91npJjMDLquSVEEU+eMLPjYjIe+at6CKP/5qsP6fxlot5lfTsuMuk4cv3iGIRvfF/tL2DS7eHfvi3QBQr6deGLHy+T7B6ZSY7yxzi49SyY0rD2smzlt23e5P713hV1VaIMJzg5r6XfTcvkF9H3OLK/Tj0mIc3FXRCnnH5b67ZZ6/7yrnu8PVvPGaL94NcKmISW/JXy6+4A6XsvrqZvm7l/AxdBaJYb5PbnGu/G7Bja6b8TSY8t0BtGAPucV1WJtNVVnQ27rD6TzkbZziOJR5L6mN+m7003R5Fdw2i66cvB5iQVqi6CrHx7+xUJfSONydu/x7KJ3mOKI4/qpyd+Ow7pVSmnAsnYefz44HK9zovPzTFPIunmfKfLNotbjeZg0CAgICAgICAgICAgICAgICAgIEBObSUYGyEOaBQlrevMiOkcSjOTvGWsdMWJfEoxlzqQkSlM7L4Jazll0KlwtK5vvFJXEBx8SoCdacXgW9izPiHnPJ5i+zV6yAIDtB11hZk5QvDW9Eys0z6HDBbZTZRqWl5wVhb6lOYlOGZLmse8+fhLwNc4ktO0yMJU+0u8BYms9YSoPGAtnHlhvur+ViiE3BEkZLECuvTsoigYRUFIE0z59YRyyNmE6c6FEU7fYthWS5KZ9bFUKeL/Ksn/6xvS6xTQw2LihpLdNCe4wEKVuly5b7mn0f8v9Z9dp2wq2fVshbkRAoF++W4vx6lZas5Ugt80Bg5pgwYewE1UOdHAyshbkyT1l0V2IpZRCYSCVB7zILSmIx2PIlBhNfzrjAZjpQRsRsWqkkYGagChxKiVnh2EDE1CtDYgpNF0UG02QoW/vL4uO+IPnUbKxe4a4tYXHPrQ13yv6/MF6IUB5fNHSfjSMh74ai8RdbPMWOsdy5aJl7EvRuTbHgQ1E0mot3036Ni0ab8URsxheKjS8i4dXIzMArNvebsgEbMZaUx84gQW+BpdHDJ7CKpeTHZUJaeayuCu8zb0uWqeKxUfzQF1SX2MZ+XIsvxlEQ7wZcndBiKzHr63thKXEUxbuBMmMp1XwsR2yjCuaSJ97ts5Ty8igtDzmrybGUWJyhnnQ1sZQYE8mKdieluKzAYMrvU/g6mkuj/Jq1R3ucx2aa+jvliXAX4iRWU+wxwfWU+T02X6GuexHIPhBI/Yp0rmJcFesoj6P2KOWffOxnPVjEa538IXjtfZoiSrNpDDYjvZ5S6gql1CNKqceVUh8W0l+plNqvlHrQbB+bifMGBAQEBAQEBAQEBAQEBAQEBBxeHDRzyQhs/j2AXwawFcC9SqmbtdY/LWT9gdb6DQd7voCAgICAgIDnDlrPrpVKAgICAgICAgLmAmbbGGwm3OJeBOBxrfUmAFBK/RuANwIoTi4FHIkgmqbHtpseoa0oGqlUWYCau17FBUFv7oLlxKMbNq7oDscFpYmWzQUli0LeTUaVJt1pSeRQcourgnVzYw1eOjQzseT5xvPXzTPrMtp6Xef3S+5xMWum9hlr/ozzdE30ZK5tSmKBnttU7IWcFk/i6k20bBw9/6Z57ly8uz8uu8UNGrr6AkOfHqynLC2nD8+rOxpx08S1TMgp8I5mXf6qklucT6k2Ao7MzZDo0kkaeccBjgKfeKLpvpuVRzEWKvhAiaqSaCe1pchz2yAh26SUX0LRDSPSvCwS+XZxTrjcF8bm+157se5wEsVeEPSOfRr9VC6OiT207B5Hbo814RojwWWH0GsdOZq+8L5Z9ziXZl3TVJkcTS5wmSDaK8U597XJRX55Pun/AxXyngnx4IC5Cb7wgDQyKLoAeILe03yvqvJTub6LSPnKSNxbds/wXfjyMsquwkcSqoT7p4IdL0hu02YcRq7wAF9QxY0J7EIqZrzA3eJbwvjLusPF2gvz/fy6W4JodMuMFxrMZb5GfQcbQ9SMG5wquMcBgOARCFi3R5M/Yf2/6NqVh5EgdkyQxgFVv/t4f1J2i5P6DuYGWOEGKgl6F/tsyaW9KQiq23pgz78V52MOv078Z+a7DU4tRlwl3p3v++5w3VRygVPluIJQN4/rsLhOQeQ75YLe5CrHBb1N3ZEcQcLGYYnK9zNBtJvCTLv8Ut/upA3y0FvsQ1gUpAri+FT5aVwSpOgyB5SFvGvsXSF3uFrVp5KlkdsXlyygR+tc68qFVbnWSXIY3jtViONFWXFtoXwt5JdA4z9pokd0u6vIL5Y/m2aQKjATk0vHAniK/b8VwIuFfJcopdYD2A7gg1rrjTNw7oCAgICAgIBDCjWrVioJCAgICAgICJgbmF1jsJmYXJLutjj1dj+AE7XWI0qp1wG4CcBpYmFK/TaA356B6zpKMflssMvBZ6IP7GWVBKKtQCQTm7bL3gvsmAZy0UifJUPMGVdGKzJC0sRcYtPmZEXj7KRm5ItMckFDyZpDM/SOAcHvEyW4pSVzcEuJyFyys+XGYsItSeakXcYuiY2lJjYMJi543hGYYCkxkbQg6E1WAr4UMdWJJOht2WSMOVYQ8uZWygFz6ACzHg4ai+ICY21cUHeChvMa+f5Ao2PjWo3cslM3bKZarWxF5NCF55myB5okhu3FrS2Jb/njlg/LhGH5E3MCaYlVOrLKmukv01q+j+I9Tddizq3QZOUSxbutRb7MXJJEQZ3FyqVRO6kxi6RrQ2Xx7r6CFRpwVs8qQW9eJ5Tunr+7NyuuyUxEVHexaYcSM6rqeziVAKVborZKnFUSZRXKkkS+K1gIVWymKvaCxGbqmZ2kM0j2u2wWiUkGHBj4+Kul5iOCmlJA1gli03cmZWlGnHcGmHFSu5Kl/2kcUmYwVS2eMBOC3ocaVW2+SsibpxXZ5DEbm1G/32BxRSFv3v/Toin97JeEE/I2zCWPpeSzZPIyjGi0ieOC3sRY4mOCqO4zliL+KyYq1yHdOYnhRoxJpaKyAHWRscTZONLbU/VVlEgIRbarFlisU4nW23zCmKNm/qF+usGeiSTaXWQseeLdQp0Qc6kXVjlQXj69SrwbALpZfu9JQag738/ztRkzvWPSi2G+T+Nrd35iJ9nQSyNBbxfZ1cRYysNUSYLeboxrhbnNcVMJetOdWAFw5fJbcXBVHi9Ufa+kcbMqhED1IkZxaRzmGEtVDLWI17fZTQ/i01rVc0jsJIIowi2kVRGF3G+3cpw7vlyAyGqisSJL1IW0qTCbxmAzIei9FcDx7P/jkLOTLLTWQ1rrEbN/K4C6UmqpVJjW+nqt9YVa6wtn4NoCAgICAgICAgKmAB9/1aO+qQ8ICAgICAgICGCYCebSvQBOU0qdDGAbgLcCeBvPoJRaAWCn1lorpV6EfFLrmRk4d8C0UF7mdLroxTrGrYOS5pLz6zcsJW/Ze2IpuVezP87n9psCc4ZYTC1m6GlEfuhrLuUzxD5zyU+bam6Y5pgTTf7uzLJlD1al/DR7z5lUXbIycc0lw0Qi3YNYWCqYxxEDSRmLB7d6WX0lgb1SZbmss08DWSzJSsk1l0hraZAxl4qMpQWttk0bNPt9LWedafbljKW4YZgtkiWSzdiT8SftGot5l1m2jDlKtcufNuvfz5ZSjrOydaZY/z6DaeYsBxJjyTGLWB2iYH1mLJbpLnMtn9PXlpL0jCTNJXFZ6bism0GaWk7fglluBB2GKPWttppdM1k468xU2878649mgJnpWaoKViWJpcRZFVlBJ8HTUNBlazXta6EsiW1UjPNYSoIVvHS8ri5fPmh2iUkGzBz4N6NqBEHtQsqvGDMXaup31Cu3oGfGNeSorfDrKeowxV5a+Q5If6nqWzoTmmQyu7Q3hsp0IJXJdTCVfS6GpQyuuZT3/002JrBaS3asVdZXarJH12+YQTZkrCNiMbWE/qFhwjpjycSkq1RntWrOSeME5TGR8tAjiER+ms8i1l4oxU13tFyluyLFVTHyAEBT3VkWOtdAozGoy18r9OO8724KbGOrk0isshrTw6yXdTCp/65ir/BbSgt9fCZoZBJbCSgzltqC5hJnJ03YfIbVlJXHBh2PGVUMub6SFGcYSKZv5Syl1OgvcV0lyyzSPoOJx/H2mJpjKc7XlPPHBnnc9L5FjolE//N3ndJcnNMczf+vCe2lqk1k/L2YQTcuUUOpIt9k/+dxfAzn55OYRVpsv+XypXY+Y+OmWTYGO+jJJa11opT6XQC3Ie/Hv6C13qiU+h2T/jkAbwbwPqVUAmAcwFv1XFGtCggICAgICAgICAgICAgICDiKMRPMJXJ1u7UQ9zm2/1kAn52JcwUEBAQEBAQ8d9Aoa2cEBAQEBAQEBAQcWsy2MdiMTC4FHIk4cFceonFKLnC2RNE9ziyjzlzgSMi7xqnXBXc4TsFuKV+8GwD6ar47XF+tTMuW3eLIfcelxaJbnE/1lJbz5CAapBUX9ho87XNqpS/k3WUncOLILM7QfBs6v6kao7kThb2rJtz1m+eXqfJS9VJdUv1Egoudo8q7czZJyLNWFu8cMJT0QUZln19wh1vY7651YF4e1xxk1PcB8/zrRpDZ+yrlcZzmTgzkuG3oyuOM5jsh0VKNO1yWnzNmlOqaubdI4M5O9R4cKIquadN1bTtUoOViuduAJPhIQt51Q6f3BUANxZ5R60kMtCgEysGFCovPndPoY1NfMRf0LlC7uSC5JLJeBYn+bK+jR/Huomh3JtDcvfwF0e6plh53+Q/eVccVOoNlBcwJKKiSoLcT7+bQhTTuclZ2/ZHL8FF0hZsyzRPthle+tAy2D3JF7q0NFF0fJJc/7roXFcZKonscc5OZSV3x4mIr+fWY/p8W9JAEvVXZLV5a0IPGAv3MLb5VcIfjgt79pl+QFnyw/QQXjzZlcNe3uK69OCX8iuGfe3KSoNdA8cU+ehAo5nCu171B7jP8NjHV+1wl9uv6N95H5qEdW7J7sy5wnsh6/rypzyZXOKDcdwNAFBdaMJZ8uwAAIABJREFUPxfvNv24FhSl3TiMu7n54t2Ac4OTXODaUpxxhyP3uInUnbuTUR6U4ihM2O0kgqA3CXknpu/2XOAFVzlyfSN3t0wQ9OZ9N7XR1HwzIu1e6Izc7pgrsRWCN9c4lQ9QWebBoSa4uVF6LLiM1nppJ/x9MKHXh1iR7/I7Yl3TuKxID6eUBLetG12FGDdP10KeyvwVQt6iGyzVF48D1WH5+zDbESaXAgICAgICAioxm6xmAQEBAQEBAQFzBbNpDBYml44K0EyoYE2AniSldxStY+KytygLejdRtpL1x/k+sZXy/fzqBgTmDLGSWsyyRXENy7CYnOXA93tlNyTGOkPif/JkPhMtNOlkSeIC42Q1aXPmknl+xB4iayIAxKbJxgI7LFIkIMiYEtbS5p6nE16PvTLzc+VlNbnlMvaFPPvY9Q8ayyJnLi02jKVFA+MAgHnznaB3a4lhDw0yS6pRBVdEPxMqQneYecnsZ+N5WYoJhqqobAXMjCUrSUnInAs+VzBVrEVDssRMD72+W2TV9wXYfVF2bvmWmDAHC39Z5jysCdbPohAo4MRAufWz2cj3I9MOY5afWEkZszZGiV8nnLlEFk7O9IsLQvwzwTjzLM26bH0uQhLhlMQ4XZm9vUGWzVTxxnni4IJl1DKpAjsp4ADgC3QLDM/C6EFiOvH+J7Ui3MZi3+M3TGoD9E302B+azp2D83mp/69mMB34B8TdUxkSQzWyrIXJ8/HxFKX12palMRmd07KUNRf0zvtivsAIMZalBVJoLNDPxl/9JAxt+od+xmJtCQs+EDumXqeQsWTMfsTKp0U+rEC3QCPyePvT/OxFh5g54BZ6qOgfPOoVJs1H4t6SoLdjGLs0SdCbWGSu73Z1Uzf9OH/+JAhN/TJ/FUmgm5M6iowlzlJKBNHujmEzUZzPXFKluPHUF+2eYNczYdNcXMfcHol2t1njo7guuyn6XqXGMyBlHgLEWPIX6Cgwl5nYt9RubRs1ngqeOLgiZhSLE9hwvUBicUtjplrks5lq3niZ8vPx0XMz4VHFLJKehDRWpziJDZVVUKR80e5C2hQi3nOFiTRdhMmlgICAgICAgEo8V4PIgICAgICAgIAAh9k0BjsyxD4CAgICAgICAgICAgICAgICAmYlAnPpqAQn9pn5RU7XtDzj6fGJnXtcTu/UOoNOE6R6At1sP9JsHKnuoqMHoKExrGpQiBCrJppqAM1oECv6l6A/HkSbcdnn18ktLv+f07JJULrBXN/6TFzNine7+yDKMBepc0LekghbWXy0bqjIJOQteGJ5INZtYrinXZa/ZuK46x65/NTIBYgJ/JFLoSfCbVzkMhOnGQ9cmSvnVPu4StCTRL6ZIGMj8p8/UbC7WRd99aexpz2CDXs6eLY7grG0jeOXPYtUa/RlEWqRQmNrC8e0+rGi1Y8zX34cViwcQPTYM+56Tl2a7xD3lHN0E0MdbztRRIyZ/YYJI5ZGVGSm0lgznOjYVJRUzwcDia7bC4jSHh0ia4QTlOYClJMLl7t6pbCDxc392NcdxsaRUQwnw2hnHSxtdJBpjYXNBLGK0FLzsKQxgKWNeTh3RYplzT5PlLJvwFDHDW09Ym4PVgCxy902KY3o9O751FLjyum53pr2TnTulLdtcjN0KD5tT2BREnC0IQkysutX5WfsjqtwURNo9FmBTl88thh3oG5uVS52k6ZrZesv4OiF5DJmhbOFPKmNc+01I7Fr4/KhPIHryduRhEqXooJ7XF66cX1jfWS5zQvua9N0leP3S27M1r2Zu7lp3+WZo2qhh14WW9FaQ+s0d7PRKTLdhdZdpGoYgEYHe6CgMIanUFMt1KI+DEbHoRXNQwRty+kzCtEkT8AXTyF3OMktrt+4W/Uzl3lyvWpxt2mzH9fKLnC0rkvEfqnYoUmPpvGit8t0v2MHM15wYsFcsDcrhGkprcbGZFlhDJfa779GM25jLB3B5rFhjGXDGM9GsLyVINUZ+uIMsYowkdUwLx7A/No8XLYcWNoYQKoXWRHwec1ctoDcExsNVzf1hmmjwiMjjWnuAmrF0lkk9d8UdpkLHLm+TaTupSKXt7YV6Jbc4lQpTnKBm0j9MM+fX2PHjBMS9gEgd7iU9a1FQe+EiXc71zfmRqd9eYqpFuOIzMtN+ZOsbf7X6FeLkeoJ7M+eRJpNINVtjGcLoJFhP+pQKsJ2xGioATSjeTguWoz+eB607rftt15oJ9yF0o39ylIRRbmBPP/kcfRbyXOZszc+vTbnu5XBK59/r6Wxd9V43Ekc8LjCub19Etzm10b3K13r1ELePI8WJBcmdaObZWOwMLkUMCPQOkU3GUKSjmFMd9BNh5FmE2LePRXl3DOSh/PjxVhSX4ml9ZU4RR+LYxorMVDrm/kLD+gJE9kYnhh7Gjva27Gnsx3bJnbg2WSfnHl7RUF35gOV5y9dgPNWLcH5q5bgomQ1zjv5GAw26xUHBhxKTGQj+MXETuzubMfeZAd2dXZgJB2afkHr8x9ipw0uxDkLluKchUvxolULcM6ixeiLQv0GBAQEHAponSDTHaTpCDLdRpq1Ias/TY7NJlSIMD9ehoW1lTg+PQ7L6ivRX1+BmrQ0W8Ahh9YaE9l+jKQ7MZHuwVD6NIbTnegOCWPs4cnL+cen8rCuYqzuX47nzTsGFy9diLPmL8NZCxegHgVnlsMBrTXSrI00G0eWdZBmY0jSMezDg6W8k4y6AQDrRvOwpmpYUl+BZfVVOLn/WKxsrsRxfctKK1cGBBwqhJ7iqMLkwt4+fFukZEmPVB1Z1kGSjaLd2YlMyxNJB4qhdC+G0r3YPLER9w7n13zO4LG4ZNGpOKZxNo5p5myXZc2kdGzLWM7qyp+BBxy7oUrImYPEnBM2Y0xLaCoK/Xn8/DhWPDF/iJzBmVdkZWkwc0LDnKtOzCVm1SHB7bpyIpwJcktHaoW9OVOibB1WVsg7z19jLJOauf7BWox96S5saz+KtSOPYk93G2YKWgM/370fP9+9H19evwn41r2IVYRXnLYS/+2cE/H6//O7OPnklfk13vWD/Jq7jJ00nAuFR7XRcuFJBwCQTTDBdrNPgtJTLTvsmCplS0lCbJoKUcHpMpg4aFlrSYC9Ctz6WbR4c7FbYkl1dYrhbCf2dB/H0OhmPJM8feAXXboWjUeGn8Ujw8/iP7Y+BmzIB7MXLTweL1+yGr/zzhU4btE8AMDIurwuY2bd9sRb4TOXGmmer8Osmc7CRvXrjpUsrr2gavlbcVlpzoToUXzbnats4SznOURi3L0Ki6O3JYED5hZUoQGRpVVi8qQop2X2W1R+7ylfr2921eIFfJEDyyYoMJhyUD/CFsQg9qHwftN3uFdRVronj81Bgr2F0ItT5e99MQR80d+cmdSBRhdpNgatOYP34KCRYX+6E/vTnfhFO/+B29xbx1nzTsWpA6fj+QOnYV5tAAsMC7XFFmkYMOykvtgIRNfKLKUGYy4RY6lGzCUu6E19AWN2V3WH9nPmURNIZFpYKMSyD/g7WxCoP8Q6J7y/oHc31jVonWE0eRo7u09hKHkK3Wxkxs7Z1SkeGd2BR0Z34Jadedy8WgMvW3wS3v6KFbjiecdiYV8TI4+W2WT2WbUNk4r1z9qylJiAv9nvmHEsCXYDjrHEmUsTVuRbef8DnLnk7sUKeZtG1055Gp3HXT+ld0i8mzOXsvyALmvB3YJot/R7qGpRDd53Z6yNaq2RZRPQaRdJOgyty79lDhSJTrCzsxU7O1uxwQyTW1EfTmg9D1euOBXnzj8ZfXETezu0QBD7jWSFv7UXAtWC3hSXTtFerBA8BPH3iuO0kEdmJ8Er12M1CWyj4rhdEgyX+qgqIe/KxV/YySVxdj3JsbNtDBYmlwKmBa1TZNk4xtK9Uw5moijCihUrsGrVKqxatQorV67EkiVLUK/XEUURsixDt9vFM888gx07dmD79u3Yvn07nn76aWRZsTlrPDy8FQ8PbwVwF5Y3luD8BWfhymNeiCWN+Yfsfo82jKf7sL2zHvcOP47RrMpGAtRqtVL9Llq0yNZvmqbodrvYs2ePV787d+70PrBATkO+49FtuOPRbfiDr92Ns84+GW/9tVfhvacvwTFmIiLg4DGWPoOnOxuwt/s42rp6sFqv17Fy5UqvfhcsWODVb6fTwe7du7363bVrV6msrk5x97NbcPezW/B/Pgacf/xSvO3CU/Hm1glY2GwKZw8ICAgIKCLNJtBN9hmDXi9TcxGUqkEhhlIRFjZOgoIykxoa49k+ZDpBlnWwtNbE/mQYY+l4qZR21sX9Qz/D/UM/g4LCiX3H41VLX4BLFp6NVhx+SswEtNaYSPZgd3sdhrpPIcMUY2zU0IrmIYtqqKk+1KIWXrZgBWIVYXmrg0xnuGMn0M5G0dYj6K+NYm93GKNp2Rg8knTwX7sexX/9+6OoRQqXnrQCb1m5Gm866UT0x4HxMhPQWiPTE0jSEWTZOKqnU3JDcC3qQ6qTvA2rGIP1FQAirIqWQWuNrdl2pHoCadZGNxtFlnVEI9ZENo5Hx9bjrzatR03FOHvwRLx44QU4d/7zD83NBhzVCD3CUQ+aeefWsaL2hwaQIMvawCSdnVIK5557Li688EJccMEFuOCCC3DOOeeg1WpN+4omJibw8MMPY926dVi3bh3uu+8+rF+/3puQ2NV5Bv+1+/u4fe+PcOWVV+I3hofxihUroJTCk1sXAwCGO7l1ki+VXgU3c82XnjdMD2bBTYldYi02Ectfnr1PzHU3TbYuZ2KYuA7TGaqZc9FywHUlMJfY8sFdw2JKFVlYuCWsPCggxlIT/QCA+dl87E02Y3tnPZ5NtpTyA0Acxzj//PNt3V5wwQU466yz0Gg0xPxVGBsbw/r167363bBhg5dn44bN+OiGz+PjKsKLF56JP//Ku/CSi8+AUgrq8ScAAOpnOYk/YqYGbcxX0aizAimyiFYwlnid0z6x1VLB8uG/IxTn/++XP+mpe9bzIOt8hmoLF1nKyOK9IF2IvckT2NFej/3pVvGYer3utd0LLrgAZ5xxBmq16XcRw8PDePDBB2393nvvvXjkkUe8PPc/tQf3P7UHH1H34SWLzsaf/49VOH/lEgBAZ1deh5mxXGasvXQT0lxibDtj1bYWtx6v09Ubt8qaOImdZMMyS0kL1mdiWniaGj3oJRGTqVhu+forNB2m0G06EMymlUoCDg2IyVQ0DgCOwcvbH33bNPvGERsoFd5txxTqsc+uyGeVI4Vl3ZV3nK/DVMVg6hWcKRxZtndeRuzp6SSl/FZD0Sx5rlQErTMk6RC6Sa5dOdlZI9VELe5HHPUhilpo1BZAKYVW7AxwfWoRAGBxtgIAsBDOeLPCjNc0JvBMdwf2dHdgVO/A9olt2Mfc4DU0tow/iS889SS+8NSteM/q0/HOk8/AqYMLsWdoAIBjrAw03Jixbhiqdb7cvdH1IcYSZ8kQS0lkoJoqlD5vGfttTekUR/1Kvk9Mc9afE7Nimt+76X4d6Z2qoY5Ud7C/vRl72j9FkgmMbAAxGhiMV2BxbRUWxCuwIF6B1QPLoZTCwoZ7P48x6hErW/kN/+rKjk07bl5e9v5kFD8d2o2Nw7vwRGcH1u3Zg+1jYzZfkmncuWkH7ty0A3/04wfw/ktPwW9dfDpOXjyI7vacKT/2NLWbMouFs5m6lokksJTM/hhjIpPG0kRBSwmYjLlk0lKU08zgjce1Kc6mMX0lTfpKTEPJtMPEhLw/T4nVJGkjMs1FrVMk6TC66d5SPocIcdRCHPWbsIWBxioopdBQ/TbXAhwDAJivFwAATotebtPm1fPn2aiNYndnB3Z1tmMo3YGtE9swkjpjYqJTPDi0CQ8ObUJ/NA9vWvFCXLH8hVjaGHSeGSavpK90qCAxhYrf4541lwr/8zifneRrInHmkGM68XfcT6vSWfKv5+Cf3Wwag4XJpYBJkTeoFFqPQ7KQ9ff34zWveQ2uvPJKvO51r8Py5ctn5LytVgsXXXQRLrroIhu3a9cufPOb38TNN9+Mb3/72xgzHWGaplizZg3WADht/nx8+NxzcV7sxAoDJofWGfZ3NuOJ8ZvR1mV9nfnz5+O1r30trrzySrz2ta/FokWLZuS8/f39uOSSS3DJJZfYuG3btuEb3/gGbr75Znz3u99Fu21c/XSGu5/dgFe8+kM479xT8PE/fQdef8rikrtGQBlap9jX3oQtE99AR5cHrIsXL8brX/96XHnllXj1q1+N+fNnhgE4ODiISy+9FJdeeqmN27JlC2655RbcfPPNuOuuu5Ak+UCtoxPctfdBXPJPD+KS45bhE5e9EJf0z8x3JGBmMd0fWwEBAQcHrVO0u3vQ6e6FzFJSUKoJpRpo1ZdCqQhx5Aw+B9pPNqM+rGquxqrmahw7EOUMifE9eGL8EexNfoqNw9u86ffPb/opPr/pp7hs+XG4+sSX4YzB8A3vBWnWxs7Og3h24hHRaNRS8xHXF6CvvhxnxpciUjEG1MHX7+JGH1629AS8bOkJWLFyCFprfOG+Pty3/1E8MrEBD+x1C66MpWP4y7sexl9972G86awT8dHzz8Hpixcc0HmPNmQ6QSfZgyTNRfSLyNlITUSqiWZ9CZRSdqGdPP3A6ncgHsRA3yBO6nseVvQpZDrDj3Zvw7bOI9jWeRTPJjtt3rFsBDdu/yH+bfuP8IolZ+Jtx74CK5oLD+i8AYcWs2kMFiaXAkTks+5dyAOaGP/+7/+GN7zhDQfETDoQLF++HFdddRWuuuoqjI+P45vf/CauvfZa3HnnnTbPY0NDeM8PfoAzBx/BB1a/FGfNO+U5ubbZBq01xru78PTE3ehk+0vpjdpCfG3Nv+DVr371ATGTDgTHHnssrr76alx99dUYGRnBmjVrcN1112Ht2rU2zwPrn8Abf/UTuPS8U/D/feC/4aXN2fOhfS6htcZYdzt2TDyBbsEKGscx3vSmN+Hqq6/GZZdddkDMpAPBSSedhGuuuQbXXHMN9u/fj69+9au49tpr8eCDTrBy7dbdePW/3I7Lj1uJj7/4hTi9Hn6gBAQEHH3QOkO7swcT3Z2CFouCUnUo1QQQIzILJfSizXegUEphSWMZljSW4bUrz8e+7hi+u2cjrvvFDzx5hDt3bcWdu/4Nr1l+Gt530ktxQn/4kSoh0wl2tR/GrvZ6pLrjpSnEWNU4G6sa52IwWo5Ho4cAAJGOpaJmBEopnNh/DE7sPwavet5J2D42iq9s3oTP/vQJ7EvyMaLWwJoNv8B/bnwS7zhzNf5o9Xk4dmDgkF3TbIbWKdqd3egkz0L6DRXHg6hF86BU3eowHUqDaaQiLKmvwpL6Kpw/+CqMpPvw+PgDeHz8fowZLa8MGnc+sxE/2PszXLHsfLzt2JdgYT3Ub8CBQUn05iMFSikNHLoPagDAJNpMmLvAFWfZ58+fj3e/+9143/veh9NPP/05vL5q/OxnP8N1112HL37xixga8tk3Fyw4Eb+3+nJcfpK7l33DOb2UizoTfZuaArm9AW7ZVO7mRjRfEibkbm5E8x3nNF+TTtTf0cTlJ++tEa5X3dUmLu+UhhM3uBzN8oHIMByFeSzKO4cJ5GFXO9o8UXjJpaqT7Mez4z9Hu0DPXbJkCd7znvfg6quvxurVq3Gk4IEHHsB1112HG264AePjvjvAG192Bv7mA2/AiWxMnW7KLW7JTjdgaz+TP+/RfflE2dComxAdbucuhfs7zlVhNMknXEaSvGBO2R5PqS55nVNaHo4lZfHIscQNMMbN/oTh6Y+xweW4EWefUK5+2yq/7w7yMNFtd7+Gll0zrpETyV48M/pQiVq/YsUKXH311fit3/otHHvssTgSoLXGPffcg2uvvRZf+cpX0On4g+xff9Fp+PSvvRTRWtZeRvP7HJ5wbqH72nm97u/mdTjUdRNm+42K/v6uK2PENCdqe6NdXjd53Y2ljvo+nuYZx82zbsNdJ9VTV7H3zbRNEtr36ssMJFMhLjM/IrlbnItjrniZiZumW5zoYjdJWpoOQWv3oTp7wXL99YvfUj5+hvD8b//9Oq31hYfsBAHTxoLaSv2SwXdPma+4nDJ3d6M4z83ELumdv8epKruZkAsKILmZ9uYyR25HkbeYhYljfTy5qbn87lshLbBQBbo26Z7oG9GFa/td5No3vM8ebj+FkYktyNg3AgCUqqNRW4h6bSEkJyxiPMSR+zY24vzHYV/kWMcL9DIAwCKdxy1hq/AuaeZlLGm58hcZ+9LiRn5vq1ruW/dsJ8aG4c1Yu+/H+P4zmzzXj1hF+O8rzsFfvvRMzK/nhXTaeV2QKxzA3eHM/4JbnCfoXbh17ycMiXezVyQ13/7M9AXdrqvL9kRe9xMd12eMdsw4wYwJqF8BgH0m3z5Wxt6OMmn5/8+23cn3d/L3eJgtL/9UdwOenPhhiU1cj+ZhfnM1BpvHYxDLbHwT+Xhlvs7dFxfV3PhlWSu/nuV97qEc08ofyLGt/L1b0eferaUD+f78QRfXGDCuiv1GTHzAlTW+J8O3t27HZx94Aj/Y85R3vc0owvvOPAN/dPoL0WeMVEND+bVNsPHUiHmeI6ZfpvEV4MZWfIxF+zSu4m5x5N7mu77lYdv4K7GhlnWBS9hLQu5w7cwfhwE5kxoAxlkf31Y0Jsvri8bZAKxuZcdM0GitMdbZjvHOjtKksFINRFEfItXy2IUEare12NVv07iz9sWu/c5DLh+wKMvDJRFzmWvkz3Zh0z3PheZUixr5fbdYW5pX6+K+fY/gW7vvw6Ojv/Cupz+u4erV5+OXF70cddM4I2H+i+QjqFTpt1LXi1N+yNLI7ZHXofk5ZAXe2fAaNHTr8vau/biU1X2S+XnyOO3F8fwUx+dJ6F2ifPz7Y/tAQbS72E96aULcXfs/7Y2JZtsYLKi0BRjkLnA5W8mfWPrwhz+MLVu24G//9m+PqIklADjjjDPwd3/3d9i8eTP++I//2GNSrdv/C7x3/Rdx3WMPIz1Uqy3NEmidYd/4o3h6ZG1hYinCJz/5SWzZsgV/8Rd/cURNLAHAeeedh+uvvx6bN2/G+9//fo9p858//Ble8O6/w/W3+3pcRyMynWLv2EbsHF7rTSwtXrwYn/70p7F582Z8/OMfP2ImloDcUnfxxRfjS1/6Eh577DFcddVViNhSyF/+yWM4+2NfxponNx319RsQEDC3kWVd7B3dgKHxR7yJJaVqaDVWYKC1Go36Eih15BhcI6Xwgvmr8ZdnXYkvX/AbeOWSU21aqjP8x471eNmtN+POHTO32uxsRTsbwcNjN+Hx8du8iaVa1I+lA+dj1fxXYkFrNSJVryjluUUcRXjtCcfh8xe8AWsueTNetuR4m9bOMvzNho145W234J7d5UU8jjak2QT2j/0MY+2nvImlfFJ4GZr1FYij/kPKMJwuairGxYvOxB+f8m78z1Ouwqn9rn7H0gSfeewn+N0NX8LjozsnLyRgzkMp1VJK/UQptV4ptVEp9YkpjzmSB+2BufRcQMFNLDnEcYz3vve9+NjHPoZVq1Ydlis7EGzbtg2f+MQn8IUvfAEpYx8cUz8Or1z0RvzTG3OK7/AeZzmYaOedeUIsJbb0KcV1mAhht7C0apvl75j9cY/tQqKFZdYLsZiGGXNpxEzVj5op+uGuu4+RJM84Arfax6hhT0wow1xillGNDO1kH3aM/hhZ5o5pNBp4//vfjz/5kz/BsmXOSnakY9OmTfjoRz+KG2+80Yu/YMGJ+NApr8FbPphbarsb99i0cTOuHdmbW4b2jTpL7ZBhvQwx6+RwJXMpD7k1bcyMI9o2zX1TaZ/HHSxzKS2I6k9092LXyL3QTLOhv78ff/AHf4APfehDWLBg9ugjbNy4EX/6p3+Km266yYt/1dLV+OjzX4mzj82f3c5nBm3as4bFtM9YSPf1yFwihuBol9WNqafxxLW5sSx/3o655NpXR+VtiuoIKDPMeH0lOs+fscFnkbmUZS6/xFwqLn88beZShfiovaYic2n+cv21i3+tdNxM4fTbPxuYS0cYiLkkLTggL8NcZinpSuZSHnZVl6WZtiAI6krMpSrBe8tSYjZUYjEpHqd9oW0/vxG31Txu8h+HVuBfMZFgc92OwcS+H+ZbMdx5Cs+MbfAnlRCjv3msmVAyQucCu9Fel5mUqEeuf2tEOdtlnlpi4xZleX+/WOV95ZKmGwsta+XnWe6KwDLDMlrSzM+9qO7qa54R6x5ouD5s7e5n8H83/RDr9vsTSi9acD5uefupmN+sozvERbXNMzZscv7bu+p3uCzkbVhKXNDb9OOp+Zx12q5/aJu+YpwxbcZN3LBlwrq0/d38/eHMpX2mb9lrqm6ow5lLKbTWeGjiJ9gy8X2PsRqrFpb0nYUljeeXJhzq2tVJS+fMlIXI62tRwzHTlpr6WsGYS6uMkPeqvrxOVvQz5tJgPqk1b7G7jsZCw1iiMmqsvZsxaDbh2vvXfrQff/nIT7B+v5tQUgAuW3IJ/vGlp6G/VsOufU4kfr/pn924yo2lR03djAjscMdccpdTZCkBjo0isZQcs4W1R3Ns27ShLmtLbTOGkvr4ccNc6jCvgY4egdYaw+0tGJl4EtwFTqGGen0xYjVgXd6yihW2qf16zKWaYS4x5iG1ZWIuLWRi34ubdRO6Z0zMpYWGuTRYc8+n3yx2VI8cu+ah4UfxL1vvwi/Gd9t8MSK8ccXL8Hurz0c9ijGeujbkFr7xQ8CxkrqZwFzSJM4upbnn0rFMJ3gh35fYTI7BxL1UKK3MTqK4lJVPcVwAPC0ydT2xb18cPE/PvPy879RCHKHEXDqMYzCVv8ADWusRpVQdwA8B/J7W+seTlXfkTKEGHCZkKE4snX/++XjggQfwuc99blZNLAG5ds/111+P+++/H+edd56N39ndiv/Y9Tn866NPHMare26htcb+icexbfh73sTSpZdeio0bN+Kv//rFaT7jAAAgAElEQVSvZ9XEEgCsXr0a//qv/4q1a9fi+c93S6iu2/8L/Ob6f8ZN9z5+GK/uuYXWGvvGH8XOkbXexNIVV1yBRx55BJ/61Kdm1cQSAJx11llYs2YNbr/9dpxwwgk2/o49m/Dff3IjfrBzx2G8uoCAgICZg9YZdo8+iN2j67yJpUj1YfHgeehvrjqimA694Jz5K/EP574ZX/70e7FkodNs+cn++3HRDd/E+l1VK2bNLSS6i3tH1+CJ8du9iaUTGufj5AWvw8LmqbOufl+y9Fh8/SVvwuf+4YMYHMwnNjSAO55ZiyvuvBlPDJd1POcqcrbhQxiZ2AI+sTS/eQr6miegHs+fVYvPKKVw0cLT8Jmz3oPjWy+1q1imyPD1p7+Pqx/6Mna2y4v/BMxt6BzkD1o3WyUzaXZ91QJmEBr5x7Bo/onw4x//GOecc85huKaZwwte8ALcc889+OQnP8mWPk7xO99bi4/8eN2cd5PTOsXusfvxzPgGuG+AQl9jFe666y6ceuqpVYcf8bj44ovxwAMP4IMf/KC1Lo+lHfyPz9yCT625Z867UWU6wZ7R+7F/4jEWq9CoLcOtt96K44477rBd20zg8ssvx4YNG3D11VfbuH3dCfzq97+Nzz/2szlfv0ciskO4BQQcbUiyCewY+RGGO1tsXKyaqMWLUKst9FaNmm1QSuEtr70QG2753zhn8Ewb/+TQKF71lW/jps2/qDh6bmAk3Y/vDX0RWzs/tXFNNYiLBt6KM/tffUS5v00XSim85z2vx4Prv4DTB9zCOY8N78Pr77oFdz8z9+u3m45g98g6tBM3WRpHfVgx+BIs6j991k0acsQqwormuTh73q/heQNuLPnzkZ14z4P/io3Dwc31cOBwjsGUUrFS6kEAuwDcrrW+pzL/kTxID25xhwo0seRw9tln48Ybb5z1k0oSHnroIbztbW/Dxo0bbdxrTj0W//KrL8fCvgZ23ed38m3mVmPd4hiV17rDmbDD3OJI0HuCudGRixzRfSUKMHeLcyLf5BaXsTRfIBIARg21nlyp2noYT418D+Opcw178YtfjBtuuGHWTypJWLt2Ld7+9rdj8+bNNu7NZ5+Ef3rTS9HfqGH0cSOM/mxON36WucURZXu/5xaX1x25xY164t0+ZZvvU9hhHNoJw9dte65yvlvcBKNKk5DkOHezMvskJKnTBNtGf4BO6iyEr3rVq/DFL35x1k8qSfjOd76Dd77zndixw7GWfmXV2fjwaa9EPYoxZtrrs8Yt7lkmzrrPuDFUucWNcLc4w7Hngt7kFjdh6qbN3FraKLvFFYW8E+bCmph2y+nxKbnDmThPvFsS9C7k89ziUI4rpk3lFqd1hiwbKbnF/fshpGSfGdzijjhUucVxVAmWkrg3j+salqV1F2Pi3UUXMp5e5RaXQXATE8aO5A5XQ70UV3SPy8uYnsi3JDZO4t5crHwi2YsnR+/0VvNcUD8Jq/ouwVC02zueXGmBfOn6yc4TC25xLZUzVwf1Yhu3xOyTkPfSPveclhsh7+UtV1/HNPPrXt7Mv3+LWu56Bvvy62n1ufpqNPP7VUaYe3R/HTdv24z/+eAPMZy4fH96+Qvx0cvPw/jP8/rlQt4EyQZIy3FTGv8JQy5wGeuzE+sWVx7Ldc3+OOv/xwrC08MJd7Muu8UNdX1B75Guxs7Ok7h971cwzur3+Ma5OLPvcgwVBN7brH8g8HdwwLjFDaq8vhbXncsc1d0xbNHm4/rILS6vm5UDzo1ryQLjFrfEuTHWzYJ+0UB+T6rm7k2bsYwed+0rHTeu4zvz55ImwA2bHsNHHrwHEyktIKPwe6tfjl8/9jzsaefXTeOqYc8tzoyJ2SI3dKpxkhtg46mOMMbqWiFv7f0POJelLnuRyA2Ovk0d9u3okus76+PJjZXLEox1d2LX6L2ee3tf/Rj0N48DeYUlqcmfuWct9fEEmmyMY1e/dRLkZ4LeA9YtzgjzK+eCSO/G4parw8VmVeUFde2FADBYy++9FbvrmWfi9hi5kDMX7cWXnlyPzzy+Fom57pqKcc1JV+CXl70AkSL3MBLclsS7mdSISW8X3N0A7irH4gr5phL0tvkKQt18P/HeEQqF/JnQpxWEvBNv/IVS/mK/OJVbHO1/f/9fl9ziDvEY7BcA9rCo67XW1xfzKaUWAlgD4Bqt9YbJypu9U6sBB4jyxBIA3H333XNyYgnIWUxr167FlVdeaeNue3wbLv3HW7FtaLTiyNmHdrofm4a+5U0sxdG8OcFWmgyXXHIJ7r33Xlx22WU27j82bMEvfeG/8MxYeeA2m9FO9uHJ4du9iaXf//3fx2233TYnJ5aAnMV077334sIL3dzD17ZvwP+z/iaMJZ2KIwNmDgpaH7otIOBowUh3OzYN/5c3sbSidQGO738Famylt7kCpRTeeNxq3PKKK9HPtGM+9Z0H8c4v3+Xp4cwFbBrfiG/s+Wc7saQQ4ey+K/CC/tehpsqrhM12KKXwG6c8D7dc9lr0RbkWYgaNz2z6Hv7i8TusDs1cwVB7C54eWetNLA22VmOgdcKsZitNhlhFuOrE8/BP512JeXE+UZjoFJ/Z/E18cev3Aov8OcMhH4Pt0VpfyLbSxBIAaK33AbgLwBVVVzv3WkJABcoTSx/96EeRpikGBwflQ+YIBgcHsWbNGvyv//W/bNwje/bjl75+PzpvX4RVH1yNZitBs5WgXkvtVosz1OIMcaRLW6TMBthNmS1W2m6UL1ZArIC60najPPUIpa1mtkak7FZXEeoqQhM1tuV/85MIW0a+jUTnlqooivDpT38a3WTIW0VvLmLJkiW47bbb8P73v9/Grdv+DF79zZ9i4uWDWHDlCiRpVNraWb5N8C1V+ZblW8fbUNoSs6Va51sGt+l88ymo2tt6xbxOE08Pr7XaDfV6HZ///Ofxmc98xltFby7i2GOPxfe//3287W1vs3H37tuKt9z7DczrfwarFgxXHq/Zlul802bLxE3bjf6K9ZZBI1MZMuXHZkj9TWd2I2Tsj45z1yrE6cxu00WxrF7TAgKKUMIWQSGCglL5Rv9HUPbPj8v36E9pt0l/lJ8gtTUJpXaI1B6XoGs3W5Zty6ndyq2UW5izEoOIrtmPo/uOMdTdiidH7rAaeQo1rBi4BIv7zkAWpUhVgpaaj5aaj5pqmq3ltqg/32ya22Kz1dBiWz5CaOiW21Qt32KFRqzQYlt/DeivAfPizG6DtRSDtRTzmx3Mb3Yw2Ne227zBfOtf0LVbc1GabwszNBdmWHjcBBYeN4GLzmjhsff+En7p+BX22Xxl/Wa89/F1aL7lZPdcU1Xa0k7ktna+JRMxkokYnfGa29oxOu0Y7Yma3TqdfGt3862bxHabSGqYSGropLHdkixCkkXomi3Vym7UZ3jvmekz5teBLRPr8d1n/92+F03Vj8sW/AZObDr9zybqaKKOWNcQ65r5L9+k97/8XrPN9FFiulbI2DXzbdqIlN10ArB5FYyNNTA21sDzWquw5kVvxTmDrn6/tuMhfGHbGpy8cC+Gk9hsym77u/k21EVpG+5qDHc1hjps62YY6mYY7qZ2GzHbcJJgOEkwmnbtNpJ1MJJ1MKbdNo6u2ToYRwdt/qfyLUW3tNXRxPDEZuwZe9DeX6yaWD7vYvQ3VyGOmogjVodR3Ww1uynE+aYiuxHsd4f19ZlOkOkEiZ5wG9pI2LV2deq2TKObaTsmTbKcydPNYN9hf5yTvyP8N0ySKSSZwsJ6goX1BE+P9uPp0X6c0HwePnLqb2FVc7m95q9svxtf2nY7FjXaSLRCwtqKv7mxcGI2ugY5n3xsquHdWzEt1WycZ9uB25JMI8l04RgzbqfjtbYbffNdHu3GjSbNG1tSnFCGyz/FmHKavwueCyillhnGEpRSfQAuB/DzqmPC5NJRA4mxpHJNoujoeA2iKMKnPvUp3HjjjajXc8rnpk2b8Krf+yc8tXPfYb66g8NY+gzuHf03u8Rtf38/vvGNb+AP//APZ5Wg4MGgXq/js5/9LK699lp7zw8//DAu/8RXsWdobIqjj2yMJ3uwcXQNUuNytWjRItx55534zd/8zcN8Zc8d+vr6cMMNN+DP/uzPbNzWiafwrp/cipHAYDqkyCfl1CHbAgLmOoa6T2LL6HfsZG5dzcNx81+JgcbKw3xlzx0WtZpY88bLcFLzAhv3n3f/HL/2/3511jOYHh5+CGt2rrH/K9Twy4vei+WNEw/jVT23WNYcwD+88M1o1pwb5te3P4KPbLhr1jOY9k48gqfH77P/K1XH8sGL0TAruh0NWNpYhA+f8ps4pe80G/flbffjbzYFBtOhxmEeg60EcKdS6iEA9yLXXPpG1QFz29w9YzjSBr/TbcT+xFKz2cTXv/51vO51r5vRq5ot+PVf/3UMDg7iV37lV9DpdLDl6WfxS3/yddx44sVY3urHwID7oarHjB8xW59SGf/hyLwWtIRuHleuG8pXDIGcycRDvl83GWmZUABoxEY/QLumO9Ldiw2jX0PHMJYGBwdx66234mUve1nlc5ireN/73ofBwUG8613vQpZl2PjUHrz6736ELy4/FwvqTc//22lkMR0sk05+321mGKd93088D2lJXMnnP2VxvfTBNaYXsi/ZgydH7kBmNH+WLl2K73znOzj33HOnLmiOQSmFj3zkIxgcHMQHPvABAMAD+3bhsjvuwD+f92a0Yl8/jarJX0rWDzWE+hJ84MkaPZXmi9U9smE5TYKokzSTCw/M8UUMAg4PqOsiXSK2sjQiWp6atSfKp03I2RnpJCykqdAr+45ycXNaYnRWSIcpYRpQtGo3Lz0yhgvSXpLgMU50hP3JU9jMJpYGooW4dP47sAtdQPsaU/RASTOKsxuIwZUJ7jeRuf6acq51deT7DabhUzfHNsz4osWkqVpmrNFfc3fcX8ufR189v0ZPX2kgr6/6fFa//RFdUA728LKxDPU4wuP/90X4k69l+MvbHgAA3Lz253j3kxO47kWvxLwFTN+nkxdCukmA01PKTJ+dsv48NS9fJsR1TV+fsDSnn+ni2iZdWkY9EX6ERQr46fBP8fWdX7NxK5vLcfUJ78Rj+3O9pDoz4NbNObt2JS73vmWCTphb8jwz91PWi+E6NLR0O2mBdpj+Z9foSXUnXB1G46aCojxUDVaYScrGGOu2bdq00UmaYBqHY0kNQA1b3vQGfGjdWtywOV9wZM32R7Br/Jt468o3YJjpHw6Zy+C6h2NWpzI/Z5tNOnbMPukmAU47KTEh/4aQhpvXZ6vMS+P9M7V93h67aGOovRm7xx+wcX3xUhw3+AqMI2dMK1ZvSpl2a74PnHVJbVnryb9znr6i0XvMIqZLZ5jrpAXVZjQyej58PNtJfR2jjvA+p+y9ppqIC1pKAHBif37O+959Aa769gRueuIpAPkEU5q18K7jX+G1l1Qon/a7Ng0szVxXVo4rhkDuHVCO04U0rnFEYXk8TpNjiZbSXPmuPQoaSkKc1SSs0FfydZiOvHGa1vohAOdNmZHh6KCsHNUoM5Zuuummo3ZiifCGN7wBN910k2UwPf744/jtdd/GRJpMceSRha6ewINjX7OMpYGBAdx2221H7cQS4R3veAduuOEGy2B68MEHcc0D3511qwR2szFsHfk+Mp1PLC1ZsgR33HHHUTmxxHHNNdfgs5/9rP1/d/dJ/NUT3wrWs0OIoLkUEDB9jKfP4rHRb9kfsf3RQrx8/m9gIF54mK/s8EEphT//lYvxx1e43yu3bNuCP9+47jBe1YFh28Q2fI1NLK1oLsfvnPAuDNbmVRw1txGrCH91wUvwjpMdw+VHz67Dd5+5+zBe1YFhrLsLu5krXD6x9ErEc1A/q1c04hj/P3tvHm5JUZ+Pv9Xd55y7zJ0ZZmeAEUHQkZCwKIIi6s8YF1CIa8w3xoeYGDVGY0Ke+OCGa4zmMZFfwHz1p0k00QQhgiJKUCCyuCGb7MsAAzPDrHe/Z+mlfn90fao+3V2377l3zrlnzr31Ps/M7a6u011d1Ut11fu+n3975Zk479ijdNplu27F/+y9q4elWvropz6YG1xa0iAlKIeHV72q1Idr2eDVr341LrvsMi0LvHNsDz50z81984EqZYJfTV2J6SQNhTowMIDvf//7OOOMM3pcskMDb33rW/HVr35Vr/9k71P47P2/6GGJ5odExnhk+lrtobVy5Ur8z//8z5I13p8v/uzP/gx///d/r9dv2H8/vrXzZz0skYODg4NBJJt4aOb7iBXrtCKGcdbKP8CQv6rHJes9hBD4zOtPx9ah03TaJQ/9Gv/16LYelmp+GA8n8a2d30Kk2CNCBHjXlj/EimC4xyXrPTwh8PenvhAVdq1ftfs6PDT9UA9LNT+04knsnv456DtKiCqOHHmJjsy4nBF4Hv7ld16ELTUzgHjJ4z/EA1NP9bBUDocKnCyugH6YRW23jNnBpYsvvhh//ud/3pUS9SvOO+88fOELX8Bf/MVfAACueOohPH/XCrzvlK0AgPpj6UtEWORu7ULQi0n/Ne1nk8VV1JBvJSePA4Aqbav6uH3yBuyOHtXbvva1r+ElL3nJgsu5FHH++edj27Zt+NSnPgUA+Mpjd+PwyuE4Z9MJAIAZRR+eYaGLKRTuDNG+LbI4Hh43L4fjtFqi61ppshYKLUlGqkkVj9R/hOl4d5ruefiv//ovnHLKKfM5/SWPv/qrv8IjjzyCf/7nfwYAfHX7TVgdHI5TVx0PgEvfDKh5ktxfoNg2PC3RtHtDmSdJTd58O02LM+vp8uxp+d9n0ri0jvavj1M8djeQ9MeYu0OPkJfHAUb6lrA0LZ9Tc5ue5fnH5UEeyYFIhp6ZEy3KS2Yz+E73T78y9wmFfc/L4wAjkwkyzwiSxStJLNvm6XPyIGWCR2auRSMZU2kBThl+I0YlMBqlaYNIA2202PlSeUhCw8/XEySlMs8guuc9EajyM1mcTJcrrKtPsjgjuzflD3Tfw5xUTYUpr6gQ5dWaqV9/MM3nDZj2FTUKaa/SMprC9E/rPhPt9Mevfi7efusuXLcrldi879afYuumEZy6cS1mxtO6IDkXAERaDqdkNRkJnJLRWWRxsZIpcVk8SXiaTDqm5WQkj8vIfNK/VQ8IkxD/+tR/YjJOpVE1bwD/Z9M7sbu+ArtB+ZQkickYfbXsy6x8Kl0pyrgikFSLJGFMJqbqosH6L7RMfZvp0FzPQyq8fGXKMPSFSK+liurIiOzFnpahbvbfmk7bYmo6vbamW4bBk8rigGsf3qLTPnP8n+PSx7+Ox+rbIQF8e9flePsRf4K11fUYbaYHmGa6vkac1kEjSf+2mOyrqa77iN3jsbpHbTI3LWUX5VL2fH4PHmIZKtZ4ekxf1LBp5ZkIRQuhGiwm6SofbKLjU71mZK10T0smf1RVa32fk+Qvaeq0yEsjIDcwlf4VQ3rbTJKWY5BdzzPqoq1FFhlsQv1N/k1CstZErRdtP6792dE67evPW4c/vnMUj0zvQyQTfP7Ry/HZrX+EddVV+t4JGTOGLCXoXmKKSJ3fJpWzyeIi3Ycr9rklivmNTUUxjZ7j0pI/03/Ppdn7ilzmJmfdZiRzSSHNhn7qgznm0pIFeeUTBN773vf2qjCHNN73vvdljJEvvOUO3PDk0z0s0dx4vHEv7p0xFOOh6hF461vf2sMSHbr4+Mc/jnPPPVev/+3DP8J9k4d2+z7duht7wvv0+uc+9znHOJwFX/ziF9mgqsQlj38Huxr7e1qmpYY0Qkr/ULIdHHqN7c2fYjzartdPGHwNVvobe1iiQxOeELj0tLNwWLAeQOq18+bv/y/21hs9Llk5Ltt1DR6v71BrAuesezMOq6ztaZkORQQiwPlHvRlVkcoEm7KJb+/+FppswORQg5QSu6Z/hlYyoVIE1q94HgJvaUddXgiG/Cr+/oRzMeyng1zj0TQ+/+jlCJOF+ec52NFvfbBlzlxaqp3arM/Si170Ilx//fXLJmrYfCGEwKWXXooHHngAt956KxIp8earfolz170Hnzt9H4CsCTfdiIkeSTcbba77Mned8X3R6K7N0JtmEat+9vfT8SRunTBG/WeffTauuuqquU5z2cLzPHzjG9/AGWecgXvvvRehjPGBX1+HN238U7xoXZG5RIwlYjBx5lJLTYO02LhtlGMscbNvbS4oZ5/54EggUY/HsK3xvzrtbW97G/7yL/9yXue8nFCtVvHtb38bz3/+8/HEE0+gkbTwD499D3+4+Y+wXvUFbbNdehbLMlMVsecnGYTGNKs8xywoLScWFhHNjNpMG7UBeIbVtDAmUqlxuO3YfeZF5tBbeJa+hC0aFPU5PPZeNEbeWWNvwLA4eGAMurOIJZCUXNsctuuc2B/CMq+aZzABhsXEjylytuBFC2ZgItqJnU3jH7SpdjLWVo9DiBiDjFlk9snYNDLMbyzNTwbFlMaZVxQYwgdnzqQ7VLFBMrsPVL1ztgIxrn0KLMICjGhSRsDasBC5RBa3MQyOhBiEwI/PfSH+n+/9AGOtFp6eqeM1//UAvvfiFwMwbCUAaCh2jGYwMeZPpJkPNlNhGxOJTLu5oXfWEJuzLoiB98OnH8Kto8bg+dyNv4Pjh48t5G+pesz2+Wbvh0sLmyZWldxU10UrMe1bVy+zaWYVOqn6L4Nh2vY8yEVQLw6ORFGarzqT7sRn7Uu3dBiaq7zeSJlKE430Oh5tmuv5QCs91mho6nOsJQCM4Pc2/QG++fRXEckQo+F+fHPn1XjxSDrpNxmba76hzrMOMq7OmmunaWZgysYo1uW3PAPKmY3peR5oPoSp0Mi7NgydigEWAa8MIsdmkry/oJYzaZKYTsrsm/clkrRNEl4HSR0A9EBXXZhIyANyME2LTJsP+CLzl/q3gFFC+Ixdlb9FE1uQIra8fXoQwCB+f/Nb8NUn/w0JEmyb2YWvbr8V/+eIdNKvyU3EielP1xbbRn1nblBPaXnGU7osM/vk26lfnmGmayVBMc3KUiK2EWdGlSgP8ubdQLYvmc9v+o98H0ujL+aYS0sS2Yvz8ssvR7W6fM3n2kGtVsMVV1yBtWvTmafpZAK3Tf5Pj0tVhJQSN41djVhFjKiKEfzHf/wHfN/WxXUgjIyM4KqrrsLwcOqFMBrtxS8nbuxtoSyQUuLR+o8A3aEfwJe//GU3MDwH1q9fj+985zsIgvTD46nGk/jFuPNf6iQSiK79c3BYKkhkpJ7hKUaCI3H4wPN7WKL+wLErR/CVs16k1++buhfX7Hq05Be9wUxcx/Wj39PrJ608AS8+7PQelqg/sKF2OF6x9hy9nrKzH+thieyIkjrG68YXamXtGIzUtpT8wgEAjhk6Gq9a/wq9fsP+m/DEzK4elmjpoZ/6YG5wackhQdZhxMOmTZt6VZi+wqZNm3DJJZfo9Yfqt+N/9xxa5nQP13+NxxsP6vVjhl6OVaucOWg7OPbYY/F3f/d3ev3OyVuwbWZHyS8WH0+37sJkvFOvD9WegYEBR8VuByeffDI+/OEP6/UbD/wYe5r7elgiBweH5YYnGz/TPks+KnjG0FlucqBN/M5RR+CkERNB7mP33YT9zXoPS1TE5bt+iGnlszTkrcDrN57t2rdNPHf4t7AmOEav/3LqakQqEu6hACkl9k7fCQlicQ1i7eBv9LhU/YMXHXY6jh5MB+ISJPjqU99F5ORxyxLLVBZ3qL8IFjrml5XDvelNb8Jll13WkRItF7z5zW/Gt7/9bVxxRRpa9oMP3IRfn/N6jN0wqPPkDSI5LdtQsLlULv2bl8dxeBkauqKt58y+Z+Jp3Dr+A53v3e9+Ny699NJ5nd9yx7vf/W5cfvnluPHGGyEh8f89+V18+tl/iglG+yaKOcnhGoyjazXt1nRdm6E3SeW4zCpLpyXabCMZx5MN46P1kY98BJ/4xCcWfrLLEBdeeCGuvPJK3HnnnYhkhP/c+V285xnnoxlzWnZWvphpG5LKZQxVsyarWfPFuJCm5W2WbTbkDbrL8mTyt0uf7pDkrU+CaDp0EFJKoM0PZ5LKcQmBTfpG/RtjcMokGSBpSFJIS9rsF+XvC+t9xYqT3+pzQ2+S2vDi69NL83GJ4FS4B0+3TNhy6dWwRmwCpJGmBew8qA78TB2Qw2+x2LTJy+wjyaT50nTraZlLsbRqLbfOYXti6GZlMhZdtewdKf2sTE8yzYpUevKEKZhiJdMZ2596tlz9hmfhBd9+EDumZ3Cg1cDnnrgRF2x+g84faqPtokG3rf9Fy0luHTAyuoinqVNpkdk3O9+Hpx/Gz8dMuPXXbTwHjXg4I53nLgZ0bfDBp7zxPZdI2QyoE23YrmRNrH2rSho42TL7H1B6x6pHxu3FzzxueF5Xht/VmfQkfI+/a5REkBlEk0H4uJLAjTGz9X2tNN/+pinP/mZaoXuVz8DpI6/FdWP/F6FsYCYZw+1TP8KmQRPhuKFkXk2RDiqSFA4AIrUcM+lo/n3LYepu9meHYMLWsDWGerRbr28YOhUhGun9a4kQZwy6uaxMPa9Ums3Q2+NtklBZLbI+SUEDjO6Rzj1C1tgbAGZE+p1SS9g1EtL1IDJ/AWPqn5HFUbF8yiML27hsraGuwbXVtKy7YyC9yiWeauzGlXtuwSvWvVTnz5t2cxuJyJKWN/IOEznrNsD078w2S/6k2Ee3yeJsaXk5XJzpD85t2m23wyg+A2zopz6YYy4tKZiLct26dfinf/qnHpalPyGEwCWXXKLlcU+OTeOfbr5vjl8tDn4x/hM0lN76Gc94RoaF49AePM/DV7/6VS2P29HYi58cuHOOXy0OnmjciljNmJ144okZFo5De6hUKviXf/kXLY97rL4d90w+0ONSOTg4LHVIKbGdTQ4IUYEQjnU6X6yqVXHxWafp9csffeKQCMCRyARX7DJWCSeuOBFbV2ztYYn6E4PeCE4afqVe3966HY14rIclSiFljI0Q144AACAASURBVAP1e/X6ytoxGKys62GJ+hOeV0U1MMb2P9p7CyaiyR6WyKEXWEbMpUOZrXRwY3wCQhmImZH7z372s9iwYcNBlmt5YuPGjfjbv/1bvPOd7wQAfP6nj+B1pz8Xq6tpR3Hn2AgAoBkXDSLJzDG0zJyZsJnlx6eJBTL0HgQwFo7i7slf6jxf/OIXMTIyMv+Tc8AxxxyDD33oQ7jwwgsBAN946nr8xTN+CxUv9SWbVE6DxFjiTCRtKmiZ+dAzGRbmEp+tCJWBI814VOFjMt6DvaEZBLn00kudT9oCcdJJJ+F973sfvvCFLwAAvr/nxzj/iGfrMN7GGNLWXir0Lxuop1DHsQ6DXJw1zc6kKsaSZiSZ57I1rYRpYZuNzWMxzLglhDVYgYNDHpzJQywmztzQvtA5Y+90OTvrn/6WmAVRJg8ASMU6iC2zvbb7gpiGbDLeMB9EMb+vDb3NfajZB5IYjen6ePQEkzQLPHPklaj6I5pFQOwAfr50ZpnZbL1Yza0XWUpAluXCy8zz2Uyk6Ve8PxJZmD/EDGop4+eoZY4d1Ivh6z3FBBWKAcNIF0gUiyWaZkyhRtYv8oH7N2ALNuDl63bgx/seBgBc+thN+H9PfCOEEBhrpfVCjKIscyn9y5ly1O+ixzz3F4ktfTJt8p3rp/1i7G7sbO4FAFREFWeteRWmI2CF+opqzFP9Y2UwiKI5tSbdquw++2yrKEZRhRloExtFaNYgY+YkZOps0lYQc0m1V8Bujihnbg4AM8SWUvsYC019jikG1WjT7GO0me53KkovhN0YhfQ3YSTYjMloJyQkHmvehCNXpObtMxhPyyrTidRImqiBxODh70/NKC55D4oMM4cYRWn5iWE309yBSB3TExUMDRyBhhyHp+6ndt+zxITyFNPJ56xmyzOG0sqOw9OoDiIVbS/0jGy0IabTv9IMas/E6fVSVQzBql+8VvwMO5WYoilqrH9k6wHQvUbBAN629g8gZYLL9/xf7I92oyVDXLv3J3j9prMBmGA4NuZSeVqWkQQYI+/IymYq5rcF2Cnrv2vWEUujvqEsYSmVmXbPxVKyXSPpfvqrD+aYS0sG/M0m8Pa3v71nJVkKOP/883H88ccDAMbHx3HJI3fN8Yvu4qbRG3TUqkF/HV73utf1tDz9jve///04/PDDAQChnMFtEz/vaXm2NW7Sy6997Wtx5pln9rA0/Y8LL7wQK1euBADsC/fh11OHBjvNwcFh6UFKiR31X+j11bVnoeq7yZ+DwbuOfiHoc/a28Sfxi7HtPStLlET44d4b9PrzV70Qw/6KnpWn3yGEwBEDL9DrE+ETqEf7e1aeREaYbhn/zZGBo+GJZcS96DCE8HDaqpfr9Z+N/gr7Wgd6WCKHxcYyuHsOtZG+hY3niZLzIOUn4YorLteyEIeFIQgCfPrTn8ab3vQmAMDXtt2Ll69+ITbUTIexoWaN+KyOZi5lwmtmZwOzoTTnLktTPo17pszg1g+vv8IZSB4khoaG8NGPfhTvfve7AQC3jt2M5w49DwP+ICbU1EpLNU7IZo30LIfkMxMpbLMcZbpsmgHZG2/D/iiNmiKEwKc//enOnOQyxtq1a/HXf/3X+MhHPgIAuHn0Rjx3+DcReBW01OyVbl/muRSCWGXmeUqeS3kGE1/m7CNiMZkZK4sf0xyzkwtFmQ+Tbdt8jumiui0vSEgkkDoUPQD4Zb6BIG8bxmJR7ynuFUGvRl96hfy+mvXn94xm36j8UhjWBcmIy2ALPW5LI8JGLIreJzZoBgQSHAgfQSM5oLdsrb4ctWQ4k9/XM/zFPmDE70M6P820MUwkm4dMnPNqCRhTherT1l+gNrH1R3j/hfo5TeWt02gwZpRPPzb16TUUW00Vkfv5RvU0sTlj+qczMyq0fT1lW0wqJs3aykacveE38f09ad/nHx69BZ88fisiVe8ti1+SzYPFeF4WQUwAmUnL7mMkkLh19DaMhimjZtAbwovXnIGaOr88EyMb+rzYJ8j3FyJWd/Q+4T5DepuwXOu0s8ymmtqkmGaZtlSso8CkDfnkzZSuexkmRtF3SlknYVoxYSaYH/eEonuNNc05TURphjGkrJoZL/UI8irDGKhsQCPcAwDYVf8FNqw4DfVkVJU7rQPuRWSYS0UPQhuE5V7TzEM1eCSEj3pzF6TatydqqAZr9fE9xSQhzyUBzoKaPUoz3aOSfWaTGiHiRab7pM1zI9ZWkvNeAoAmUr+qujDPnppMy11TTDPuuUSMpazvmnEFA7JMHl8U7yL6rmkoit1x6ZwenjVyHG4ZOwIT8Q4kSPDDvTfgrZvfqBl+tnuV/Eu5p1PRQ8lsC21MpBwzPctKnJ2dZPdcKvok5RlLZf5K2XyW/qCFpWRjNJpt/dMHc8ylJQHzIH/BC16A3/3d3+1hWZYO3vCGN+D5z09DCIcyxpVP39GTctx04Gf6cfOa17wGZ511Vk/KsdTwjne8A8cddxwAoJk0cM/07T0px+6GGTh829vehhNPPLEn5Vhq+MAHPoCNGzcCAKbiCTwwfe8cv3BwcHCYH6SU2Nu8W68PVTej5g2X/MKhXbztyBehqgYBHq8/jfunnlj0MiQywY0HfqrXz1h9Fmqe89LqBFYNPEsvN6L9aMUTi14GKRO0QsOaWjGwxToo5TA/CCFwzMCL9fpdE/dgTA3QOix9uDuoz5GOopppiw996EOO1dIhCCHwoQ99SK9/f/fdaCVzz5R2EvW4jtsnfq3Xnclz51CpVPA3f/M3ev2uydsWxb+Go5FMYCwyHWZ+vTkcHIaHh/GBD3xAr98x+YuS3A5zQcru/XNw6FfMxHtQj+nj1MNQbXNPy7OUsL42gldtMJMtP9p326KX4b6phzOspZNGnrfoZViqqPgrMFjZqNenmosvfWxFY9rb0BM11AJn4t0prAw2Y7V/FID0W/XnY4t//y4l9FMfbIlqpw61wZWFj+GVyeEgvKxbIlJmi0PncM4552DLli3Yvn07xqM69rz3VAz8w/0ADJWUjL0BQ9HOhtfMhd60hL2NZzFqu2vyDkSqjQf8NTj99NMP+pwcDN761rfiggsuwNjYGMaiA/iXff+NM2uvBWBosmHGPJJor0UqrA1lBn9N0cRTrdtB3PZXvOIV2ufLoTN4xzvegY997GNoNpvY1dyB6/Y8iK1D6WwpyR25JKWlOpmhMFz/vJG3XQI3u2l3luYeF/Zh8hdDKue38d+WDoQe1CBpAruIxGG5Q0t6WG/Uy01mcfNoeu4Jy3Yygs0aelOaN2tawrYJLU0rpllloCWyUdrCzb7LJHIUIGBf0zAiV1efiQ3B8UiYFkMbeeuw9MV9BbyPqJ8DSpaSMTBPJS4tfnvm9sfDottARaO/vK9CEq8G69OQLI5C0AeNYh1GkemHBkGS28b6RypU/UzTSOummqmMa6yZyuPGQrNtbzPAyStPx3d3p6zxX4w/gJdOTmNlsFKftk3WZ5O5zRVIhWCu8fTvd3YZP8YTVpwCiUqmzihfmblwVppD7Vt83pPMk0uvSS5FbJpEsP6IktUkTNqdRNRvSeuT2g8wZtxDvrloamq5YrlsqNj8fEnWNK0kcNNM4zURpmWdTIysb0KkMrhJkcpGZ+SoKU+0H36wEgh3AwCmWk9BelUI4SNRE7lcFidzdTcX9POBMZFomYy3603jtVQJVqEZjyPwB3WanzuWNwerSeS+93zb/c6yxOp+FVJJghN2vqp98/sEmMyK2zao51VTGJPvukzvr6oKLFBl93ZFXSuVjFTOnAkAsMvHyOgs0kkywG/EZl/PHl6JqncGfjT6JADg1tFf4eSRl8AXgVUCZzfhLtlGaUkxLdL5Wd+b7tVMf4p+V5TAldlatCOByy8DWSmcLf9SgWMu9T344JIP359dA+wwf/i+jz/90z/V65deeumiHVvKBLeNm5H+NbVnO1ZahzE0NITzzz9fr8+0dpbk7iwSGWNfy0SIe8973rNox14uWLduHd785jfr9Z2t3hrz9yskUn+Sbv1zcOhHREkDY+Fjev2wmpsc6DQ2D2xA1V+t1iRuG//Voh17NDyAfdE2vf6bKxxrqdMIvGF4giLjSoTx4oWtj5MGwD7sK8Hq2TM7LAjPGHg2Br3Uq7aRTOOh6Qfm+IWDDf3WB1uizKVDBZ03704zqJk5aWaYq9UqnnzyyQUdz6Ec73jHO3DRRRchDEPceuut+ODpz8Qxw2twx/7DAGTNDmM9Ml5MM6PmYNuUKaUl9ObecDsOKC34qlWr8NCO6zp4Vg6Ed73rXfiHf/gHAECYjGIqnkTNG8akCkubnclY2AyDzcQvae3ToW+PPPJInHPOOQvat0M53vOe9+Ab3/gGAGAi2IZ63EIgKmip2d4mG6APNUuJzSbnjLz5rDLNWnFT3byRt42lxHGwUsy5ZnHz2xdb+unQv0gg4XHO/DwnNzQrif2MWE80UeIzpg09azmbyZdpNzURZNDKzL4FsXvmB2n5BaXx+8VXZricLUIsggghRluPZPIf5W0Fkmz5dVktTC2qTpnLydMq0kwYUv0E3DRdG6OrUPKsW28rR97Alhs+NxXrYIaxD6Z1uPu0Lrj5b6RYELWWeYb6ivolibHNDaWjtGzTLcNOIgPvCbVttGXOd0qZRn/pjN/EO27+CQDgjonbce7Gl+DxaTIcZuemDbT5+c4NW099wBe4a8L4bD5/1bFYU037fA3LBUfmwq2kmMaDglAgD3rHRMyoW7NkpWH+JPS+of4jM/smpkrssSATih3bjIfSsiY1vW1ambIPsHD0VZ/C0afrnImYN1NO95uWfyZOjzPDmDZTSPszU57xTprGqCrHhPq92RbGqcl3rbpeM4jCcBQCFcRSsYfnydq1mnhzZqPy8PK9KqLYeADVKqkcLpERYsa80kwTvQtTn1D17zHT/fwxs8dOr23ehxA5RmbscaZi8Twpv2e5anV/hO2fWNgtC5ONzL0rjKPg557xkj1DAvUM5tdIkvvm4d83x4wIAAHqu6Z02p2Tt+OZg7+BOCHWjgExkPjzsGjoXWQGxhm2YJZZlM1vURLQc1D314rMpTLTbtv3gbW/X8JS4u+jpcJicsylvoa5IF/72tdiw4YNPSzL0sXGjRszH/437nusJHfncN/Ug3r5937v9zA87ExCu4Hjjz8eL35xajyYJAn2ho8synH3hA/r5be//e0uwmOX8IIXvABbt24FANTrdewJt83xCwcb0rhh3fnn4NCPmAo509Vdx93C2UcehVXV9ON4NJzAjsbTi3LcR+umD/aK9b+1KMdcjqgGh4HuH4lQR27rJqSUirmUYqDivp+6B/Ns3NF4HE1W7w7to5/6YG5wqa9hRjjPPffcHpZj6YPX7w17uz+4JKXEvZOGPurat7vg9btnEQaXpEywN3rUenyHzkIIkanfna2HeliaPoVMZyi79c/Bod8QJy3Uo70sxQ0udQtV38crNh+h1389+WBJ7s5gPBzFPuUFVBE+Tln1zK4fc7lCCB+BbyZPk0UYfJAyBE3QCxGg4o90/ZjLF9yHL8YT9cWZwF1S6LM+mJsq7wq6IIfLUT1TKl86uOR5njPy7jJe85rXwPM8JEmCO8Z34RN313DWhiItmyih/F4lPSulcQmcMZMzabEE9rX2YX+YGiAODw/jZS97WedOxqGA173udbjgggsAAHujbXgC2xFoHwADMtD0LKapNprybJiKn0aoJHGHH344Tj311IUU26FNvO51r8NnP/tZAMCO1kPYGoVoKDlcM0MhD9VfQ4sPlQxBy+IklyAoQ2+baXfO2Buw0/rzRt72beXSOrNxaVCqHQ4NSMgM7V+oZX+eAyk2k++8sTdP81GUgtnNvv3M33R/6p4hOUvm/ivqmZLcPcNlXzo3f6Gr7fVoj97ge0MYGToOM2IGADAkh8wxSYohZq87rkShRZU9U3eBltAUvTU9LZcp1icHqURMgBGzramqgsviJkOS9yh5IpP8UzCTCjPhpvozhuGmvWZIFsekOZNhujypjL/HQ7P/CfWo/fPrjsauxjSAdGLv5gP3Y513Vnoe3Fy7cLam/m1+lVQyvonKf+/U/Tptpb8Flz4icOywakPL5W9kcaZCWzGlmZKFOmiEetdwmZtNFieLgSR0frWPiL+v1HJTrAAANNi1OBCnRtW12Hz6VZRUy3Zd0pnwoCZU/roqd0Nd8wAwI1K/pLo0crOmksO14lQaFUYmf5SkfaCZ5u4MWylKpuGVSuBmf89lI18VDb11ECSZ9asdq29D4A0UjhmoS1Ubb2f6eRW1fyal1WkW2ZraL98mRUXtP1S/ZxKpEgaXp+R9cxmM0/OTZF8huxZb+ppl0tWY9l/cV0CG3hmZM1T5ofZvto0pZeOJq9+G3Y07sadxJwDgkZkHcFTtBPX7oswta4CflbpymVs7pt38cmjHtLtMAsfT2pHAcRibhHIJXCKWRh/OMZf6FuYCPfPMM7F27doelmXpY/369XjhC1+o159qPlyS++Dx4LSZmXvlK1+JgYGBrh5vueO4447Dc57zHADpw3863NXV402Exh/tta99LTzPPYq7idNOO03LhltyBmPxjjl+4cAh0V9mkg4O3cY0C/5QCVb2sCTLA5urx+oP+8l4N6aZd083sIMxXNcFz+rqsRwAZHyLIj0o2C0kbABPiFpJTodOYGVwlF7e3ngYiZyvU97yRr/1wRxzqW9hRjfPPvvsHpZj+eCcc87BzTffDAB4zhvXYubW9Ibk5o6212EZ5VDOkueJ+hN62bXv4uCcc87BAw+kUsSnm3cjqK6aNS+feaJZ8zKjRQ4PPqYiM3jl2rf78H0fr3nNa/Cv//qvAIBd0ePY7K8BYAwvATOLbJtNplnEJBMmOsz8BYBYZkMoW5lIHWAYtRuOuT0sjdkyh84h5UZLzVYCoM295UFELSUz2LyxN2DMvfnML7FvBDEHhGG9WE1z25gzzbOVADOjzN/FNEMfZzMCQEYSd2T1+RgM1pYawCY5BhMAeKpTb6tOqifOaBcqf2A5R3oe2M6ff6hTebTZNDthCiNeZdSEikf1nq7H7EOkTmbfXrE+yeC3xZhLDcV0IqNuwDCWiKU0aR6lmGhRwATAFwNYX9mCPeHjAIDH64/hiOoJaCWcCTD3gETWUJ2Ycty02EMiE+xlE0Bbh07AkD+ESUXLsDGXqIqbjBnSUKbXTcZAaSJ93+QZsYBhLPH3iUkrsljI3DsS5lMu8oi5lDKF6sIwl6oiZS5VpBlMqSiDahvLTe+TGdoTM6qlzLtbMEykUKbLxFICgFCxk4ixRGwlAEgS8+4VwoOUHqAZSy0AvpWNK9toZwAQmi3C7wlP3Q8RyxcAMkGsysP7d3GSvZ/4RKDJN7uhN2dV2qo4UU+XQA1wZYKDlLBYaP++MMcOdFvOHjU8w+SxPAPIkD6I6fnDyqpOt4y5ZDO0P2vF0ZDyGdg1cyOmk0m0ZAO7m3uwprIpa6Cd2xfADLctZv02g+6ioXeRdWQz7TaG3rOzlPhyOyyldH9xIU3nE8VjLhW46fK+hbkYzzjjjB6WY/ng9NNP18u/+lV3w+E+3TSzoq59Fwe8fWPWAeo0pEzQiEf1umvfxQFv36l4dw9L0o/onpGkM/R26DfESQOxTH1hPAQY8A/rcYmWB9ZVjtTL41H3TL2nkn1I1ODDkLcSQ75jpi0OON+hmx/cfN++VTLp0FkIIbCxZu7f/dHOktwORfRXH8wxlw4BzMdrCaCRXDNaevLJJ3ehVA558Hq+55578OimcxCICgaD9m5Mm4aZwGdLD7QmMKVmfoaHh3H88ccvqLwO8wP3PRpZWcVktBtCCHiC+0nQbBRLI+aSKM6i22aQZuK9ejbjqKOOwvr16zt4Fg6zgbfvaPwU6iL9OOQspaZIBxV5uGeaOY6Q5s/MLNp09zmvCJtfUobNhLxH0/xCL9tndi1pzo/JYZ5IIOFZZnk5m0kTcSiUeYYZkv7ls816u2UbdXJ99gwlf6HA4n8hZdqF5TP8eQaPzY8Jlpll2zq9lzMz9fDQiMf0etVfhbqXvq9XyNUAgDjjq6HKqMvM9kWhvUtkCTYPJZtPVaLPd36eSy1GE2iqE22wbieFJpeKOcb9Waoe+WFxjyzaPzG7mZ+L2jjNmUvqcTqlzJ8mGPVhOkrrcVKFhvewRm/bHW/HCvl0hrlRhjwDDjDeiRkfLymwW7GjAGDI24DdrfS9MKAYQoGlX64ZYew525JFX7+m9kQqvmvo3cI9l+Iky1ziz3Hqc8Ss/JFsqTKmnpGhZ5hFTZHaK/i8/0LePTkGNgdnV9E9pN+L0phvU1lDNjlHbCCrp2DufhRCsPvj4GVxmqHCJFjp5cxZYJ6uWzrzmDOqcv27mDHIPJnWoxT8GZK9Hnl9+haGU6HM7FlGrCbb+9z2fCMWWkUav9CKKmMZM41/fxjPIlVmvk0Vwy9hLnHPJfKXHVP39LDYBCD1MtvT2okt1ZOs5eBsoLzXUoYVSp5Lmfx5JpKFRcqZTppZNDdLKf/bfP6FspSSOXyY+hGOudSX4BefwIoVK3pWkuWElStX6oGeOI6xr9Ud9sOelpFMnXLKKfD92SmuDp3DM57xDKxZk3Zex8bGELMOXifRioxXxPOe97yuHMOhiBNPPBGVStrRipIZREl32nepop8ilTg4dBMh8/upBat7WJLlhRF/o16eifZ3zZdnOt6jl1f6m7pyDAcbeF+3mx/ZbHBcuP71YmFNZbNeHo2662u6FNFPfTA3uNSX4FeCo3MuJjj7YV+XTJ/3sv26KGKLByFEpr4j5hvQSbTYh4lr38VDrVbDb/zGb+j1eryvh6VxcHDoV/AJgpqTxC0aBsRKzSRO0EIrmezKcabY4BIf0HLoNvgnqeyiqXdWFuewOFgTHK6Xx6LdVu87h6UBJ4vrcwjhmnAxsXXrVr3s++M4ZgR4eKL8BSi0XCC7PhsaiaHcUwQzh8XB1q1bcd111wFIjScTGWYo6jrcM6PiE11ah6BF0XCWQzDDT9e+i4utW7fijjvuAAA05SSGkWh5AsAMUmXR0DuWWWPv2dKkzFLZrYbejAadl8PNZe5Ytn3+xpDt53feSMsNEon6RyA5nJ/JNTf4Oy//vSgy+VSoa1mUdtlkTcQ6sBl6k1wkY4qrZW7MsDcXtSgjHxXFPAmSjCnxoL9Gy1FI0hAx2U2outmBDmVuQMbc8UFIgMrkLjZoo1tt5mt+T6HJuZSNJIEUUShkRfUtnRmaBY+0LM5sm1HVMsV2Mq30N5NhmnEqMhKsKSVFnqZw9wJY6W3EWPwUAEAmIcYCwyBPUIxAVQi4YTGED5hcaUiuQCMxg4eevwIz6r1AxtwBl9ZpWWJWjgMAoXp3kBQOABrKaJuMsDPvGot5tw4kkRRlcfQeyfQ5lKQrVsbeHrtWfS+9Tn1RlMXRPuYMbU/h3ClghUVGxGHsAmj/xW+WROcF4liAiUgBS37Bj5MboJjL7Ds1Cs9P0GffvbyO6TyFcrNOBA/oEai/TO6m+/vp+XIpHF1nviyeE/Ut5yuL8iyyuworTw1V9Tc9ZoUHoxHZvxxUQzF/HKqfZmR0uXzcHJykcsPKOmQYwxjwhtBIZpAgRj2ZRlUY5Y023ObSYW3MXZS0SZuht7YqsMjoLNLqKCdlK5PAZfJZJHCJxYDdWCcUn022ti7v3/VPH8wxl/oS/OJzTbiYOPxwM/I+EXVn1myS7Xfz5s0lOR06Dd6+PJJJJxFJ44Hg2ndxwds3TGZKcjo4ODjYwcOYB95gD0uy/FDzhvVymEx3fP9SSkTSDMhUxXBJbofOg39Ad18z7cy8FxdD3ohebiTdUQc49B6O9tKXMA/ca675Tg/LsfzAP04fmR7DVTsncHjFdD5oJo+/ryiNZgf4q8w2Y3CgZQaX+PEcug8+2BPGk5hu7UHgm48HPfvpFWf+YjW76VkMRnloWz4r6tp3ccHbd0YewKTYnzErpVnibHjoRnabLOaXnNmQM161GWnb2Ew2lLKZ2qSUd8LIW8J5Iy03SKTXXZIxiKaZZXYxqPcbmat67OVH2fj7UDN5ZfGFSPn5DK2vZ/Szxt4AZxqYrmysmAX0rLaxmjhzkBgVeWPvdL+2e0dkQsWHoqWZSp5IJXLc0JtYTyGVw3IfeVYGUHHmfaGwmeDmGQEAECXENipaL0Sq+NzQ29Z/oZ82VRVkmUvpxmnm+jsZpXVHpt1TwgwYTYlxAEAd5p05iv16eVd8H1bEW4qFyJQ+F0p+jgAdo7LJnrcexn0T2bUiFfMnE9Aju3/ORggVY4kHjSB2bKgGsPgkB/kAJgl7xyjGkmYKWd8dhulEfQ3Kz89Xv8MYG4i2awY2Z2XTPVTCZsoYVtNvWXYyvdbG4Yk5Np1blDAmIbMN8L0BCFYea4ALkU0Tc70rRQ1ST/CJ3D1eZK8UmMVtvk9trDhiLBHTESgyMvPXUx757V7mWemr/TOTb8XUI8ZS1TO/D9QN7Fuez7YhN9uTiBhLZAAeseohFtNYy1yfoywYwlg0hpooBrThx0ly7xzODJQl7KR2WEqAaet2WEo8rV2D7uK+2sufR7/1wTpCexFCvEoI8aAQ4hEhxAct24UQ4mK1/W4hxCmdOO7yhbnCHPNhccHru9WlUfd64phLvQKvbynnfuDPF1JKSPZh4gaXFhe8fbm0xcHBwaEd8IElQJR+eDt0HtnBkrAk58IQs0APznaiF2CD010x9e6jL/QlCD4Y2XTMpSWLg35yilT0fgmAVwB4CsAvhRDflVLex7K9GsBx6t8LAHxJ/XVYEMzDcdMmF8liMcHrO5Sdl9VIKdFk+92wYUPHj+EwO3j72mayDxaSeSkcdthhqNVqJbkdOg3evt2KBrhUkZSES3dwWC5IJJdLu3tiscE9e/j7tFPg7esiifUYMu7CLeYCIvUUwtNN0JSdl7UuZfRTH6wTw/Kn5O2dEgAAIABJREFUAXhESrkNAIQQ/wngXAB8cOlcAF+XKa/tZ0KI1UKIw6WUXYpF2F8PD6L2CVtZiYI5y+zY4KDT+y8msvWd4MjqCoyFZvaMWjAQnCossn89LjNQv9PGoaazVK1WEQRu5mwxkWlfKSFlgjAyL0CaNfVYO2lDTKLYiyJF3VOU55j5OLl7d/HB61zK1K6YG6omOfNuoCiHs5l3Z9Nmp9GXDVhaKf/WjHkD03LZXRFzGIa7CC4OCgmkNvGmdf4X4CbforBtvmbTlJv7oJB8Lm/sDRgpCR8EIMmSTYagTb4z98D8rncuWfJEJXO/kAyqokx0AaCVM5TO9PNINlhST1yC2AmJnDbglSSLM9tIxpItD8lSlDzOUoQks4/0rzYHZz+YUZqZqcg8LyfV83dCpIztaWFkMzMylaQ143GdxplLUko0ojG2XmYoXZR40XXDB6wSyc3aD8Ok3KvXA1GUxeUN5LnEha4zW4AIkltn3j/Wd0z2vZDMMaCm5WFkOs4/HYzarwCSBmYkozkzbsBICdsdeKP92d6fJAMMkgFzTMRohnv08SsBM3wmU3Mua9L1M/s2cJPmDGPZy10P82Mhlplv543kASOH44bbgTb+9qlEvHRqHyUBDtizkp7Btu+Pqp+mVdgpVtW3SIV9k9CytvGwPJr4/U41UPY84ec0Ut2M8cbDaj9xJpiBzaDbyNvmlsCl+SioQnsSOJv0Lb+NG3Xn+1uJRTLHUWbo3R1m3qGBTvB5jwDwJFt/SqXNN4/DAuAGHxYXvL6TLsimeGhO17aLD17n3SFPm7269l18ZNt36b7YuwHZxX8ODv2C7HPj0J+8XNro/NMjG23Mte/ShmvfxUe3ZY9LF/3UB+vE1007vl/teoNBCPFOAO882EL1FiXTAw5LCAK7W3U0YNgoNPvAQ9WSuZ5PholJcRaCZhcixxroKTJGtZCIkkZm5kmK4iwHpWkjTc5cys2WdisCnUN7KLSvbFpnjnmnJz/jWmbezZeNGXc86zZ+LKvxd2lY2vk+Kxb+bJGyvyjZDgsD739VxQpEiDKzzmTuHbNriZhFMmfsDRijaov/d9HYG9A9RZ6fzL3zxt6AMffOshUCVZ4icykRxDQ096SnDZBRyG/KUDSRpXQ+I02slFDwPkHKUgjJYDnzcaWYQrLYJ9Blzhxv7tn7bHsRE8nCBFBJMaMhhNagI9SGiqFmeQ5k9qGqikzBmyyWOTGWppn0jAy8ibFEbKX0t+Pqr/GhbLFouokM0QrNetkz0c5cIrYx83FKGub4yQRmImMgHng1ld98OhGrx7OwXhLLOyDPhOUeT9b3ifrtXIEh8udky1NaP5a6oPMNYJhFdO50XZeZmwPFEO+ZYBleeu4tZgURwNfMJd8bQK2y2uwrKbKfygzPTX0yJpho6XUhvIyvli0IwHyRZ8p57FuA7s2AG26DTL6z3wmAnYmkn5u5bwfAsI14Wt60O8tSyuZJj6X2obbZ3vrcyJ+YSvQ84c9//YxhaZwVLiEQ8/bKsZR4mg5AkGEK0Ta+j+z1NhdLKc82srGUOmHQfTD5gP7rg3Vi9OMpAEex9SMB7FxAHgCAlPLLUsrnSSmf14GyLXlEUec15w6zg9f3wbyAZgPfp2vbxUf369y8HFz7Lj6ydd4/L2oHh8UA738FnpPt2lAmYXPoPrrPLHLt21NkBsxc+y49LFw27dA/6ARz6ZcAjhNCPBPADgC/B+D3c3m+C+C9yo/pBQDGu+e3lAddyL24iOfHYGrLeymH6elpjIyMLKRwDgvA9LTx30mExAPiDqwWJgIVharNaqrVzISaUeWsJpqNpYcsZ1a0Wi20Wi1Uq8a/waG7mJnJmrQnSQOeMPVPd6FMijpumz9BcRbRzFTwa8lhccDbV0KikYznWA/kD8FmOmn2KimymqxMpNxstX2bxRcid7xsYnuso4X6JbXzO8epXH6QIsnMRAvMzpyhbTbmTLsfEZQv4+mkZuGJ4RSw/hSxmBLJ5OpClVFd05EwM+XEsrCFGqfZeMmZqlZmiM+2h5nAHhSKPWLsDApDTwygUBbLb/NZsaHMY8TkKfY3PZ4/F9KbM5FitWzzTUkEbSuKDnj+plrRnkuMudRQz9U6DFunoZhLLcyo45n6DJU/ThQbn5woZn0wGSFKioFV2vFeSleKaTyaaxTPoBkav6fIT/sCGeaSyHlqWRhMNvaQ7X2SZ+HMdi7zgY2pxc+XmErkJ1XxhvS2ikgHmKtgado3aPa+ru0aJg+cmDG7Q8X6r3umTR8P79HLNX8FhoI1er3MtynRTDDDirPVpxACYUTsNJnp31nrxwsyf3l92phaefA8viTWF2cupctVdR1VvKJfUsB9lbR3a3Y9XbakebNvq+S2AcxryXIudJvHxUeAvoq5HxM9KxqJaa/p1m72Gw+hlYlUfL61w1Ky5bOxlDg7qXicznoo5fPN3yOT76t/cNDUC5nyC98L4FoA9wO4TEp5rxDiXUKId6ls1wDYBuARAF8B8J6DPe7yhrntd+1apDE6BwDZ+uYvpU5BCIGqGNbru3fvLsnt0Glk76duDEibR+74+Djq9XpJXodOI3v/VkpyOjg4OBSRfe87x7DFB//E6oL1RGZwyLXvYoNLVv2u9LH54HA/fa4vFZg6r3rDJfkc+hkdcZSVUl6DdACJp/0zW5YA/qwTx3IA0o/e9KW3a9cunHzyyb0tzjIC/zj1ve6Eka+KYbRUiM5du3bhqKOOmuMXDp1CtweX0ll4H1CzGbt27cIxxxzT8eM42JEZXPIcI3A+kH2k93dw6Bbyg9JSJvOOMuWwcHB2dzfqnTOP+4srsDTA/ZE8b6Ak58Lg2rfXYINLwg0uzQf91AdbRuGKllIECFP+s8/+XUhmSOvQXfCP00FvNVaLzZiGMaCsiAH11ww8VWT6EasNECU3JC3SZAe9EUwlewrHc+g+du7kVnBkUMs6O+qvtMyYmrDYrMOiHjsZKrVXQZK4waVegLcvfSTGFgmCTZZgM962G3THJdvmadDdhsn33LOvJcd0M7cOs0IigUQE/vwj2RqTUtH1pR0ImAzH4kpA8ra8sTdgDGA9lkhp0nJsm0EuyeFiVY6AGQ7TveNb0ogvIfj9InQmk18k8ERFPyM8BAjUe1/qYzNZHBklkxyOnS/J+bh0ph1ZXDm4DMMv/M6Y5hb3ScbcsaW96Bc2SUxskcKESjoesmcMXStcGkUSQiN5MnVHEqeEyWqEEOaakDHArk/zPLNJT/QZsX15hbT890ErmtLSTDLfJolUmtvP7Guu0PYFGbTlfdIubPvXRtIk52KDob6aUOEToxXlrUZyuJpYobcNIF0ekGYQYFCm13pN3UNVJhG0GVAT6Drj10NL9a2a0lh7bPdqiJMpAMAKbz0GxDq9je6riMkqyRQ8kqnUjRukR8o4nqeFEbcjkAi8Id2+9O7mA1CmHov1SSwobuau61+bg7N9gZ5JXPqm0tTfCtsXmW8HFhPuvDwuTctuy+bP/k3LXUwrA93nScljiG+ifIO+uUaGxSpMyX0AgJo3rOW56W9nN+FuRwKX7iPO/q7DBt1FGXJ78riye9u2j37HMhpcWkrgTwJH211M8I/TgGnTO4kBz7zcd+zY0ZVjONjB27dbs9GeCPSrx7Xv4iI7uOSYS+1Cws3xOjgQPFFlHi8NBF1gWDjMgi4bPqcDDR7MEy+G+1RaPEQsWl93ggoIGPUHvdn80l84dA5NOaWX+UCmQzn6rQ+2TJ+Yi23yPT+NOI+GMXdkkqU34nko495779XLM3Icu6J79cwPAIRqBjNgzCVtlKiMEH0e6lXNXPLZjdAzy/fdd18ni+8wB3j7pjOdSXZmXd3Lgo3pJmrmtDSMLc/PzMBd+y4uMu0rJFpJ1lSdDL3t4YxnZyll95HNV2bend+eJrSRZ5Z9GfRTN8ThUETamU0yLKJI0sw+N6XOGXrzUNRi9v6LxRfaCtpD3tgbMAwAPtNN7ABiJyX8XhY0q23uW2IkkNcLZyEktq6iTJkfkXp2NKL9EIrdQOwPj3WtPfVuD0VL/96Up2h4LmQbfUSLIW07v+PH8rR5NzcEloU0056C/a/Kof5mTXzVNqvpb9Gwdz6QUkIys3QgyD0HiUVne4bSdcqfx2qBtXm+3HFSh1B9toTYScxAnq4fm6H3Qieoyp7ttv6F7ZjEsOEsK89T5t0Z5lKWsTSIlXrbUJKmDcP0cYfUpMyA6qcOMOpMPux95pzU35BdLI04Ldu0+hvLUN9XALAeRwEJ6xsr5lLImEtNoUzfRZrWEsbgPVKqjtgz+QNvEK1oDxI1iCWEQODPPjicr09fFNveY0xIT5v0098iK5F/1xHbyzCR2PNNLdd8npb+rVjq2mbQnWcszde8m9/bZXct3Tc2Q++JOK3/ZjKNUDHMPASQogreV4lyrCPAPOvaYSkBhqnUSYPug2EnlbGSypjs/Y5lOrjU7+CPgqV7cR6K+NWvfqWXA787euFBf631eA7dRZIkuP3221lKd5hLQgT6Le3ad/EwMzOTGczzXaj1eaGMCu/gsJwQ+CvQjA4AyEYvc+g2+IcaMVC6AS7LjPXgkkN3MRnv1csD3moEoqoHHDqJwBtEKyEZXR2B3x0VgkMWk/HTennYXw8hvCU9wNJp9FMfzLkQ9iWyL9Tx8fFZ8jl0EgcOHMBjjz0GAKhWq/C7RIUf9I3G/K677kIURSW5HTqFRx99FBMTEwCAtWvXolsdV95RdYNLi4e77rpLs8aEqGSixjg4ODi0Cz6xFCZTJTkdOolEttiar9lsnQf/NHLqgMXCBBt8WOFv6NpxfGZpkTAZnkN3MRmb6Ncr/I09LIlDt7HMmUuLLY8DDNOovXE9aSEiCghlbpluu/322/Gyl72sQ+VzmA2c1XLiiSfi4ftTOi6nQsaKmht5XBaXDkJFSh7HzURJIsepzoFfQSCGEMkZ1Ot13H///TjxxBM7fToOOfCBnv37D0CI4myWbmv2yCCJHCkJ5jLllOzHu3btws6dO7F58+aFFdqhbWRYh96QVQLXjmk3l8JZZW4lBuD542QTF0cOtzATb5G5bh2WAyQkYiTcAFmbXzNZGcmsLJInkspxGTFdRmXG1Zlt+rlK61y2liZyg1xJJtZkzs8G822yCP07kpplykom09nyV30jHYriGfiikpEm8fuWZBFkXJ019E7zcenMgge9leSP78umY4ly0hyfyelIxuKxE9Zt4aVp3CyYstn6qTaYa4WbspMBMhljMwNkkh0paVecmOtOiEDVuU3SVhY4wVJWWTaAFCFJmmogK1DH4bKdSJcHyMoTtcm31UR8frCad+v9+4U0qjO7ebdh7VZEukzm3SSFA4ARpH2gYRZZdThI9zuo9FUDgWnLKhlQ89tXLZNcksvimnFa1hElfXu0uUdv2xAchTXeMFqszUPVTi2YvllTpsstkQ4SNYU5txZJ5ljQo5aYgagkqLdSv8tEtlAL0vtZllwHxrybGZhrqRwz+S6zRygB1VOZpA0wcriKSgs8vs2Wn8pVzN+uHE7nt0ldc3K4mOlKaZlM36dj074r/PWQSDLMNHo+x6KY1o4ELt0e5363cIPudvpf7UrmbLDZKsyO/uqDOeZS38JcZLfccksPy7F88NOf/lQvn3rqqV091mBgpHGufRcHvH27OeDMO6kAcOutt3btWA4GvH1930niHBwcFgbPq8DTvooJwtixlxYDCYv6tbjM0z7So/Qx9rSe0sur/E1dO07gm+h0cVLPRAR26A6klBiLTUAVx1xa2ljmzCWCZVqt67CNbM6HzWTKefXVV+PDH/5wZ4rlMCu+973v6eWvfOUbGKimtF3+YorVCL3P0hIvUtvSmUs+y0EsJj4r1QQQBCOgic6rr74a73rXuzp4Jg55SCkz7TvXozEze6EjNSvJ1Rz3sUQCIQJIdY1cffXVeOMb3zjfIjvMA2EY4pprrtHrgTdcMOrOL+fTaJZpzvwHyVjqlnn3whhL6rfoL72/Q2eQIMkYIJO5NzfJJhaTMatlrBdZDG2fJ4yXMZg4KBfPT4wlzkbxFYsjUGmZ+0nWsjuDZYbbWlZjIk33QTVYhUaYzsSP1R9BJViNwwaPSX+WYTNzA2r7SSWZd0b6XPIUAyaxmHfbQPklN1u3sLHy7KGYl1VmWWiAMRwm1sJcrUVHN0wMZl6syliRhglDgU4o8InPgqEQ6yaMpyFljIQxUDwxBCG8Au8AyA8FURAO2tbOgywfMS6ClHwwy5tlObtObcHZLnT4MiaSvUTFwTTNXLIaeqfHDFhUVKrbCmNlVxULaECmUs9BGLuHQdVXJbZSupy257CixAyyYtXUcmC5SKjWm+xh0FTFvmesjun4AMbjNES9jwBbBrcgEAFaMTP0Vm3YYkFRmspcvanu7ao05W8pFhOZfqdlS/ON+avRisfS/UbjGKisR6WNSSfeDtR/z6gR1DLdjxmz/nnyObThdpHICd/CUqLlildMo78eox+VMZegnw/FbdKSn1hKPD+11+3JTxBGk2jJ1Gy9IgZR8VYiQoxYsG+lEtPuSOUrYynx7Qs16G7XlLuMnVTGSEoW2A/rtz6YYy71LUzT/fznP8fTTz9dktfhYLFz50788pe/ZCndNXgcrJhR/R/96EeYnnamod3Evffeq/20UnT30ch9l66++mrEsfN16CZuueUWjI2lHUkhAngudLiDg8NBoFZZo5fjZKYkp0MnECdmgMDzBhcsL2sffP/OdLjb2Bs9opcPrx2LoMsm6kOsj90MD3T1WA7QARAAYE1wzCLcvw69hGMuFWAbGjwU2UwUKSMt79VXX40//uM/7lK5HK6++mq9LEQVgT+IKE413kliRt5ppi0zui4VY8krMpd0GFuZm5USKbsiSqbRbDZx3XXX4bzzzuvgGTlwfPe732VrgQ7Z2w5opoNelu0wT6Q09+/+/fvx05/+FGeeeeZ8i+3QJnj7ppR4WfBS4su2mSdr/nbaumv+Su1h/vtIYHsP9pPe3+HgIZEyXzzJ/S/ITyQppEUlH+AB86GRmv1UpMKU+jAJmklnc+sUvlsW+0mJ9l5i3Vzt32TSZBkzSLNSWZLKXwso6IOElCHqzaewfvC56tjMGwjZ9wK/z8mHybP08+KS283mHeURY4X779j6j7lbO8Os0MwlkxbTdLlXrAyvpIw2fyVimvmsjJq5pP5WGauGQsivGTwO+6fvJjI3PFGFr3yAuMeRYaNyHyaqd+WN1PbzOEth87xByIyheC5/rh/QLjKsI+07VcJgsrCUbJ5O1Bf1RNHjkzNtanJQ/U3zD7JtA76v/pq6GCTmkrqF7Myl4jVCjJaA0XAo/6uOGMQ/Pb5Npz97+NkYUfSb0Df7aiXpb8PEHJSYTY2EGEzm3iY2UwWGvdVU11lcPRpjjQfT5WgKL/DOwr3iAQDl4eM56F7j9RkQc4melZZnkw30WGOPN+NpdhCMlfw9Ws5WAhJJz+dsGQAgUrdJzG4X8tAKE1o3G6teeu57xn4Oboy/unK0Zixxj75Y3eFlvkrau46ltctSKutjtctOOlhW0vx8lvK/7Z8+mBs67GuY5rvyyit7WI6lD16/gtG2u4mBynrr8R06j2z7dn/MXQiRYS+59u0epJS46qqr9HqF+S04tI9Edu+fg0O/wRMBqsFqluIu5G5ByhjNcL9e97zF8MyjCSAqg/Pl6Ramomk8NrNdrQk8c/DZXT9m1VuFwEulgBGa2Bc90fVjLl9wsZ2PVcGWHpalf9FPfTA3uNTXMM33gx/8AE899VRJXoeFYvv27bj22mv1urdIg0uDbHDp29/+tpb1OHQWd911l5Y8BkGAxSJ0CuaF8PWvfx3NZrMkt8NCccMNN2DbtnRWdOXKlZkwxA4ODg4LxUCwjq0lkAdDMXCYFTOt3XrGXyCAWDTRBWdAufdzt/DLsTs1g+Xw6pEY9lfM8YuDhxACKyomSu8TzTu7fszlC/NcXB1syag3HJYmnCyuLeQ7DItJTSuTyhlpTZIkOOqoLR2RUThk8eUvfxmJonr+9m//Nq6//ueANAwXTp2USVFWQ7RkaptYNAvbONXZ0zR6Cd8bRJzUMTMzg7VrtyCOJzp+fssdX/rSl/RyFCXwvIVFoWn/3lM03CQB3b979+7FFVdcgd///d9f0LEdZsell16ql6emYgzVEkiZzCJzK5p2620yS8+2bbNun+O6yOef73Vk3eeCpHCzQzqG0bIFlyiQpMjLhKNXaapflGTCzJNBK5+5ltn8fECmja4Vz0L74HIBOr4x+2bPc5J68JjaOYPx7LGKhsk6gIcAhmtHYLKxTT83JsPtqAQrUfNWzlp+Lr+gvcZtevqUyXVoi1UWV6KFyUiqLLI4XVUJhbjnda2OaQk9T2nc0DtQ9ViV3KQ57QPVkLKRItY/IgPqvfUHdFqtsha16mrESSpR47YEZEHAg6zoZSWXykYGm/2ZLgBl4k1eTxGkrEAILydby10jvC9Htgesjj2P0ooSOJtBtynP7AbgPHIe5aN+pGcJIGMzoCapos+OXVGypipr4JparqpsNXZ7DXjpxRJYaAvmNjf3Xr0lIGWCG/bfptNOWnkqar6Rz4XSHLuqXkIt5hpNZawoHWklZuVX1xmX5ZJEroIa/OpJGGs+DADYGd6PY5PjUclNPtkkqARdx9zkW2bbl8NIYyVLo+OQITaTicmiqbY2zlYSQX6p0Ae9TcpGbRLL8ocsHYtkbhHfF22z7L+lDtpg/qG7MYpERghEDZFMbUTWVbciQmTOl8ncqK6zJt9Z026boXdZ2lwG3YX+1xyytTLp23wlb/Ppp/VbH8wxl/oe/AEm0WrNrgl3mD9arRa+8pWv6PX3vOc9i3ZsIQQGKhv0epLMuJnRDmN8fBz//u//zlIWL7xx6hdixvf5IIhDZ7Bjx46M5NBXNHgHBweHg4UnAgxXDfuh3trdw9IsTYTRBPjgd6Vy2KIdWwgPnuASvJLIfw4Lwrb6o5iMRwEANTGA5wyfsGjHHvTXZBjk481tJbkdFoLRcJseWKqKFU4St0zgmEsLQi9Nv4HsLHO2LN/5znfwlre8ZRHLsrRxxRVXYM+ePXr99a9/i2EsaQNH1h4Wc1AyDKX8NHMFAIkgk8ni7BUA+P4QTEjcGNdffz1e/vKXH9Q5ORh8/etfZ5H4fPjeiJ6q7QwLcC6T5gDUYb3llltw55134qSTTurAcR2AlHVIkfh8bwgD1TV6pttm3m1jM+ltJTNh7Zp2l+Uvv97auxY7zVjK7LuPzCQdOgEJiQQJN9xW5t4Z9xmL6fUcu1W/K4bqJhYTZ0a1A8HyezLLZvItEwaZ2ed8+ec6NIUHV+/soeoRmGo9CQBoRvsx1RzB4GBxAIRmy+cbg8w2Kz/bdl6u9Fh+IU/BwJy1mzbhZuwGyk6MJY/l9zVbje2OGFGqTUTG3FmxSyQ39K6ov8rQG2wwxwP2hCaK62BlEwaUzxUxnBKPMR8UKymOWywtVOVS/TXGXNL1YmGeaqPfhMvhIgBDVqYQ9QuFhbnE2UO03TCY7H0/kzb7hJeNWZdnLHlzGIAb9o1qL7Z/ylXOTDPtq8PdW0zfI8v+Ywn8cvwXev201SdjZSUd7AlVxoBdbxUy8Gc78WNKk+qvKG5jDzEy//fVNfjMgZdgW/06AOng0jOrZ6LlFSWQ7TCY0vPzC2nFfXF2kmLrqHsuYhPIfkLPQ/Nb0cYDK2GHrhBjST06ykz403Kkf41Bt9nWVPtoMDpTQ7l7t9TfiN1Ljyd3YKx5r17fUP0NJJ4EEGvGUiSK92OZafdczKWDNei2MZPaZSR1WznUT30wx1zqewhwtsWnPvUpF9a8Q4jjGJ/61KdYio/FHURMOxa1ylq9/vGPf9yxlzqEer2Oz33uc3rdEwOZj5TFQNrZM/fvJz/5yUU9/lLG6OgoLr74Yr1eyZjvOjg4OBw8qsFKVH3zbAmj0R6WZmkhjKf1wB0ADNc2l+TuFjxk+33Oe6lT2NXciUdmHtLrpx/2/EUvw2GVYxAodloop7G3df+il2GpIozHEcVTANIBzQ3V5/a4RA6LBTe4tCRgmvGee+7Bf/zHf/SwLEsH3/jGN3DfffexlN7cLgPVjXr5pptuwg9+8IOelGOp4ZJLLmEm+GLRogAWYZhs//3f/42f//znPSrH0sLf/d3faRN8ISoIXJS4g0I/RSpxcFhMjAwcrZejeBxRUp89s0PbOFC/H8TQqPqrUPFn97LqFtIJJ8M8krLpvE07hBsP/Egvn7BiK9ZV15bk7g484WNT7bf0+o7mL3K+XA4LgZQS0w0zMLyu8pyCn5XD/NBPfTAni+sYylqn22wICTIGBoC3v/3teMtb3oJarVcfy/2PRqOBj33sYyzFQ1q/0tC+tcGcQVJYYLI49Zdo2oDd0DsPITxU/FUI43EAwNlnvw5x3ILnubHhhWJsbAyf+cxn9LrnDUMoI2/N8rbctu11KtuVPJGs0lPGoSnj8IMf/CCuv/76RWdRLSXs2LEDX/ziF/V6NVgDKWNIWZTDZcy4uyCHs+bh2w9SDtdNKZyDAwdJQ7LSLpLaJJn1NG12Q299n2QkPRaT7xLQE5JL6yRLnQ0Bf2vnn/fcX1xL94pSM5J1COFhReVITPlPoKm8Y/bX78HKwWcBAIb99ZnfzYX888JmPsvv+TKTbzpmIix5LK8XT1rqzDgOK5jzILWRb9Ha2BjWWnrFTb7VMSvK2JsiSdWjA5gOTQTkNUMnoOoNw5MkNSsadMeqb0Xb+Pa8HDrdFhbS8nUsVRTAOB6Ftk2XITxvRJ0LydBssjglTWNWCCaf6m9YZHFlkiob7DI9ui9nN/ueC1Qr/OOTmpXSuEE0mU1n+i6562Bc6d22zWzD4/VHVbkEXrk+tXsgGRddUtzMmtL4/kki5yfZ9TSfksDFTDarLtpAaccCeHiZaSbcAAAgAElEQVRm9TTsad6DlpxCKGcw2ngIhw+ckil3QU6K7HMtDy0xtdQ1/11E/UAy0+c6ZGOZbzmCkv+y+g0sBuBhrl5ssjjevrHM/m2x0yY5XIMdQKcl6b3xmPc4AGCytR1RMq1K6uPwwVMQi6ggh7Maercpi2tHAmeTtM1X+tZuH2uuvt5ygvs6XTLINiWPgOUwf3zpS1/C9u3bAQDr16/HYsvh8qhU1rIyxPjmN7/Zy+L0PT7/+c9jdJTkCwJCDPS0PHyc/8Ybb8S1117bw7L0Pz7xiU+g0UhNJD1Rg+91P7TxUoZE2s3t1j8Hh36GEAKHDW7V681wH6J4pocl6m9IKbGnfrteH6xsRC1YPCPvPIQQ8FgwiETOQEpnP7FQSJng+v2GtfS8VSdjY219z8rjiwqOHjhDr+9q3o4oafSsPP0OKRPsq/9ar2+snYiq64MdFPqtD+aYS4uCuWbhOjFwIWCMn4GPfvSjeP3rX48tW7Z0YN/LC0888QQ++tGP6vW9e/fBMJcAqmOZm7EFAEmzZGx/huFEMxRmIJBmQ8qYSwTfG0GcTAAALrjgArz61a/G2rWLTyPud9xzzz34/Oc/r9d9f5WVJUSzfHw2gtqpjIk0N3L5ZKJ4h+b+fe9734u77roLw8Muutl8ccstt2QiPFaDtUgZh8qoPcdYss1ac+Tbul3z7rJZrEPdvNvBgZAxUKXZb/YO02wmQawjk59m7+0iE8WiYDPvev+sTzTf3hE9y8l4OmF7oP3aTL6t/rglLFZ6P9As+3BlEwaDjahHacS40el7AFQxdBgF4CgyVcpQNlOfndmffZAjUfk8yWRdxKCmEN+CM6OImWPZWYHBZMLAJ0mxjk2Zi7vyLG1C2JhswO7WA5iKdqoUgfWDv4UqUkkNMZt8JVWLhakLYi7FzECb0hKPmEvmfPOspnS7nfEgvUE0wzokHSOZROAfBt9LDajLWErc0Ntvg7lkD2M/v8EsUXK9cXNqupZitX9uyBwm6XKLtW9Tba6qNJ8Vi8ymo0yjU1r699TDmrhmz6+ws7kDABCIAC9d81Id0p6OREwbfnVQNzljOq5XiClUBGfreDEZbisWnSrX0dWT8GTzNtSTUcRo4UDrNpy24lw8FaWKAds9QfVYZvadza+YXdzQW5vKW/In1N/k+1DPHZUYsrYh1lfEKoFYhZrPOSdzKV2h9gjZRmIskYk3AEzH6b3TUPfFIxM/hJQNSJl6k/miijW1rWgiHayLFWOJTLttBt025pKNpVRm0N0uO6mdfpRjJM0fjrm0pGCeGpOTk3jnO9/pzJ/nCSkl/uRP/gRTU1Ms9dCQJwX+iO4w7N69G+973/t6XKL+QxRFOP/88xGGJGmowOs5a4lgOqWPPvooLrzwwh6WpT8xMzOD888/Xz/3fG9IRVx0OFhIKbr2z8FhKWDt0Akw/YUEsw2rOcyOVjKNhxo/1uurq8ei5q/qYYlSCCEQeKYcUjaRSOetNV/sbo7h3568Xq+fteYMrK70vn094eO4gZfq9Sead2NX6+HeFahPkdoPGNP7TbVT4XvOoqUT6Kc+mGMuHRJoZwConcanyHHp6Oy1114LzwscfXce+MpXvoLrrruOpeQjhQAFBlPGo0HlyBgC5sdwzTrNWgiL14GNzeT7KxEpX4dvfvOb+M//vApxPFXI52DH5z73Odx222163fdWonD/Ub13wLSzdFYkt01AQLL79+KLL8bFF/+Tu3/ngQ9/+MN4+GHqEApUgnWQMsnMWOUZS+2wlWbL5xhLDssRfKbe02lEK2DvPvVo5R3NRDMM1Aw52xf573DbkTyzZb7I/n7u+VTOyiI2lpCGSUIeKjQDn/Fj8tdizcBzcaCRht8WSBDGU6j4KzTThs+8a08klmaYJhavkBL/kHIGU5Gdqf9yLxkrq4EYAzW1zlgXSVr+isU3y/SFeDmKHlyEQdQgpcTd9SsRqkGbihjGkYOna5Y4AMTqaiIGE2c5RCqSm5W5JItMiTyrKS1vjtnKr09/EGjFOiJgHE8iqG6C51WsTCTfwlyiZSq/jVlk8+eyMdl0mdsNlY7iOZH3TUvVRcjMy1uqfRuxKWNFUV+IAWPz6/EZE5zyjQQSiUzwiQevQSNJj7Whuh5nHfZSFHlOdtC+gqzpmzpocQ/Vkn3pZwGrus3VZ2Nv+FzsCtNAPr+Y+h5eOPIOVMQAmiBVgmR7UGzNOdhhZWnGUyg9AU4IiCU9a3yWphhLqjIC7l+m0vyMJ1Wan+rOs7D0M/e0WiTGUpRhLqVlbTCmH9XLHm83pExQ86poqDod9Ndj1cCxCIUZbIp1PRavZ7qXbZ5y7XooFRiHc/SX2mEldbsPzj3Tlgocc2nJQSD7eE7w2GOP9aowfYVt27bhggsuYCn5uuw9PG8AngqbCgBJMoM9e/b0sET9g7vuugsXXXSRXhdiEEIcauPr+cHMBBMTE70qTF/hJz/5Cf7xH/9Rrwf+6oyxq8PC0W96fweHXmHNwHNQ81cDSD9c9k3f5aKLtYk94QMYjbbp9aOGzoQvyocIFhu1ynp4ukwJ6q0dTiHQJm4e/SWeaj4OIB1Ue/2m30XgHVrv6K2Dr0BFpGznlpzGA/UfufZtE3sbv0YjPgAglWUeMfyitiw/HOZGv/XBXKsvSWSb9bzzzsvJvBzymJycxLnnnovJyUmWemgNLBF8fyV4aJs3vOENaLVavSzSIY99+/bhvPPO03I4wIcQhyJVVyBPKP2DP/gDJIn7OCnD9u3b8aY3vUl3Aj0xAN9zflUODg6LCyE8bBx6Pugd3YrHcKB+b28L1QeYjPfgwfr/6PX1ledipHJED0tkhxAehgaO0utRPIVm6Cb45sIj04/jO0+bQCXPW/kiHDlw6LVv1RvEcYO/rdefDu/Dk63bS37hAACTrSexr8FMvAdOQc1f2cMSOfQSh9aQsUMJykbO84MgWXnc3XffjZGREcRx7MLXW5AkCf7wD/8Q99xzD0u1yeFm3YNeogkOeyRWZSiZCdVMy8V2KZss8byVSJLUaPDmm29GrTaIJIlc+HoLwjDEG9/4Rjz++OMqRaASrIUnKpkwxrOB09a1KTubjen8rHTWnP973/sePvKRj+DTn/50h4+zNDAzM4PzzjuPMfg81Kqb4InAHmq6pL3aksN1VAoHtDNvdChI4ZIeTt4KIY4C8HUAm5Ce3JellF/sXYmWJ7SEw2J6bQJb8PcbST74+y0rMQjYNpLIecwDQubC17crk8sbe2fPg0lJcu/ezP4tht4kgyP5XEYiqOQNfrAO6wd/E3vrdwEApprbMeMdiXW152BKjJky6tDwBiQDIWlUzPdvSSucmyVAQSboCMlMBBnfMoNrSmNSOTo/Y6xrJmViGai/RtbhC6ofi/xGVWjMylhHC2Eygzum/wuJ6iPVvFU4avCF8NQnik2WaGRx5jPGJpUjw++4RBbHpTTUJyApjFXKJBPUKhv0oFIz3ItasBq1ytpMfyFQXjMeuKF3Vg7HJXBlZu/5kOw8rUxGlC83kDNBV/XXEqnhcl2a+hTqRveiYltGalscmG1k/M3PQghgPBrD13dcputyU+1wvGL9S3WYe5tBd9ldbs1PElx++6qNGWkmGf2rQla5JYUqz9HVEzARPY6nWncDAB5s/BiBvxKrgy2osOuNJL7coFvmnoNzyeMS/VfdG+zsKPAAv19CVV6f/vJnmaB7gwVEyAVJ4Ibeui54+UkWp44ZsmO31L0xDRNJL4CPmXg/dkzfotOGgo04bOA4hCRTtRh0tyOBS5fnNugu7dPN0Rc6FGwneBnKJHK97IPNF26kYcmCPlANPvnJT/amKIc4LrroIlx55ZUs5dCTw+XhedVMaFwgwaWXXtqz8hzKeP/734///d//1euBf1jGA+HQRHZw8zOf+Qy+9a1v9a44hyiklDj//PNxxx136LSB6uFODtcFyC7+awMRgL+SUm4FcDqAPxNCPLcjJ+bg0AWsqW3FSGWLXt9R/ymmol09LNGhiUTGeHDmGiQyZV97qOC4oVcfcnK4PAarmxH4I3p9ov4owni6hyU6NNFKmrhy9zfRlDMAgGF/GG/Z9FYEh/g7+oTBV2K1v1mvPzhzDerxWMkvlifCpI77Z76nB4Yr3jCOHH6xk8N1AT3ug80Lh/bd7dAmZrs0aJAk3X7RRRfhoos+7vT/DF/72tdyg27FQbnZURKnmNexNrYszuzSspzvOK8EpPQBVAA1A/D+978fRxxxBM4777z57WsJ4/Of/zy+9KUv6XXfWwnPq/UgtGjZzMps9y+xl9Ltf/RHf4RNmzbhZS97WcdL14+QUuKDH/wgLrvsMp1WDdZDWBhLZYykTpt3t/d8be/66wlj6RB8P0gpdwHYpZYnhRD3AzgCwH09LZiDhp5hZmlkHhsxhmigu53FGeNAz/YXQQykpAPzPoK9s+nNa45dPAA3+Y7URxSdW8bgN8dm2jJ0Fh6dukb5kEg8Pn09fnP4zRj21wEA9nlPq/zsWOovpdmYszbYDKi1OTWva12PdB6WsN+MuUTLdE4R21dNsZgixswhU3Ybw4zqakgNHEmZ4I6Zb6GlfFoA4FlDr9T1QzP1nI1CzCViMnBDdRubiYzIia2TYS6JInvC5Cs3DgaA6vCJ2D91B+KkDiDB2PQ9OG7leaiqQacp7E/LxZlLatlXZbSZd9tgwrRHxTTWhrp9S/bFmSShNuKnP6w8al+SUSaiMC1/qMy+m8zsu+qnO9m6Ok2LZISPPPQFJDJlunjw8dp1v4cAqzAdAr76qc/al5bLGEy2HpPOz/eV2ydgDMlpH1nDeXIp91ARVZz2/7P37tHSXGW57zOrqtflu+R+x4QACbdECCSAmnh2BMFzwHzZsI8MtgM8/IGc6DiAY3uGoBsV/Mc9dIztOOJBxYEinLBxi4JhC+INo2Qr5AIBEggKIffky/27r9VdNc8fNd9Z76x6e3bV6u7VXWu9vzGSb62qWbNm15xVq7rqeZ6573/HjYf+EBv2CEZ2A189+gm8+qTrsJbsAwA8WXSbLbAQzi9C0s8Yfy7xwHxSLpWfjisvSS0YXt8mKz75NSz357lTLrHxNjTlA+BTbWl3G9lN/MuxT+CEc1EYZDh73w8gTwrkOFapk4JrUqjAm6RSigV0x6+H7RRJkrJsWpKO3+c00FvpIXUVjsXHP/7xRTVmqbj++uvxtre9jS3p8mBp8RhjYMw66E9onud44xvfiM9+9rOLbdiS8IEPfAC/8Au/4H9PzDpSd1PQD8LxeOLECVxzzTW46aabxm+yi3jf+96H3/iN3/C/Z+nJGGSLn9J4J2IBFNbM7b8uGGMuBPASAF+a/SdVlNmRmAzn7/t3SM0aACC3G/jG0T/DsfzxBbds8Vhr8fXjn8PmqHqwdMHalTh1cOHiGtWRxAxw6p5L2QMZi+8d+WtsFppxmtscH3/gk/7BEgD8yGk/jmesXRDZarlYT/bjpXv/QzWro93A/zx8PTYKVajldoivHv1zHM8f88vO3fsKrKZ6DzYPlukerA39+SatbJHmA5O3vOUt+NjHPraY5iwJf/zHf4yf+qmf8gHAL33pS9EtZ2k5KB8w7QH18XA4xOtf/3p85jOfWWzDFsxv/dZv4Z3vfKf//eqrr0aWntrDTCrKTys5evQofuzHfiyw+e02rLV473vfi1/7tV/zywwGWMnOWGCrlCk5wxhzC/vv7VIhY8w+AH8G4OestTqNorL0DJK9uGDfj/jcnaE9hq8f/SSOsi9luw1rC3zt+F/6TBsAOHvl+3HeyksX2KqtkaV7cMreS/zvw+Iovnf4r7GZH45stbMZFSP8fw/8d9xx5Jt+2ctO+l9wyb7+9e/J2bl40Z4D/vfDxWO46fD1OLGLHyCO7Ca+cvTP8GR+r1925vpl2LfyfQtslbJMmGWeYtEYY9FSMqpMgiYy5BgURd7DL9xbx1qLD3zgA/i5n/s5Nr2oQWkvo+MzzTlBx7L53NZLVQMvslCuo1fZ2sJJRU+A2p5lGf7oj/4Ib37zmzvV1XestXj/+9+P97///X5ZYlaxMjgLeTF+Rr3Z2KC6rYO3MUjjrV7eggun19fX8Sd/8ie45pprhG13LqPRCD//8z+P3/7t3/bL0mQP1lbOax3ePa0dbutWOGBpw7sbn3ET1lYGpGfuOc/+0kX/5/T7GcN1X3/frdbaK2JljDEDAP8DwOettf91bo1RAADr2en22Se9VlwnBQ8ngoWDLEDckkFWD7LHpeBhzU0LR4rxNitaFruHke5xuQ2EfqbrsLQuCLz1wcrlshGzjVQWMm4zKa9Lh0cP4XtH/sZnk6RmFWfuuxyr2anYi1N9+VHNSsIDnEcUkGsrW1OBMLCaT1KRC9dEgu4zAsuNs5VREDUAZChVV5mbXXUF637dwNniBqjKk13HB58Hlh6D3I5w85E/Rs6+nJ85eAGetf7KVveidWtR2F/0NzVvLKOQcm4Jo3VS4HAhGJViNpzjw4M4eOQW8LiE79v/SqxmJ4fHx50TmQvONi2/49BnGhnWv67dFJzMl/ngZDZWJMhK6NvF2rpqy75es3uqZW79qjt/V1l20kqSYFicwGef/h1YW7Xpkj0/iJftfzWMMd6WBgAr7qPzZWRhq9vjgLhFjpx7OTvd6echt/UV4bJNtm7o1m3mVT9vFOVxv2/zDnzt2Gf8HhOzgpfvfQv2pKdiUwhZj10fRuLYamfjqo+X+vkFVNfY+vpxcGtYbsh+WY4bPt4O20eRFxt47OhXscGsrKesPR8nrz+n/BwdA7qlzx2zvk2yu83D5taVtra4mB3u0UP/EtwTLcM9WBdUubRrCBUQJRbXXXfdrpnGfnNzE29/+9vxrne9y99wvvjFLwYwCDzKfcSYxCmYXMbFaIS3vOUtePe73408X/xsCNvB0aNH8cY3vjF4sHTVVVdhZXDWDggXDBWIx48fx7XXXotf//VfF7887USefPJJvO51rwseLBmzgrWV83ZA/yoxTPmt88MAvqkPlpQ+sjc7Gxfue7VXMOV2Aw8f/hcc2bhvwS3bPjaKw/j60T8NHiydNXghnrP+qt6/5FwfnIWz9vHvZhYPHP4HHNl8YGFt2m6O5E/gxkMfCR4sXbr3h/yDpT5z3soL8aI91cu8wm7ilqPX44nRPQts1faymR/Cw4f/OXiwdOr6C3DK+sULbJWyjKhyaVdB4d7Nhw0HDx7EmWeeue0t2i4OHjyIN7zhDbW8mgTAGgyE0EvPVs+PYLLU2hrhj2z0y7G0Tn46X57PGwjbbfDUU0/i5JN3rhf6nnvuwbXXXovbb7/dLzNmBWlySvyt9kyVKvNULpUlJQXim970Jnz4wx/Gnj17hG12Bt/61rdw4MAB/Ou//qtfliR7sJKd4ftXCu9u03dBmY5T2u7U8O6Gcmn9PPueOb41+9lvxN+aGWOuAvBPAL6O6oP/krVWA+bmxHp2hn3OSa8LllVT27dTLtFbduntemqz8esiaqauYbWTKGrX31ClNFnNxK8L1TquBBgF6w6PHsZ3j/4VcvYF/JyVF+OCtSthTIInkkcAVGogSZUystKyMttmknKpfh3jfWn8VOZVADXNvJmZUMEEVCoXSZnjw82dWuPY6FHcffjz4Nets1YuxfnrV5b2fmH8+DYIy2JTvPPA5HqfxFRN5fpQudRVCXF8eBAPHPknr1ADgPNWX4bzVq+AMQabpuynFbvW2Db2OSXVi1cumWo81Kd/D8YDxquYaBzwvpf6l9RMdG7vsy7cengPvnXsL5Gz8fqc1Stxyfq/gzEGK0lZ/wpL115xsiSuXBq4Q5C5ZVy5lLY4zflX2pFXMzElofuxrmACgE23MlhWuGBrdw7dv/lNfOPYZwJl2wVrV+Gsle8vP6cb/9RPOVP+jITvGl49568TQpC8MAZj6phYSPyk+mn8b9jyAfCqKfv38Ob9eOTol4O2n7z+XOxbvcBtNzmMG5AnHqjWjX8R3vY8nMeEVV1fXsb6ZlJ4N52HBw/9z1C5tOB7sK7o695dBymYwqv0FVdcsWNzXL7whS/giiuuqD1YSgGs9f5tSp3y86wiPLUtXvGKV+Dmm29eUKvmy2c+8xm87GUvCx4sleHd8QdL/aSZofaJT3wCV111Fe64447FNGmOWFtOQPCKV7wieLCUpScHD5aUnY219ovWWmOtfZG19jL3nz5YUnrH3uwsPHffv8dacppf9vDm7fjW0RuwUey8nB5rLR4/8U18jz1YMkhwwfoP44I9V+24a/jewTl45kmvwYBNHvLgxs34t2Ofw7A4tsCWzYfC5rj3xJdwx7FP+QdLCTK8aM81uHj9h3dc/549eC6u2PuT/qELANx74ou4+/jfBQ99dwqFzfHYsa/h4aP/7B8WGaQ4be+L/YMlRamTTS6i7DzoC2qlgrj33ntx9dVXAzA4cuQw9u7du7jmzYgjR47g3e9+Nz74wQ8Gy41ZhbUGxpAShKhPAjwrqL6yfq5U8W9ho0/b2Tp6gh4pX+rTMpQKtfKPwV133YWXv/zlABKcOHEMq6urY7fvC08++STe9a53NcLp02Q/TLKG8ki3VJ7N8G3HPN6chPDzt/x8X/nKV3DppZcCMBgON5Fl/b+0P/zww/iZn/kZfPrTn2ZLDVayM5EkqwBsYAmMvxGLqJkm9FfT8z+pf+eRq9St/vjOu28vJfYpOxuDUn3CVR2SYonw5dglV/6LSlOfuzf6NmuuC97sU0ZTEpTg9XJlUV3FNEnVROupDl6e6k8DtVSoXCrYutRvx9pDCh6viCkwSE7HC/f9B3zn+N/g6eH3AACH8vvxtcMfR5rtR5rsw4V7r2y0lY5/wnJuCve2nxQn/NpCb9BzrkyoqQMCdQFNPc/6PHUZLLSMT3s/coqZEVMz0f4vtC/A8fxJ3HHi8zg2OsjqW8WFe16JfYNzMcSmV8BkNAt8MH5i6oyIwimYXr4I/gUqZY7PbbK2Ub5tBk4dgxRryT7s3fd63HPs73F4VNrinhp9D9848glcuv5jOHfwAjxoymOyx1YPKSp1XvXZvJLKtdEwRRQNPa7qqNpPn5uV93Wy86v296Bg6ibK+BqyY3YE5UyHe8yp2MifwreO3owTzCY1MHvxgj3XYH92Ng7b49i05bZrlgLtq882cmqmLGmqmTKvYKraVuUwsQy3xmdjn8UdM65mipl1jK+f79NFTbjtEhicmp2HH9j3U/jKsT/HofxhAMDjw2/j8OgBvOq0a/HMtefipqPfAxCqvqTcLOqnetYawNRnHfO/JKR7jkqdx3LIXLnHjt4Ja4eA3UTOHoqmyRpOXn8+snRP8LB0lkqk+d9Dz4euiqXY39M6fbsHU+XSroW+oNaHgMWLXvQifOELX1hAm2bH3//93+NFL3qR8GBpHcas7Li3KXUMDAwyNJ8fF7j88st7rWKy1uKGG27AJZdcUnuwZJCmpyJJdq49rILO3+at1Q/+4A/iG9/4xgLaNBustbj++utxySWXBA+WDFKsDc5Dlu6LbK0oirL8pGaAZ+95Dc5ZvdwvKzDEcPQENocHMcz7O925tRYPbNyGW498LHiwtJqeimfvfy32Dc5dYOu2hyxZw0V7X4szVy71y0b2BL567C9w27FP9VrFZG2Bx4/fiXsO/U3wYGlvejZesP8N2J+dvcDWbQ9ryX68ZO+bcM6gmilw0x7F5x7/OP7+yU9hVPRXxWRtjjw/gjx/KniwtJKdgtP2vhhZuhvusZVp0IdLu54EdZvcd7/7Xbzyla/Etdde2zurzTe+8Q0cOHAAr3rVq3D33XezNQmAFRjTf0VHF8q3givg/XvHHXfg5S9/OX7yJ38S3/nOdxbWtq1w880340d/9Edx7bXX4qGHHmJrMhizF4lZWVjbFkPzAfEtt9yCF7/4xXjb296G+++/fzHN2iI33ngjfuiHfghvfvOb8cQT1U1rmuzFyuAcp1hSFoG18/tPUXYjxhict34FLt53AKtJlYlY2BP47qH/gYPHvoK8R19SrbU4NnwEDx/+Ir5z4h+YasbgjLVL8ez9r8VKun+hbdxOjElw/p4rcfHe12GF2ageGd6Fbx36JB4+fluvrFTWWhzbfAgPH74Jj5+o4u8MEpy9/lI8f9+1WEn673poS2oyvHDP/4bn73kdBqaaRfHbx27HXYf/DI+e+HqQebXsWFvg2OZDePTwl2Htcb/cIMFJaxfjlD2XIEkGkRqUedKnezAN9N5VxNQ6clgwALz1rW/F+973Pjzzmc+cV8Om5p577sGv/Mqv4GMf+1hj9ixj1gEMYIyB9Rf6ZohvZaHix2AW50fsuE9+vjuLmeys79vmH7qf/dmfxS//8i/jnHPOmXo/8+Kuu+7Ce9/7Xnzyk5+srTFIkn1zeai01SDvtmHfWwv0Hodl/1Wsra3hHe94B97znvfgtNNOE7dcBm6//Xb84i/+Ij73uc8Fyw0yZNmpSJMy/FQ6tm1sa22C28eWi9RbMe+wyfmFd4tFa4HeF6yfZ3/hOfMLk3zHHbMNk1SmZ092hr1o/zXBMm6RG0diI3YlNEO+uQ0tFvJthPJSoHf972XbsO+6PW4SUrmuAeA89LewIzxw4st4ZONrQZ0GGU5Zuxgnrz0Ha6Z8MLOJ6otfPeSbgr2BKsyZqygKIeQ7BoXZJs52l7EH/BQYvpLsw+boKRw+cTeG+aFg+0GyH2fsvQyr2SkYoLyOBwHgrs99EDjr+9RKgfDNcdAFqd9i4eBdGdfWkd3A945/EY8MQ1VxZtZw7urlOGvlUqy50PQ1VPczQ29dKtudM4sUTXNPIeEAMDTl7M8bOObKVH1PY4T6DWDjQQjrp/LGGgzzQzi6cX+gZAFKNdqZe1+KlXQ/VlA+YKHQb6AKLl91fb7K1PSr7mUvhX0DwGrNKsfDvskWlzLnAa2OmRH4VwIK9CbL3LDg68plI+bNpHBvCkEG72gAACAASURBVPQesvNm6GxfGxhhWBzHd058AY8N7wr2PTB7cM7a5Tht5bk4nriQbHZ8TphSoUgWNR66Tn3C+4uWSQHaVZlqjEQnMHFs5scwzJ/GiY2HUdQedmbpfuxdeybSMS/2ut7TdLXzzZs21rRYoLdkhYuFdkv7k+p/5OkvBvdEfbsHU+WS4iCbTYr6sPjIRz6Ciy66CG9605tw4403Ls3U59Za3HjjjXjjG9+Iiy66CB/96Ed920rb2wDG7N8VNrhJlDY5UjGF/fvBD34QF154Id761rfiy1/+8tL0b1EU+Ku/+iscOHAAL3zhCxsPloxZRZqcsgvVShKyzfXEiRP4zd/8TVxwwQW47rrrgtDzRTMajfDpT38ar3nNa3DZZZc1Hixl6clYX73AP1hSFolBMcf/FGW3k5gM56//EC7edwB70mrmXosRnjzxTdz79Odx8NhXsJkvT+i3tQU2ho/j8SO34YmjtwcPlgxSnLx2Mc476Yexmp2ywFYuB5lZxUV7XoVL9vx77ElO98tH9gTuO3ETbj/8Udxz4p+XKtTd2hwnNh/FU8fuxKHj3w4eLBmT4eS15+G8/T+8q9Ro4xgk63j+ntfieXtehzWmQhzaY7jv+D/hzkOfwOPH78SoOBGpZXsp7AjHNx/G4WN34diJe4IHS8Zk2LN6PvavXzz2wZKynfTrHkyVS7uKLgOIlC7y+PjABz6An/iJn8DZZ2+/t/qRRx7Bn/7pn+J3f/d3ceeddwolMiTJurAclXIpCPitf8ZZK5eItsd/vs98DYx7ezDCuM/3B3/wB3jDG96wELXL/fffj0984hP4vd/7vTG2vQGMWfVvB7pOEzoNM1EuNd4kzUK5JJWV3xBdeeWVuO6663DgwAGcdNJJHeqcDXfffTeuv/56/P7v/75o20vMHmTp/iq8fgJt3syFBbqVn1axtNDwbqCTYslv0lAuPcP+33N8a/auO35VlUtLxp7sDPvc/dcGy0SFR03NNEm5RNQVTOXPTqVkm+qPzJU3QvlwX6GaSVL+xlQvXRUxshKmnappVAtfLpflsNbi0dG38eCJm7FRPNVso1lHlp6ENFnH3tXyQdS+rFQeb7opxIFKsVQw5cPIlsqWomhOVU9B4Xmx6ZelyUqwbO/K2ciL4zg+PIhjG5Lt2mB95RyctPZspMkKMlQvB6j+AVuWOiXLwK663yvbje9zNh4ykLqt2U+SKqCrIq2rsqK+z9iYpJ+tLfDw8Ju4+8RNOGEP1UobnDu4GM9afSnOHFyIu3APAOAZxfcBAI4xJRLVe9RUD32GLmSd1G2bYKHLlqaZP9xYdnSzzMY6a+0SbOZP4/DmvTi8cS9sQ+2eYH3lbOxbeyYSkyEzVV9mLth9BVUmD6nUViypmqoHFatOocXVTCvuvm7gFEwDdh9AKqY0CPmm89y1bsLpS6IkGg05+w6cF81lpFyiZeOUS34ZRihsjoeGX8NDJ27F0DaztU4ZPAenrzwP+7Jz8bi5z33u8phtsPOXzoVNy4OzSbHUdCFwhVOd45uPlXWNjgIYoShOwNpNNO8xEqwOzsDq4IxtvbeeFTHVkC/T8juW9PmnDe2W6jTCc46Hn76xplzq1z3Y7gqgUTpQKn/KC0+O+hfbd7zjHXjnO9+JH/iBH8CBAwdw4MABvOAFL5iLQshaizvvvBM33HADbrjhBnzpS18S1TUGAyQs7Nf2yOu83RgksJH+/emf/mlcd911uOqqq3z/XnTRRXNpi7UWX/3qV33/3nbbbWNKZu6hkl62JkNKJqB+83DTTTfhpptuwmAwwNVXX40DBw7gmmuumZvttSgK3Hzzzb5/x4WNJ2YNaXqSt18sm3x6t7PE76EUZUdhjMGpK8/GKYML8ejmnTi4cTs2i+pLZ2GPY3N0HIBBXjyFlfQUrCenzk1hYK1Fnh/DqDiKE5v3IxfVFwYr2anYv3Yh0mTNP5RSmhiT4NyVS3D24Hl4aPNr+N7Gl9lDBYuHht/GQ8NvI8MK1gdnY9/gGTgrPR2DMS9Np8XaAqP8GPLiKO7d+GvkLG+HtRqr2enYu/oMJMlKMGOhEpKYFGetXoLTV56LBze+gsc27kTO7KpPDb+Dp4bfQWpWsZKdivXBWchWzvf3PrPG2gJ5fgx5cdypz6R7qwQrg9OwOjhD+3ZJ6dM9mCqXdhVdH/zUJ/2l/2TOPfdcXHHFFbj88stx+eWX46UvfSnOOeccJEn7p99FUeDhhx/GbbfdhltvvRW33HILbr311lp4c8W+ffvwlre8BX/woT+BcRfmwr2Zkx4uqXJJeJNrEvf2agREpt89//zzg/59yUtegrPOOqvTA8WiKHD//fc3+vfRRx+NbJXAmD1j30iocmkS1v+bZSlGI/mh67Oe9aygfy+77DKcfvrpnfo3z3Pce++9uPXWW4P+ffLJJ8dsYWDMKgbpyY2Hhm0fLqlyaVIDplcunb/+DPufnj2/t2b/6U5VLi0bqlxqxzyUSwAwNKUKIccQ1hY4PHoAj27eiSPDB8a2JUv2YpDuwyDdj0G2H8YMYJAG6pNJyiVrLUb5URR2A3mxAWs33cOk8deRtZVzsZqdjiQZ+AcglM2kyiU5J4xIkaCwOR4dfQf3btyGp/J7x+5pb3I69qRnYG96NvalZ2FvegYys9JJuWRtgWP5QQzzIxjmRzDKj7iZCeXPnSZ7sJKdipXBaUhMhtT1IT3IVOVSU7kE8OyrEyhsjkPDe3DfsS9i/HlksJLuR5buwyA9CSvpfqympyAxWSflkrUF8uIE8uIYRvkxjPKjyIvjGHf/mCbrGGSnYiU7uZXqZ9nZqcqlvt2D6cOlXcU0D5cIstuMt8xxsizDueee6/87/fTTMRgMkKYp8jzHcDjE448/joceeggPPvggHn744bFffms1lzdOZtUFdY//Qh+ucz8v5OGSxFaVXtM/UJFuustjkaNt/66srAT9e9pppyHLMt+/m5ubeOyxx3z/PvLII8jz8Q+wKhKUwsqs8XCjeXGOH4utPnza6kOF5Xu4VK+jGfw9jtXVVZx33nm+f0855RQMBgMkSYLRaITNzU08+uijvn8PHjyIoph8c27MqrOulv3b9o+9/Iki+4v04fKFd89QqTXVAy19uKQAe7Iz7fP2vz5Y5r/YTDFW6eZcuqGWwprpwUK1bnzYN18W+5Lf9oGT+ACjxcN26b5aeriRu+MoPXDK/UOmTbYux0Z+CI8O78ChzfuwWTw9sS1AGQoOk8KYBKvpyYAxGOXHyr/2xQnAFrAoapOexEiQpXuxkp2KLN0fqJTqDx9Swx8WlQ8iuDKCHjTVHzKVy1yIOBsr9dD3MMx9fNj3VgPAJ1Gv1wgPkrqMoyP547h/86t4ZPivOC5YIhv1IIMxKYzJkCQDnGHOR2ISDJHD2gJP5PfC2tydu0Wr/jVIkWX7sZqdjizdL7aV+pmrbXzou6n6kOxeGQV6szDrgV/GHzgN3Dr3kIl9YacHTRl7gpTRwyX3byocVumBk3/IxE5LuqrlLNC7/lApePDkHi4N2UtZeri06YK56SFx+fMGToyewOObd+HI5gMYCZa5RtsxgIUtH1yYFFmyDgODLFmDhcWJ4RPlvYzv4zb3dimydC8G2SlIk/WFZNJu9Z5v0v38Vh8uzSK0u0294t89VobWP/DU3/b64ZJq35SOGAApDDI2A9n4C9poNMJ9992H++67b/o9m1UYUwZS99EL3AfKG6PMqZnoQRM9bGqyubmJe+65B/fcc88M9k5h8oNdH8A+PwyqB5r8IZN8/m5sbODuu+/G3XffPfV+y4fBA6TJPn/+9mma3t1OsbzvoRRl17CanoSzsstw1vpl2MgP4dDwXhwZPoDjo8cw7jpuMQLsCNYCxwvJ8uTKRc5xgxRpshcrg1OQJntgjN6HzYN96el4/vqr8Ly1V+Jo8Tge2vw2Hhv9G57OHxTLW4zKB0Z2A3kBPITJD6QkErOKlewUpOk+ZOneqV/6KDJr2Wk4J7sCdv1ybORP4unhPTg6fBibudxvBWh2xxFggU0Xqr4hlh5PYlYxyE5CYtaQJGtl/+r52yv6dA+mD5eULVGpLRInu+aKCPpvq283q5nryqfD5UMH/sChqQoQpuP0Zdq2YxEZL9LVos2DlbZtHf/Hg/pQeosLW/h3bnBS+VC11k7ZFG9XgqqvDetf/tCj2X7q1+oPo+wfr5efDVMolqaGH59Z1cfrNOiqbBpfb3ne0htVfv5a9yWHE6iIut7wtOjfrauUODtfsaQoRHllTgKVUmVla9JVzUQqKP4mt6qDKZGc7U66sa5KVyutt0HFVCyxurq92BDLS0oPv5+qrYltWraovhH9BbZcmRMG9q4k61hbOwVnrb0IG/YoNvKncGz0KDbyp7CZP4VhfmRL2XXGZEjdl9AkWUWarMGYUEVcqiXcz8waSX1ohBcH/m0/nxrehJ8p4YqA2O2Rpa8vVW929Tm06euuKjd+jCqlnLDvyAu0wlrAGJycnomT1s/E83AlNu0GDueP4InRgzicP4JD+SM4XjwFG4kyGEdq1rCSnoSV7CSYZA0Dpk7i4e955OUPrePnfeptnlWbaPxRP/P+JuVSjkrNNHRWuYF1ljlbKaMGtuzhlNkkSc1E9jjeN6lwjOsqJn5dofPQCstiyOo5QWnp2m1NChhgT3YmBtlJOGP9+7FhD2Nj9DQ2Rk9gMz+EzfwQRsUxbOVerHyJt440WSvzsZI1rxbk9yezvTeOtUe4j49cl2b5UHNSXfW2zUKlNEmdVNXRrt4+og+XlJlg+BdVw7/Y17+wWkGVQtsmTt0wzuamLIqyz3hIdEn40In+CNb7lx5cUB+rKmn5MOy/+nJAfuBn2L/lf+XDpHCc6NuxnUGPXpopyq4jMRnWszMwyKpp4TeKo7AYYVgcRVFsIrcbbip0i7wY+b/rxmRIzACFHbmfqy89OrHCcpCZFZyanY996Xl+2cjmGGEDx4qnsWmPYrM4ik2cgEWBHCMYJBiZHFmyisysY5QUSM1q8PCH8nyKyExjyvxJzADrgzOwmp3il20UR2HtCLndRFFsoLCbyO0m6udvYsqYEBgDgzS4x1Z1+M6hT/dg+nBJidB8i9gVY/gDBx+5VyvDf8+nTsSPPpjqxUOr+gGY5mHM9H3oj5n05H3MQ6fZMb79Uj/H1UxE27bOS6myrEgPB5sKMiM8ROblrbXBi/vq+CTN6gXMFs//rQaAy3RUYSxCrbRjxp2ynBj3Rr55noephOUXVemNrxgA7pZRef5Fl97khtvRdSN35ZmSSggPh1cMUHYR33dTzVTl4lAZqcZ2f4PblEp5KVJz8n05pVLqWpQH116XOWOrW/fMq8ncZ+P5HS4UOTNrXtYzQjlrFU1bnheVwYbUKPwYW5crE/97W0HlqF8ta3/ulFd8O7/MlRsxdRaVS2zVi9SHRuipKrw7Hvoeo65UmpTfZGqKGV46EdQ09Lcx2i62ipQzlPXDt8tcjMBqWil/Ntzxo8yfTVPNUrZhKOS7aY0cuXIj4QQogvFQy4xkv+fewsWUS2a8cqlaVj0AITXTwCmYSMkEVGqmARv/pGbKQAompmSLHP8YknKJjn/bYHgpE4wyxEI1aBKs4yrAQbLmyg8BlA+NR+589Yow9lCQHiTx40/1U3kTvPyfXtHd5uUhrytWPqbaEYOwI/lKbXOV6n+3eJ2zzFCK1ZmwMjvlZaw+XFIURVEUZSwW/fL7K4qiKIqi7AQWeQ9mjDkfwEcBnIPy/cuHrLX/T2wbfbikKIqiKIqiKIqiKIqiECMAP2+tvc0Ysx/ArcaYv7HW3jluA324pMweLqcUJX6hTaat3NpXP4MAXnn692VlUlu7BoDXcpNY/WK4ty843h43f+Kh3US7sTS9nWgWU9X3FR8EL44HZ4kQhizJ0cNjNz7ocavy4Hlb1KazQfbUDmfjM0kpOxNjEx+oHVKdm/W13OYmWeViSOHEkvnJ/0SWG1aqsJFAXVeuiLSreTWrrXfnQSw7UAprjtmgiuBvMNlYaH88LLj8mVvlaH3dXlO2Iw3+LdtR3vaP3HxTJmHrnMUmCHV2U6tbcRyEbQYm3LuhaW2k6ylZpLhFhGxWolNbmN+isj0WjWVEW5vcVkO7ed/HbFli/W4RVyiQjTI1oT2r/Nntm4+R2njgx8cH8rPxsOFDiN2/bDyM7AlXZ2Vbq6xv4yfRyYUzh/qcn+M0E1oBVr8bB0NTjmOyyZU/rwT/ApVVLnWfLWNWWQr+zoLx2ewTv863tUkV9m0byziJP0ddnZZfr5y1kS3LTHW+lvvm35+aDcrcpnkkI4tbUem8Fe2t0lw+jQlzts68LXBtbGuLCOiOWd/Ezxb8jRpj9VvgPZi19iEAD7mfDxtjvgngGQDGPlzaGeY+RVEURVEURVEURVEUZaYYYy4E8BIAX4qVU+WSMjWTprQvV05WMAWbzVJ9sOODb8fN0jav3U0xbfxMaRdWHhtLXcMI27VHqqRPY5C/HqEx1VQbNRRMnGAohgpFIyidQsYrGmfDdimVZtj+bRw/41SdfRrByvSUUd6JmPMQqpnCa6g0TrYyXXp9Wynsu/oLMF7NVHDlgFe2VB/K1kKgm4HJ8mdKOypgYkHCvC5Su9BbahOUK9sztFwdFipVEuHzpuxW34dkk6qJK4UoYJmpIupqJimkndNGrRaqV0LlTM4DvUUlkvs7QsHw7MCOnMImY5+3nVpt6/dOdcWSqIhhi3yAPM2LEaigStIg0Nsto+3YCUnjWAyot832JEIAPo2HTRoHwqHgfUJQH8bCvoEqJJ76Swr7Ltj1hPaVmdXGvkdu2YgpnYbYBFCpmVIh7D4FV+eFgfld+74Irh3NkO+i1if8fCBVElcX0qaFm7AgWEfElHtBMbpesZBvrxhz91WG91dTzVS/J+46W2RMkRSUi6matqhSAmYb0D0PdZKkTGqlXMLc78HOMMbcwn7/kLX2Q7yAMWYfgD8D8HPW2kOxyqZ6uGSMOQ3AnwC4EMD3ALzRWvukUO57AA6jVAqOrLVXTLNfRVEURVEURVEURVEUZcs8Fns2Y4wZoHywdL219s8nVTat7OA9AP7OWnsxgL9zv4/jR6y1l+mDJUVRFEXpDzRTybz+UxRFURRFUZos8h7MlPLKDwP4prX2v7Zp77S2uGsBXO1+/mMA/wDg3VPWqcycbbJLxYhaqeYk9pMCB3sV5N2Vtva4iB0xZnEUd7nIkG+iXdi3xGysV1uro79jsRbILwXCR0IjJ4USxuwj82aR40Fkm+xw/R2LyvwwYy1O/GaUbGiVHYSHfZOFqSn172qVi5UvhJ+9BS6w3LSxyrFAY7JeBRcxCkpu/u1rY7GZZJuytT/j3GIhWeUo3NtEbFDcOkbLKDB5yAKFhygDnLk1p26V4/1A10vJOuMDoln7pXEQw3pLW7VPX58QaJy5jzliAdRkkWtjjyvLwZWj3+N9GrtyxkK7q2DpCulvX/2IJYlh68qfhwWzNbn+pWHPA+Ery5w0/pv9lbqxsYljrP3l+lHhAuHBz6/JYd9FYPGiMcWsWj70PXd1CmOR2b6ojWSV45ZIGseprY5iNR7IHsfD7icH8Ush3tIyCePPR26tawbxxytx7bJkwWoG4PM+TOi4Q7C1mvJY8P6qn8vcxrhVJJubX7dFu9u4euv1Tbr+1K1vvMw8rG+TbXFLGYV9JYC3APi6MearbtkvWWs/O26DaR8une1SxGGtfcgYc9aYchbAXxtjLIDfr/v4FEVRFEVZXvTxk6IoiqIoyvazqHswa+0X0VGlMvHhkjHmbwGcI6z6zx32c6W19kH38OlvjDHfstb+45j9vR3A2zvUrSwJrVUv81C7LHp68KVCCmTuWoOgRolusCwh30SsT6dpX8ex0qsgb4mYGq6pgBOvAY3zPa40mzaAfRKzDQrvn0op2GWH2xW1r+18+P3Xqtnv3to3lUiBOsmNi0Scqr55vtbVTNOEfRNSHUXt37I1TTVTbFxbfx3jb5vD617CpyYnVYrwJ1gKABenpa8VE7N8A2VCLUCYKVUokJwrNyjc26s6uNLDKRmGZqOqv1aeq0asCyEuWl67SCUQUzAFKqVa2HfZnlABkzBlBemVMnbQ6iHfYTh4LOSbygjrgv51gfDUD0x+RIqWWPh7EPZN4ydS3rLBRT8mSfU58sh48Oo2rmbyAdcU8F7VtUH9xcbbCE6xlJTlR/ZEVX8kUNq3n42Vqg/Byofl+LlKqhqurqmrmVKmxBugDADnaiZSQnnlkuXh782Q77YB1fU21usE+PWT9++ANqQdsm2b4dE++N59bmldoARz52hOqilJVSaEfPs2i9f16YkpdKYJ9K5fW5IJyqWoosg0rz++3hbB3tL6YPKJCSqmOn26B5v4cMla+6Pj1hljHjHGnOtUS+cCODimjgfdvweNMZ8C8HIA4sMlp2r6kKu/R4dSURRFURSln/D7r33Z2Xr/pSiKoihKJ6a1xd0A4P8A8F/cv39RL2CM2QsgsdYedj+/BsCvTblfZScQe9sVUyh0fMOveSLjGJ+9NBVbVaaJU9rPQwU1Z4VI79VKEt3UcNEcJrFP26keZqs66sr2ZcPNZTdTXActuIpD2U2IeUMC0lvVNmomqUQ8X6mlSkZYlvvp0/l009btc3weU7j/8ccgszTdN1Ov1JQkk06jpLaeH3/65EZYn3jVaEU9jykoH8ljSoMcplKpQkqJhH1tKJwqiKZRB9pNXd526m2pTlI2Vcqial21jNXvxiApmELlAPU9P8ahemXi+HfX79SQaqc6EUgVxE8Nam3a8nJaHw+8h6mO3HI1U7mQMp34KZgUzc9k6solNv5J6cHHw2Ytc4b3ZeHzuVgd7riTIqYQPnfQh+6jSNcAn8fExltiB25ZU9VEP+eG5zCNgs/JP1tGny2SScWJ5XFJOUxUh5RZ11AwgR2XQM0UKm240o8+S6Au9Aqw8DiVu2oqD/mxBWSl0yyZpEaPKZHGlSmXTVYktS4fuV5NykuKKpzs+LFVp2/3YNN+c/svAF5tjPlXAK92v8MYc54xhoKezgbwRWPM7QC+DOAvrbV/NeV+FUVRFEVRFEVRFEVRlCVgKuWStfZxAK8Slj8I4LXu5+8CePE0+1EURVEUZXH0ye+vKIqiKIqyU+jTPdi0tjhFadA5DFqsZHopZtwGshOtSxKxQOa2NbQMam9sOINjvFXr5CJo+Xl3nk0zjMyt0xg/re2P8wplj7HzLJM7b7wp24GBFEbazr5KxKxyZBuRAm+5zWGrgd8x+xxvcd0qF04TXtAPbNsW5xMrUrdLBSYrsqtF/rQa07RBSQHIVCyw9NQteWyfsbDvIbPVUBjy0GwCAEZsHVnlJNuaZI8ji05XW0qMIHDYUl3Nv0l+3IndJwSGi+OarFeCVc5f29l2QvfSz5X9q2l7lCxzsbuvlI0RX79pnl/eOsmOgSnK/s28Radpk8y4jZTGjQ9/r2xlPuwbVSA8WbQo5Jv3TZtp7gObm/D3s/B9Mj7sm8Loy59HQfv5dSIXrHL1kG/JMsepL5tk4zU2HJ9gbaVjxa2KI0P2zqYtjvbFPy9ZVqkfxPNSOH/9OsHaPItJGIhYuH+5vv43qJvNbeK2LexwW7W7heXHT2YQnqP9sb7F0IdLiqIoiqJE6dNbM0VRFEVRlJ1Cn+7B9OGS0oK4MiGG9NZ8y2qmjvtR2rL1/l0obVUg81A4zU2B0gdFXUwNNz4kPqqA6xzm3oPjpColZYchTXVdvWltd52lG+RY2Dd/209veq0Pcm4qnYL6W0ydHQYI09vpkjx4K+8UAGbklxTCW+ko/pQUtpOESzRd/BbVTIHyxKvDuJq8JBb2nTE1EwU4kxpiyFUpTuHB1Q65U4aICqYWt35SeG736eC5mqOqraysGT4uhbi3CfvmFF6Zy5d2a3fq6rDBRNnhvmLjgpemdvM/ozRskqKplCBFWzAeKOzbNqdWp/GQGK5qCsO+ebnch31XyrcipqZxqiaubqIp6gMFkw81d9sJYd/8EBZeqUhjl40Q07z++OBv/3mbykauZqJtYyHNolqzoWDi6iQekB5eD3lbCyHUnD4vtV9UKbHj488JMVB9e+5pYuf7pMDt7uXaBXn78pEQ7pgqSbpmmIjCqe/owyVFURRFUcZiAX1spSiKoiiKss307R5sZzwiUxRFURRFURRFURRFURaCKpd2LMsbCla3bnS1yU1n/eiBnWZJ2XKw96JZgD2p0YRevXNoSxt7HFB/h9HaKrsDw9znsuvtGFu2X35/Zb7I9oJuYd+wggXFW0Ka29EabnkiC8Gk0Fy/Sx8YzmwpPmC8GZ4LH0bMrD9ki+l6PsTscRyyLgnXxOiWzvPEHHPeKhcEOJOtIxL2nXMbjvs5t2SvqY7F0Nuaqj6hwGHJXlMPXxY/RouQ5EkEY8ovk2hakfKaVU4KxLZi30h/w+qtiEN2x8AV5yqh0G5+HZYscvVlRvotsMq5fbpDkBRNm2Qa2AbJOpm537kFLnNtrb5aDs2GK5e5FvBzz52/7O+n9XbKpgVXwlvkXLODv1POihcG8qdBeV4/D8L29ZPtz5/23NLWnASAjo84mUGbsS1Y7LjZKqFx4O2JFXQcrXDO+d8NP9ZSQHrTbhcrP277SXQN7u96XZi3za36nYXpt7C5yWOgxXeqnt2DLdkduqIoiqIoiqIoiqIoitInVLmkdGT8m8WtMv8374tXriye8QGRIbPv393MzlQsdWXymOLHqZUybjvD3JdA+cZZ1JjSsazEmIWaqV3Yd4U0JTa9iZbCbavtxp/TOdu3D3AOlBUUDN2sq3BqDhu88a7dZguBz/zNNa0euZ/41oVTLcSuanwdlc+C9VTH5LBvoAp4pmVcuUTHOmeB56kLUa6moI8HDm+VrYZ8czVCEfnbRGMwD/p3vMqhEJbRNbOwVigntL8gztFhvAAAIABJREFU+ZCkoqB2seK2uSwx9b+fzes2L1Mp2MIgcwBIfaA3K1/QmHLjgYV9b9TC3wEgNWEQPP0OACO3jMZK2doiWCad4zbyNzlQ7Xhx9VAqWP4jXGu4+sZ/FlJGcSWbbwdXPIVquGnCvkVlpg8YR2MdnZvWNBU3hR+L0vWweYy3OllC13O763mcTJhQoX5s26iPymVbC9xuXVfLcjEVU5/uwfQbpKIoiqIoiqIoiqIoirJlVLmk7GC2+nasP0+HF0Fnlckuo/vbheVSxnRntqq4aTPZwsr6fWyX5U2VRb/8/sp84W9Xi8gYbadmEq4H0tt+IY9JuqLU37jzNsQyRiRoS0nNRB+b5zGxeeCF/QgZI+KhI2VCWdmIFaIb9oIrT2pbS5lLfKH/sWiWr+cxlfWXBYYucynIaHI/50y9MkKYzZQbriRpZsL4ddv0d1Ded5NqbPGAIsoD4mqm8ucMWWNd2qLPC8s7zO2rqOqwroOoWMqaI+Uw0Q5InRSolHwuUfMejkS+fDyMaIwImUuUwxTLYwKAzB0DOj5Ds1m13yl+Ri6XCagUS3Te8uNpI3lAbamywFyb2bErDI3xCq6qKtfx8eAUS5Yrr2h9uY6rMCUljFhvjSySTyQp5uTrj3TtayqvJCWXL28n3wTM4jxum7EWU/l0PdbTKJBi5evL5Don3+P27R5MHy4piqIoihKlR/c1iqIoiqIoO4Y+3YOpLU5RFEVRFEVRFEVRFEXZMqpcUrbI+KnGF0+/rTB9gmw7u9ketyzWpeXA+zAiZbqF/ErHdyeOt2UfR32SZCvbR5tplLl1rm4r4DY5mj5astrJYd/NkG9fO9nWWoTQjkOyzFH9IxdinQjW24LPJR85b/w5L9pYnP1IOL6xkG/uXCGLE1/mj4/3SLHKIl1Jwbg87Du1RXOZL+csTMwiNUJ5zHjgMPW1FFAsIdnapiVWp9ya8Va5lH1eH6LMbE1ZLeSbT21PO7NsIgrvmqNFRdP3mDIvW3WdDu1xQeuDZXbsOhoihu2TAr9piPPTK7Fh2DdQBX6nbtTysG8K+c5Mc1nuQriDsG833gpmtaTjPotxUbfMAey8EtdRe4JKAABGMO3StasIzsfxU9sTMSvWeMNcvVyzpBi+XbdttrwvmbetdSZWuY6Wtti6rva2ruHdEn26B1u2pwKKoiiKoiiKoiiKoihKj1DlkjIDWgR0btu+ldmwzMq07WV+ipKdPHbbhnwT3cZbrE+WWdW07OqkGC2yPJUdhEX5Zlt628vfZrd5+xorIwXSJpHrQfDWv03IdxDYS4siobWtr8tOscKn/fZCJK5scfX64Gd+IjVvwavQ3HaaBB9InIQKJiB+zjYUTLyuoJwL7fYfjinN3GdPWCg1XX9pOz5WvKrJspDv2vHmv8vTxI//+9Cm77oqXKTyuRgK7lR3pnlucPWW9eo8N208Oz6VmonXSwPIqfRMcx3fZ9pQKrH2RFVMpKiq1vm6kuZnoinh+bmdCSHf9DOpmTIW/k7jYcjUSakP/nYKJqZ0IjUTVxR65RKpmuagbOP1JpOW+UNG4eMcCuvfOm0CorvU1oW2Kqbtpu0xiKuauqmO2u7bCOdc223r9OkebHd/a1QURVEURVEURVEURVGmQpVLiqIoiqKMxWJn6+wURVEURVGWkb7dg+nDJWUOdAvsna7eWdIjzeFUtAld7lojD2xdXlvSOLbXrrTVcdzX8dl1vDWtLt321u04zWK89tnupigxuIUsFoi6VSRrALc+kUWuCvtmFjhnhTH8mlrLqQ5a7EO++f6p/Hg7DT8G0au33zfbaz1YXAzvbgY+++2Cz1vugAc+p/RZfBg0a45kg4q1n9rAthv5wO16sjS3yVTLvC3ONm1xue9LFkANsoKRrUk4dsEYDHuAW+cSwXBUt/JI/SdZ37oHFFOwND8+Tatc3R4ZC/sGgAHV4ZYNElZ/QeNBGNDuGAcWO0sh36w4BcLX7HEhzPbo6veB3mzfeRGGfQNV4DeNh1QIf8+YbXDorJapHbjfN6r63VdW3jcU+E3jIGaZmzXSGKHPV/ixzil/42O2HtLMxzBdb2Nh0F2DpSXitmVua10809gA22wbs7G1riO2/YT6dwr6cElRFEVRlCh9mqlEURRFURRlp9CnezB9uKRsE30S9Ckh3ZQkpOJYVgWTqkwWxVYVTJzZKyd0PCiKTAEbvKklJYAR1CvThJ7GIcUS7WdC+H/tMiOWZqd8LoRGx6iHgefgqiZSK/Cp5GtT1LND4dU6QuCzr5OpWKx4/SOlRF1hVOUwc6VKEXlzTm/tLdunD6U2zfqlmozfJ4V3c2VRU81kvYInaayTx1Y4HgpBlcIVJXQ0rRj+TuO5OuaxwO+ixVjh+06soGYytKz8d8TCr0mZM2BfzagvSBHDP+7AkBKG7d8dvoGrNg2y5aUem/z3L2Wb1Xs/EQLME/aZaBmFfQ/5eHANz9jxSW0Y8p2xvhm5vslZAHhuBm6dUzAF5yOF7jeXzQt/Tvtg7+Z442OwrgYKJ0soGqXahFJ3nfY+ptZZBrXSOLb6d6XrVm3VRl3bs5NFTPpwSVEURVGU8dh+zVSiKIqiKIqyI+jZPZg+XFIUVS7MhWVRMC2HMkWVexW8P7qOje1RMymKYt2b9qYKQcphaqNgaks8A2T8W/8Ar6Dh+UFUf7M+6SrSNXenyg0SECJtSCXDM3nqf66KQFVjG2XoR1IU8S8gpDgJ1FuCmqkNdQVTWZerxDTLjZxCJWX5UIbGiG2qk/w6Qbkk5TyZyHgrBHVS4T93M6MpVEuFe5w0BupKNk7uc4DYOeTVTGXfG8P7l9rKM4XK9aRmKoJjR/lE1TGgTCbKYxrw88VQvlUFjRufqNVyXNDYskHnjw818xlNTMlDXZHzzK6ammloq+OTknKJHbORzd26zK0b+XWkUuJ9WJ2jTQWTpMycllBF17xieVWVHb/Pem4YUB2fSffXdH7I+WsxFdTWWJZMoVn8HdrqR5nFvvuOPlxSFEVRFGUsfZupRFEURVEUZSfQt3swfeWrKIqiKIqiKIqiKIqibBlVLu1YprGeKIrE1qaI57a07bLILdYK16f3C4uma8i3RP146zuT7tSPYfP86ZPfX5kdoS2oeW4lNStJGEg7+5BvaRp7KfCWrEgjW9lkMrdptQTIXBUjZ6eR7XEVMVtN1YaK3JenoN9quxQDqrSCrGy1KevLOpo2roGlZYmrkx8f01hm/Tpq62xtjGSby4TxQNYoy/wmdatcUF64DpFtzgd6i1OxC4Hk1B5mOfMB7KY5xsW7He/6kkLEY0HR1Tprwv5KLLdsNW2S1N4qsJ3Z6Gph30AV+J36cPaqFbQsTZr95cuzVrcZGUHUOvVrwvvcBP8mbMqrxLUjFwLkKQiejy367HnEKkc2OaAK/ub9VT9/JctcjGksc1VYfLMOyX6ZRIy/lQ2Zt21yj0nnu7SVZG9b1sDq7bShzfszxT5Ln+7B9OGSoiiKoihR9JGpoiiKoijK9tOnezB9uKTsUnr0CHhuzEI10nWP8w353pmKpd0wVmeptNTQ7zh9ukVRFkWZ8SCPlUQIWK4rmDht1Uwx2m5XBXST8qe6zSUVU8aqIhVTXcFU1iHVH66TFCvSsqo8x02fzqdKJ6WKm2I9mFrdZm5ZpWigY0sKJj7tPf2dLVjgMykSfAB4o6WzfTsf9JtXZQnjwVCwNA8Mb7YuFgBeL1P+bGrlubKrqW6rVEyhggnCb5OQzh+vlnL150H2tVM18UBvF4ieO5VbankAuFvGx4M7ZpkLiOYqqMzVlXElGymWwm4o63W/SCHfsSGSBgMo7J+EVUYCJ55nT4Hfw4L2w5RL7rjwAHD67ENLAddcqdhUM5F6qFIqdlWhNYkpjCQkNahUQ/3airElt0ZMsSQqnCKdvqyqJo4GbW8f+nBJURRFUZSxWFhvwVAURVEURVG2h77dg+nrXEVRFEVRFEVRFEVRFGXLqHJJ2WX058nv8hIPeG3DLEO+F2uFA9RmNGvmYdeM9dFOfMcy+zFZLPo0U7YdWwsujo+B0I4GcIta81wuBJsS0fZvQuL/bYZ81+1Qwb6Z7chbtag2VjwW8p17exO3qI2301TruEWHwp2l9pTLrK1u08nixNuf+c9rXe3MMuSsQjawEVGwtTv+zJ+S+GM2HjlQvRt8n0XtbXxoo6Mwbm6VC8uFFjgKuOafKRYAXvYFt076Y+vtkbz3KYB9WJU3YSlpDEhB0TR+uI1UCn2vW+XILsnrTfkYcW3MfT9X4zOnY1BU+8zJJun+zVjfxKxyvn0TTlU6lxMau2xdGhlpSULh3VX/DqkuZvP09fvwevZ5nR0uBbcZlv2aWjpOrC+pT8z4ewKpLyUrcGI7TnzjrrX8GpsI9dbPuUVYvWL7bGt3m2W7J43BnUKf7sF24l21oiiKoiiKoiiKoiiKsk2ocmlXsP3BzctFjx737kIWrzzaCvNWK/XxmMya7bpuTerLZXsHsxilnI7I3YZFARu8YY69Xa/UNwlbR9N+C2/2Z3BeSwqn+NkqhOGS6sMrVQZsXflPLOQ7B19HSiSuTgrP11CpkjfqHDklhVctCNnI4tTqYtg3hXxXHTayFHROAciCcon3by3gN5/xlYDqJwWTGDIcUTMFKiUbqpTKn6kOidTtUwgYp7BpQVUWjhGa7p4WtAuDlpRsvsqgD0M1E1e55U4dkzI1U+FDrzNXngV6k5KNqZlSQ3VQsDcbn6TKYoe/rmYKp+KIKFpqCqayba4NbDvjKs5FmQaNWaFeS8olpsqiwHZ2zEhR5IPVuYqOlF2Wn19h/4yb5GAckvqoLbFrKvy1ho9d2k5oh7928LZNViq2ZRZh3/NWIJkZpogvIv+oT/dgy3bXrCiKoiiKoiiKoiiKovQIVS7tKnaLgqlPz3f7Tvy94M5D85W2n/Dd6PajfW7RL7+/MjukXJ2EKWe2msMkl45ksLQ89+tqiCRQsQifpY1ShW3m1QRCc0jFFOYwURVF8K/U5nLb+rIqE4aUYzxjh5QV8Tymqj30eUnNZFh+jVcz8dwdS58toiya87zi0sT2Yo6XWxRTM4UqpabSiXRoWe33YOdcyVPL6rKmqY7j/Sv1f31dWCJ365r5XImpqwar8ZA7ddXIVp9ghZax8gOnYiJVU8GURVlN1VSup32jsc4YG6ybBJULxr8dv5J2ZVieEfWvlMFFaiY+Vka1cjwbyavE+PE0oULICP1XVzeNw0jKyS0SyztLgnK1dfxa5vPChAw0YR2t4mPEX09os46XgmnUSrNUIs1i3/NUM/XtHmy3fCNUFEVRFEVRFEVRFEVR5oAqlxRFURRFGY/t11szRVEURVGUHUHP7sH04ZLSc3p0ti0ti7YdLTvbaYvS8Rxnt1h7FWWxWDTDa6vwbmaLMGEZ+Qa4Xch3s3Q8JFjeNiwvWc4ycCtMvTzbu3i5cTY1HwTebENgXaq1Q7JF8WUsrtmta4Y7830WNVtWLOy7bA/1Yep+Z7YXwSqXoGktIsgaEnODzPpKXa+P77qNVS5hjZWsctU6oa7aseYN8napCbdTea3/J42H+nY8EF6yypF1cuQMfRm4hbJpq8xdHQNXbsRsYgO3LuXWyZpVLgiI9mHffPzQssZHakVgm/Jp4kI5t3BkuY/O2XJZ++l6QseTj5mcLKb8+mDpuI8PAAea1roYsZBvO9FyHFqNY9dR3rKuId91e1y4HbdJ2rHr6FDF7MjSZ2xrlYvZ0PoQ3t2nh0Vd0YdLiqIoiqJE6eesjoqiKIqiKP2mT/dg+nBpVyIN0D4oAfpzYu0+pPfDijIvVG2nKNuN/FY+vN5PDvue7s27pE4RFSsU2MvDasUWE81p6T0tlSrGT+NehXDX9ykdQa5UsTWFSsHCgqmOEaufVBBtwr7L8qQYyILty3011Ux15RJXkpFKgccZ1/tikoKgTVB7rIS0LqZmClQa0fHZXBkdG77eQWRddQ5J46EK9I4FRFfr6mNFWhYqYdwYMVUbSblESpWUKeVyV37Al7kPRWqmzFT7JjWTCULBm+OGiJ35/vgEKiifml4VDPP4g1qpfM7WUjuqsctVhs1Q8LqaiQfm0zWAH+OkFtodC97m+2xLUbuitJ8sgcoI6yIh37nlx67+Q6hUKrdnldmwrrHl6th2xySmcJpnuPY4tqpEmjRG+og+XFIURVEUZSx9m6lEURRFURRlJ9C3ezB9uKQoiqIoSpQFvAhUFEVRFEXZ9fTpHkwfLimOZbHK9ejsUXY42xXkrWN+OurHT21yijI91tuq6hgpZNrDbCmGAqWlWsbbOrpaReTa25mpjLfPlf+Ogs8TWlwAIHGBx7kZNau1zq7GbEdkkZMseWR/kmxNkuWJyvM66gHRUtg3t/KkzrZFtpTANihY5So7XLNvpLBvGjF1+xEnLO9CtSP2uVhfSmtiVrng89bCvsv2huMgDH+PWXnc9tLnEGyVZG0MxwOEZRTs3i7kO3f1Uj/z7UamXJehGru56/ORKfczsNwy59axOlasC/l2++SWM8kql7txRpa5IEBeOFRtgpilkG8az7wvJVuid2MJYd/0OWOWyNBm2zy/GpMgmOnvI8MJApLasm6TJfDBaL0NsGl1pXVhOHvTKuftx1SOHTpfntsSqbqIZU4sL1BE6tguprG09elhUVf04ZKiKIqiKFF2Yi6AoiiKoijKstOnezB9uKRE6M9AVpaJeGyqoswXDftWlHkiKZqMMC26VydFQ76bb965Jijzihm3fbBlM4A39hY7to7qnaRU8XUIqghSFeS2Ctym9ZWqIBbW3NTLcuWJFPLd3L6pcrCmqTTLnGKl4Co0Qc1kLB3/8F9ezgjLKtUCGusKoR9iCqdQyWDEMuMwtX9jYd9ApWbKLB1rvkVTzVSva2TZJ45JqGoKprKOkoYabQzWhio3oAqVH2HD7YYFbgtqpsJQYDXVVbU/d+VTywO9y3EzcP/ScSrrH69msq5dPOyb+px3aT1knauUumbOUL2JEABOTczZKrnPESzjYzeqZvKB//x6Mr5fKRTc2Ph9cxUIX1cwlUvL/1fLcr/deFVoqIQMPyc/dpKaya9zh4yvaaiaykqCduTCsQ6qr4+HCUqnZaVPD4ZmgT5cUhRFURQlyk6WcCuKoiiKoiwrfboH04dLiqIwhNexW6avCibNWto5LEuWnKLsbCQ1E9fQ+J865zDVlSrN+qOZPBMyXJrT0Yfv3oG6mqlWH9uepiaH8Oa9kNahtg5codXMY4oh5TGJ0467f0cuMypheTHWqyEqpUrilCakdiksVylVWpv6MknVVJVp5rhYSUUkZDrRNyyvghKOZ5DrU1sXEUWI9Ybjw6lvRGVLJGuphYKprCOmSKPN4vcn1tbWs/olNVPh1Em50wvmpvpamLplGfuqSGomyhnK2VhJ3c8xNVPKlDCkaOHqGFNTz01zN1b1ZVMtJUnZ8hZ9zvOYKKOJZxzRtSvxSs74fR6d+5MUS+O2SyApo6RzrtnWQlBeJbUDw89LSc0EX7q5jK690kOR2HGJXc+73jW3iPDqxLQPeHaLgkkfLimKoiiKMhaL7XvkqiiKoiiKopT07R6sb5ICRVEURVEURVEURVEUZYlQ5ZKiKHOmGTi4fPTpnYAyHbO0fu4ebJ8M/8oMMDBIx9jdxl8vuU2DtuWlvXGjZrcqf6Fb0jBitiRFHSnku1rX7vw23pojrW3aoOrTlIfTwLu28um4Xf0jYR2FL4c2wNAOZ4V1MYrAokbtak6VLod90/TszUBgKm9Y+boFDghtc7xMsE8hALkqE7fMmVqIO7fotLHKtb2KSXXFxog0fb0nsE5SyD0d6+rzk1UxRjDWKVu+boUDs0lOcIaTVY7Cvvn48SHfLJB/5KxytC6wxbnzN2aVS/l4cH2XmmoZOdhky5xb1/Lc7mpBatPn/EiTXZbvp6iPz473v7Fr63TlJQtrM3S/HvwtTZYQs7AGe7TjQ/2JWDi4RGdbmVA8mcIrV0x5HzTN1n26B1vWb3qKoiiKoiiKoiiKoihKD1DlkqIoyrbSn7cPOxsN+26N7T4NtLI7kd6kS28xpbBvkHLD8lvT+hv38QqmsF63LlAKdQv+llQfVL+kWpCg4GN41QVTOtmhq4O1utYM/nlSNNVMVbnJqia+LdUQhok31UzGf06neJoQAA5DweLNtlILjRAKHlM1ydOnN1UUUuBw2+DvcQSqLPdjytVVlqZub44DKdS8oW6TEsYjzQrrGjbKk4qpCpQWxoXl6pWyXG6Gjfqp7/x+UCmcSM2Us3M1NRQOPl7NlLJ1dA6N2JiiZaRQC461MH19WxXTOLiKpaiFxQPjgt3dOt+G8Uhh36EaqHZ+iQHd3Wi7XdX+plJUVieND+eX+qGVwomrPAUlVZv+nTRpQ518AQqgqVVHPbsHm0q5ZIz5CWPMHcaYwhhzRaTc/2qMucsY82/GmPdMs09FURRFURRFURRFURRleZhWufQNAG8A8PvjCpjSoP3/Ang1gPsB3GyMucFae+eU+1YURVEUZc6UM5X06LWZoiiKoijKDqBv92BTPVyy1n4TmChJezmAf7PWfteV/QSAawHowyVFWVr4RWyWVqE2QuLtRIO8FY5a5RQFKEd9UoujpYDurtYN0XolhH37vwss2JgCojN/u8pNEx1Dvt3p3dZGIYV9N4Num5aesD2UuuzqFCxwwTLfxvFh33KAeTfI8mQm9iX1OdmneHuaAeBV/QnbGm5fZR0U5s7b0cYyV/5Mx79pmWtjlRMtTy2v8VK5pm2KhVO3+DLIA73JomWsEJrurIojZlEjAuuhs7fV7XGAbJHzy2zeKE/WN8kqR/+OTNWezIV9x6xyKVsnWeUofD61NH6qY54KfV7/wt01rLltQHMs+L9tZHc1Zvk5RFa80B43blkMHrxO0PkUq0PeZ/h7CY0RU1vCzt/YNXDCslxYVx+xRjpXI104rW1yK0zzEMj26AFSjO3IXHoGgPvY7/cDeMU27FdRFEVRlBnQo4lKFEVRFEVRdgx9ugeb+HDJGPO3AM4RVv1na+1ftNiH9Nhw7CEyxrwdwNtb1KsoSm/pNj2roiyO+p+r3adksrC9kmQrW4Pff62Yfc31TmFgW4ZHF4ZCoMerY+Qwbq7mcAoJW6oisuC2lZQ8VfnMqwPqdbJ9tgz5jpVpq1Qh5Qy90c/5satNu17W5soJYd9d1UzVbsav5evq4d2TceG/pqkgE8N/LaleeCg17Xu8qqkQ1UzWlYkHgFc/S+1x220x7JuXiwU/B+PZlR/58OLmeIh+axKFG0LAu8kb6/znjZy/wbqImonKUcA33xftGwDympqJlEzluqaaKQMptEixyAPwnapJOJ50jvKwZqkPY706y79wsfETC/mWVKExpaikVuqyvg4px2KKp0Q4l6p1zaMoBXvHlE5hfd1C98ftZxnpck/Vt3uwiQ+XrLU/OuU+7gdwPvv9+wA8GNnfhwB8CACMMf05koqiKIqiKD2F33/tzc7U+y9FURRFUTqxHba4mwFcbIx5FoAHALwJwE9uw34VRekF253DtIicJf2etnPYnblMfZJkK7PAuDfCzbfmBjwTJlwnUQhvzxPhzbisNqLMmVDBBFQqJq7kGfl1oYKpWS+1o/xXVCeJU2nboPxkpcrkqepHbGp4n78k5DElllRK49VMcq7O9HSfFr2pesm96qWdqqmgbZkSplIuuanqmeolpmYiYnlMvN6t5jFxFVTq66/6vpERxOonFQdX+hk3ohMjrDOkhmvmMFVKuSFf6OqoFsVUTGKZmpqJK2Mq5VulTqJypGbi48i6vhsFSqdQzZSz/qNsJn6+03luhEwtSTHTddr6qq0ts5l87lfb8vXzdz5/aDvXa5r5SkQuXAvaZDuV9dXP/ea5La+lMuNVUJOYpJKaBzHVaOe6enQPNtWRNsa83hhzP4AfBPCXxpjPu+XnGWM+CwDW2hGA/wvA5wF8E8B/t9beMV2zFUVRFEVRFEVRFEVRlGVg2tniPgXgU8LyBwG8lv3+WQCfnWZfiqIoiqIshj75/RVFURRFUXYKfboH2w5bnKIovSaWMjlLZjHBctf6FWUWxP7o73zLnLIzMTbxdrSSySGvbe1TklXOB1yzRbkPrC4tMRk7ncgix+0UdFNbt8fxetva46qQXcE2VbPH8To4ddM3b08h2u5C+1NuRo11MascWaWAypIRm46+u92tyVYtc0DVNtky5/rX8s9E44zsVs0AZ9kqR2HQaaO8ZJXL6Piza7u3Qkau6aKVki2qB8FLIfDSeBtZsocyG50lmxgPwKdA7KZVTgrcru++jU2OlwvGvGsat+L5faJpi8tNWS4IBa9Z5TI+di3ZYJvWSTpO0rHj09dzC2S9fBum+YIfs9nKZSTrcLjM8HNDuKZ2bW/9XA6v/pH7cTN+3PDPJFnqqnWuKtvtvj/aLnEPy8ssrsfLgD5cUhRFURRlLBZA0SfDv6IoiqIoyg6gb/dg+nBJUZQlZqtqpp3x9F/ZCUy6IVBlk7J8lFHeCQo2fCsVE1cOlFjhrbAP7W45HbYvJ5wytMcRX0aqFVa+UiwJ5UmVIrS/anP1MylVYmHchaRssePLcaWKNG23qauleHtIiRSoq0I1U8LCwQuvVKk+JU3j3kbVxNnqG/VJ2zWnWx+vairLk7JrfAA4VzOlNXUP76+0pnoBqrEx8u1qKtMCJVLHqdJpWynsuyovjYvJYd98fRX0Xq3LXfkg2NgPMxo/1appw76BSk1jauMOqBRLQch3vTxToUlqJlJ0VeH+QkC6oGaqzst4/9X7d5ISqG2Qdx3p+FRtaE6qMAu61rX1a0A7/OeMqKAk8uCa0b/7qT7Z3dqiD5cURVEURYmy1ZtmRVEURVEUZev06R5s++flUxRFURRFURRFURRFUXYMqlxSFKVn9Mny1p83DcqiaDNb8VFaAAAgAElEQVRGFi/17tNZp8wC0whKJYucHPLNf3PlvdWG2TpaWOTahn37UqZZjuxwocWIwo55QK7xP9WRArpjVrl6mUl1UStCm551/1IYMbc1uVBkW7W/bpXjgdgxq5zvt4hlri1d7TK8fuPHjxRGXLfMAWSbsy64mn9e0SrnPh9ZqQrbtBgFodHu+Gf+WDQDlgPrWK2rJ9lyGjYr9iuFiAdWS1c+98difNg3UI2DtmHf3nrolvGw78qaxm2J3axy/lj5sO9mP/MxTmPD79s0xwq3yhn3mfx2/FiALHO8f5tWuap8MxQ8n/M9nGSvbbeu2wQKxKTykr15u8hnsG8fCs76fFnpeqz7dA+myiVFURRFURRFURRFURRly6hySVGUltReQSmKsk3M6+1pu3PZYrGhk8aYPwTw4wAOWmsvXVhDdhmJi/WuEwv5bmqaalNpR0K+JcWMV7YIYd9V/cEGYV22eZsbqlHoDXchrBuvZpLUSTGksG9COmYyzQBqUmKQmsnwYx1RM/kyEVUTUB33rqqmtoqKNvVxtUtd6cSVOXE1U/k5U8OmvYc0pmJTw8PV35za3qtMJoR915cEZUh1xEPfbRjwzo8FLTPB56WA98lh30BTKZQzVROtm6RmIiRVEy2Txn1uho3219vDob7maqbUnd/Uv6RkArhajR+zpPZv81yKqZqmQfob2vXvakyxRKotfnxi6qeuzCJMvO3kDgRXvXbc0xa3Wyzjjs+i78G6og+XFEVRFEWJYGEXOw3uRwD8DoCPLrIRiqIoiqIo28vC78E6oQ+XFEVRFGVX0o+bFWvtPxpjLlx0O3YTBpS6FNfVNHOYeKZNc6ut5vM0FEzlSqH+WlvNqFpXm7a8hNQWUkYH7btdhlIbNRMvI9UBhOoVrqSp5zGF5ZoqJUnNlLrPSeqGmKqpbKPLeYqomtpqCwpBldI136levgh+nqxm4iqWFKWKqTDVMU4tlW/mMRGhiiX89FIeEy9f139LIyaqZmL11/seAEa13KBYHlNZHSl+QkUPUB2DmJqJ94c8nsfj1U/s49ZHWbjvsG94O6gvE9a/cTVT8/PSuWaFXimEUb4M095L/TXL8m3pqkiSkK4F+QzqVbYffbikKIqiKEqUPkmyFUVRFEVRdgp9ugfTh0uKoiiKoiySM4wxt7DfP2St/dDCWqMoiqIoiqJ0Rh8uKYrSEf70fPGyYEVR5ss2hEk+Zq29Yp47ULpikMCE4cii0a2kaY+ryonGOle+kKYaF+wR0jIfnhwMzXA6+oLZmjJXfmQrq1xS+yzh5y03yNC0+kl0DfuOhXxL+0u95Wm8VS4Igxascn67SAB4uP8kKGeDaeab4cLdrXJw9Y4/slJQtG9DpE7etioMmtncvNOM1dIIhOd1lb+kglWuslLxAG233YSQ7zpRq1wQ0E19XzXS1Gxx3IKYOTtcyo5n7myjZJXj5wOtC5a5oHDpXJWscoQUAC7hbXdsj/V1oa2yZmNkge0+oDtilUuE891wK6EP+W5aEKtp75dr4nXefuvPx2awtxQObsg2GznnutLV+ioRuwbsBvoW6L1cZ4SiKIqiKIqiKIqiKIrSK1S5pCiKMlP683ZBUdoyi7ePW8UY898AXI3SPnc/gF+11n54YQ3aJdRVFqQESIUypAUq2OWvVch3EIDcLfC5ChcWV9b2XLUxYQHOVM6vC67fqVvXnNrbemVIu7Bvoq2qKaZwkZRgkjJBUjPV65cCwIP2kvLHjFdBBeqnWgA4V6alEWWa1MtULmEjrq5gkBQNk9RMrOFuXfMYxMK+pTZKaiY6/hlTktRDvttqv6lcyraw9bBvVGqmpKZgKttDKjSufqJlTqXElFGpLY8BD9VOfEB67tZVKkBRzVQLDG/7d0RSKVFdUoA/LRvxtgpqtbqayQb1OzUT63N/jREDwKvY8WrZ9qj5JdWRqESydAym//st1T9LZqlOmlcbF8ki78G6og+XFEVRFEVZWqy1/3HRbVAURVEURVHi6MMlRVEURVEi2F75/RVFURRFUXYG/boH04dLiqJMAV3sNNhbURRlpzHJ5kE2k6z2O1AFZ8dCvgMLU8eQ72qzZnlfB7fp+TYyGgHOzdtiK1iLKORbsuiEobmhPcnabl8QQltTM1S4flSS4GfJKkc/lxYgKQCcQ59XCgD32xnJeuUsbTZn65o2xtQfRwpy5uVLeP8mNfuZZKWJWeXywLIVhn0DzELVJuwbQCqMl2qfkmUyDObmZcQg74iNsrAUMD7eKuf3h8reyfc5cj+TrS9n/TUSrHL1EPfENC2L3JJElrrqmI23OHLaBrzXz2k+/nM/pprWsaqfM7YurCuo11nlAsufYJWr2jE+0ritdW4eDxPk6wlvP53nkgU0H1vejwvBftfW5pwgtFy2Zd4WuD7Z0ZYFfbikKIqiKMpY+jZTiaIoiqIoyk6gb/dg+nBJURRFURRF8RiMf8MuKXOKmgIFADJ3ixkERZsqOrvcrqJNyPekt8j19UHYtxDyzTUNYftkZQLdNFefotqBHKJM/zZVR/XtJiFPJ14PXZe2G19H2NZmO0yjHFeelOt4/8YCwNuomcK2NpUMVL5N2DenCoOuyjenvWcIYd9eWcdVHaa+jgWAi+oPE5TnqjgKew/6hAK6BQVTTNVEmdSWlaHwea6e88tcg0bCeC6YumdECifjjqdtqlhydg7VQ6AllWHbgPcYUl9SX4cB4zXYIayHfZd11K9TXMmWN+o3dWWXqGCa70TtohLJNveZiCHfYbkgHNwfT64cq31eYT9dlahtz+l5oColGWPMHwL4cQAHrbWXTiqvD5cURVEURYmyE2dfURRFURRFWXYWfA/2EQC/A+CjbQrrwyVFUWYAl2tq/pKiKMpOo43Chis9KhUTV3+4286agqnctlG6kcPUNr9DKlPUVCZ8r9a/ga/emvspyVn5qtWUwdLMG4qpmbp+PZikdKpbJeTcpCZpTbEStlFa1kbVxPrfK3maGUfh1PBlwdwOm+UNqT+aTNZcULk8+nt9u0ppVv6UYeDXjdyY5cqWqq0u/8g21UrhvurHkecZUV3N8lEFk5SjI5SLqZlyn6klKJeE8TByChWuzoqpmagvKYOp3Nd4FUtbpWKMrmo1n7kUqJlIkRNeJ8o2prUt4dVMVb91a3Msq2kr1JVFHFIzWaYsaiob2+UxyedeTM00vs1dM9akY7bVBzFd/77sFqy1/2iMubBteX24pCiKoihKBBvcgCqKoiiKoijbwdzvwc4wxtzCfv+QtfZDW61MHy4piqIoijKWvoVJKoqiKIqi7AS24R7sMWvtFbOqTB8uKYoyY+gCuNvscfrlW1GUnY88nfX4aeyTwF5Atqny9jOY2t6HKDdKi5dXsla0tS94S4z0pykW9m14MVdHJOy7iFpbJMtZE8mStFVidsaYZQ6obHNtLXNkYpEDw51FJxoAXtUvWeWMCcdUGPZNbW7aatqEfZflQ0bMxtWYxr7cmfuHAuHRWMfbnwmWoqod5cYZt5X5oPPQHgdMtsg1EFaRVS4xdJxY/XZ8n5MdLmfHLmaVoz4PbFamGfJNfREP+55dyLNknxItXoKl1tvoxJrdOBXUJpJVLmZfmwVt7HFAZZGTx9F4+9lsrHJN67Nvlw9Ij9tOKytkO3th7HhL7YihNroKfbikKIqiKEoUDfRWFEVRFEXZfvp0D6YPlxRFURRFUZTOzCTkm/AqCiEgGk0VC739LgRlUQxpOnQ/XfZEZUKoSOAqhHrYd1kdqT+aYd+8RVXtLmDZLTNC+TbHvC2T6wrVK6nYnqYUg8pzVVMsALzwgdKsf904GHFlkXVKGFJMmObYCtVMsVDwpgKmHgIdnca+bHDwOfihoDEVqJVqh4qrgjKhlaQegmmOH69iEgLAJcR1tUWGj3+nZsqZ0qwZ+MxVa+PVTL4fWH8VPiSblafQdKEvqybPN3Q5VLKF4yBQPQpqx6qOqoY6XdVMs2RS+LURFEV+WzHzZ3x5WRVJx1NQn0VEmrEA8HatYXUF/bu1YywqwObQX8uCMea/AbgaZTbT/QB+1Vr74XHl9eGSoiiKoigRrEq+FUVRFEVRtp3F3oNZa/9jl/I79zGboiiKoiiKoiiKoiiKMndUuaQoypzYrcHeirKzsGC2IUWJMMlm1Qz5FmwagTWHyg0AhLYpb60IrEhhXZPe9tL6hj0uqJfvk2w+qWsft8CFYd9AZbsg65gVLGGxgPS45aZJW8tcV2tdPGC82f7Ut9821vFPRcvISsUtlJVVjgcOl8edrHJkkyu3nWyVK6KGJV4utMcBrH+F7agusnWVbRNKko3OkmUu/jXMjxdb+x1AashSyPqkFgAe7Frocm+7q20fLuI2tJLcB3THw/3rwdwjHlbulvGAdGND2xTvr8KHTTcDwOt1zgppHNTbE1pp6fNS+5vrpIB0CtI2wvHhbJdVTmqDZJmTrXJVzePrbRKzzCU1e+WkfcbuV9I52yrnQd/uwVS5pCiKoiiKoiiKoiiKomwZVS4pijJn+JtOVTEpSh/p00wlyvRYlG/YJylc6oHTVngrz6lPX2+E8iNWnlRM1Rty/ma/vgTV9O/CtNaxt9R1BROvIxHUBG3CvgEgr6mZuEpAUjPVQ2EllYMUAF6VbyL1g6QyacOk8k2FUzPQOywftoN/3rqqCWiqmXKmUiJVG1czVQHRTbrFE1dIId/VuGA1mIHbYMi2LduW+nXx+tOGYobVT8eCS5Jqh533l8//ZsXraqZUKB9TM+V8LNrmmKr6NWl8Hq9WY8or485+UjPx8ZDbZqh/6r7GSqomQgoFb0tdsRSdDKAs4LYLFUxlO+Q9lP8PFUyArBQSx1m0/d00JPW/85O2l4LICTpyVlDc0HGVlZDj1VtpoCQc369dlU5+fy3VQWnkuMxLDdWnezBVLimKoiiKoiiKoiiKoihbRpVLiqIoUxF5daMoOwLbq7dmymyov1Vuo3LhSiYrqGNiihlSN2TCspF1CpTgzTK9na4vgXhZlqazrr9lnqhMqNXP39BWuUHV23WfuWRIwSS0i/1cVzMFSqoWaqP2Cp3xGUqx+o0U3CNAChhrmyqrcJ+hgk3KaJLGT+4zl6pPnDuVEs9togyfHEPX/vF5TOXPJW3VB43MrmC7cp88Uwg2C9YhEB2V26Z2/FczfuxIPZEFx8DVZZvlE9d3PGcp1p20LqZm4n1DKqZAjWjDPs/Z8ZHGg1/mdjRiOkZqf6huC9Vq4hTxrM+nVZW0nW5eUhiR0sZI+U3CWJdymGL1z4I29YW5ZS3Kt1A3AdMpnKS2lfU3j3UbxdM42t0HzUO30697MFUuKYqiKIqiKIqiKIqiKFtGlUuKoiiKoozFoj+zqiiKoiiKouwU+nYPpg+XFEXZRiIJkYqiKMpSMck2Zb0VRpj6nKxRE0K+m/tsWpdoyvbCctuas4Ywbw+ZaMRprWth32UdoYCf38BLId++jcI05FWb+WcJ/01MtYGvXwwMp6Df5rHjpo7ClxtvMZICwNta5boGfteRbHShzWp8oHcbqxwP+yZLi2SlouOZs3BtOtYxq1whjAcJMRBeKm9oXUIbsvJpUAaoxnvmCso2H2aVsxQkXVaSss/mg7NZ/WRba+l2bFjlLB//bh0b4rCmZntklrw2VrnAEul2xo8r/SwFgNctc/VtgdlM7z7JShWjfr5L596kkO/tZtZWPE8khLs56uM2OqKtna4qHx8P0vkXI2bB28nowyVFURRFUSLYqWbcURRFURRFUbZCv+7B9OGSoigLQHjd1Ss0xFvZXfRJkq3MAjvmrW9IUlMnxRRMYe2Tw6kBrszx2p9mGdbMzCtDSOXA2+p33qzDjFcpRdvH3p5L01/Xa6tP9F3ulKlvfKAxlW+G54bKgXLb7gHgUlj2eHw/82njBblLZ6VTLaSZq5oSr1QZr2bi+xt5FUhT7UJqplDlRqHg1fEfuVDwtsHorQLhhS2pftpf2Q6hHMmAhDHrA8DFgGhK9q6W+f4Sbr+4oqgq39xnrAzVwY8x9Z3/GGxdGzVTLMy9XOaOsaXzl50vfmyxgPf6GWibX9hnEZw8L3VPPeR7Urh21+DvaZWK42rtVnqC+o+IBJ0TbXVGdFzryqdJTP4bObtx0Kd7sMXr6xRFURRFURRFURRFUZTeosolRVEURVHGYmFnkk2hKIqiKIqitKdv92D6cElRlAWjId+KoijLhEVpPwltKePF7nV7HCDb4err2oZ9N+1x5W+Ncq66xDRtdOONdYha5doilq/VGxraSkuOCawYoVWOHxOyChXMDlIFAdPv3QLApca2tspRPrRgg4r1pbRGLF8Lgy73GVrljPB5RxCsV7SO26Dq4doAjC37IsfQNWF82Hf5c8ikQPimzaeqi0Kp+Zixfjw0609t8yscHZdMGOXefsY+E7kcfb+xvtxq2Le0z6RmfwTaWeVGge1LGp/heODHh/qaW+F80L+hvmz2DbcZLjKQuc25NAuWuf52Ad28/BbDulsGpW/Vdrfb0IdLiqIoiqJE6VOYpKIoiqIoyk6hT/dg+nBJUZQloQ8KJg3yVhRlN2DdW1pJuTFZwVTWMD7kmzBC+fib7updcV2VwtvWNuC3CrwNfwfkKca3qmaSwr79ftjPdTVTqNNqBoB7dUwk4DcWAF4E/TtezVQFhgsh3qLqK1Znk1ipoI7G1PZ86vnmePNqL7Hd5WensG8gVO6UZZrT2MfUTG1HR1RFYXg5ty+vMKrGf+GkPwULAs/c1zrr25WydXRu2MYyUp+xVaJyhn7eqpopCA6XxGo1NVPQl/6c5mq1ULnE+5kUY1zN5MtFrg+c+rVuFmHf86JreHdXuk52MA8kpVDboOs2Yd3TKKPi9S7vuJkH+nBJURRFUZQItlczlSiKoiiKouwM+nUPpg+XFEVZMoR5chVFUZRtw0J629rMPVpkDpPUhqptbfKYqnK0RMpbiamZ2iqZ6gqmYN0ENVNVTmJ2GU1t1EyhBqqpFqHypGYq2ObVeKho8xc+mtEk5vVIuVPNqe1H0rL/v73zDbVnu8v7893n3LxoGkjtJeaP0ioNYioVQwimlmJRbHoppkoF+6YBhUteCPrOyAUpfVOs0EKpxQZasBAqhfY2od40uZEW8UXUKLn505voNQQMNxiiEBVBf+ec1Rcza2atme+sWbNn733OzPl84PA7Z2btNWvNmpm9fjPP80yX09P09DZRKXUql/CkW9YrtMYsVSuUjoMba9RVh0SlNMxjapa1uUGVeUzxXLsKUeXTV3ZlY6VTtzqeS6lSqGIw0zKZimlQf9xmrlprrz+uWi2WH6/L1Ux5vZmKMUS1V5rR1OC9qn7+NfQPh3OrmjzOneXUc7oxqc1QWnqjp0Y1tSe4uQQAAACTBEl3YTt+fwAAAIA9sLU52P0bKAEAAAAAAAAAYLOgXAKAB8xDCPnejvQZ4Dxsy+8PpyHYXWcly1kf8h3xbHKlkO+7GctcbEeNPU7qbRDeq9Kna0hsJjOvsB7a5jwb3Rqr3HkCwKetcl64c9qukZEyDYj2XlXfBYU76wo+q8yqNagrs+KFfm2znfHxc+OEQMf9mo7NrfXB3339uXWyFPadlivhl2mD2C21AOVh382yq9iR5u9C2LfU20DjcX+V2cTaZUmf4m7v9lg6RI5VritWOYXr7Y7jdcOw76ZYboVMz98aq5x3PHjXshrLnMdSm9blrGQ9c9fUJZy6/Uvr874nzsN5bG7T7d7WHAzlEgAAAAAAAAAAHA3KJQDYAN7d/HM/4UGxBBAJ2o7fH05B0J1CFn5dUjHVKJjyT9WFfQ9DvmufZMd2pM+X3RDfLvS6LeOEfcspX+plKQA8K9duK1UzFcsXnlzXqJqaOtryNt6fpQDwqP5IA59LaqZe8ZSsCzYq3wdijxVMXaizI3txXxsflTap8s1yhYoXBp3VMViWHW+daidVM0VF1LKw7357ZTVCzZjfJIqqGPgdr9dX9lS3zgv77hVLuYJJ6oO/U5VYXGbtfvWyvr1T1A3vLuAqFaO60Als12Ccm23Oq5lypeK4jtCd73H/jK8FCs6ylvT6U1I4PTbOrdC6DwXYKSi1e0tzsFXKJTP7ETP7nJndmdk7CuW+ZGafMbNPmdkn12wTAAAAAAAAAAAeDmuVS5+V9MOS/mNF2X8QQvjayu0BAADARQmLX6sNAAAAAGvZ1hxs1c2lEMLLUi+PBAC4HKe0ymGBA5giKA+Bhf0TFC0eiUXKcgtZzjBI27fIDe0uXth3jT3Oq3OOcdh33+6+Ef3f0eoUCla52uBtt1yFZW6OgxPM7W29b1seWH3nBNNGy5zUn/fRKndIj4cKq1w+vtZ9sm9/+7mBPS5rvRfevdAqN7RPSYn9KbN25eVLYd/pZ932DMK+m80f2o+Nx2tt2LfUB36Xwr7vkvG9CrF8U+91ZqEM7bIk0Dueo63NLV1Xssp157u3n5aGNid1DI8N13LpXK/iXkwtlCWrXH+9Ss+lsZXwULgu+NfNy+IF+Ofrp+3H3csA7jGueat2t7VsbQ52qSMkSPqYmf22mT17oW0CAAAAAAAAAMCZmVUumdnHJb3RWfVcCOFDldv5nhDCq2b2BkkvmtnnQwi/NrG9ZyVxAwoAjuABPBoC2B1BIWwnTBKOI51/PWWvVeginiOtKqUY8u29iv34kO+ubV3Y7ljp5NVR4s5po6dC6Moni8avH/ee/o+pVTN15R1Vk6dmqlU4dYy6N61qatY2PY5qpvTpeY2aKd/XjrIoKpxCHgQu9UqYQ6YeitueVsKkeCHQo/ZYqqQaq1f6tk7XcRNieHoh7FvqAr9rwr6bbZZec39s2HcSQG25Yuku9HVet/9FTMc8Bn975+pViKqs6TG8TcahFAB+LGlVnUoyWRhVTF5g+PQZnZZPVXoxDL0nFGuZ5qFZnmoUTNJYxZSruKYHtlS/xykVS54y9uGzrTnY7M2lEML3r91ICOHV9t+vmtnzkt4pyb25FEL4gKQPSJKZ8T9FAAAAgDOTzr/+yvXTzL8AAABgEWsDvWcxs9dKOoQQ/rT9/Qck/ctzbxcAAABOw0N7sgqXIWQqlsjxOUyxttrcjpKaqeZz80/Sc8WSl8eUKnPieRD7679q/Hg103A7WfmYr7TilebFz7q7OFe7pBlNNWqmQ1JpcPZ/P75jZUj3+nob76lufE+ZxyQvpyfN4PLUTDb4O2nrhfOY/HKFPCalaqam3JU9lTS/zdhJVHTXA8XJlZPRlCnNQq5cOjiqJi+j6ZR449utK+QxSX0mU+31J+7bTuFYyndbgZ/1dpxaqvS5uetnKYepRp10LqWTx30olk6puNrSHGzVkW5mP2RmX5b0Lkm/YmYfbZe/2cxeaIt9o6RfN7OXJP2mpF8JIfzvNdsFAAAAAAAAAICHwdq3xT0v6Xln+auSnml//6Kk71yzHQAAALgvQqZgAQAAAIBLsK052NltcQAAAACwLe50l1kmQvf6+pR2vd22ZeYCn3OrnBf2ndlYVtoh5uoaLkvbU7K2eK8cP4VVLu5j/zXhrY0lsSnVWORqX2E9tAwNKula0S+at8rdhfHYp1aYYUB0OjadjS5xJA1Dmkth3017pjvlhX13NiiLAfJJXW4oeH783LivoE+Wtc3pj7Mn/bq2+iyAerL168O+JenWBudh0sVhmHuzuil/Fa7bMmNbU2qVq7E9egHgw8+nrDEaDe2y6fY8i1zEO4s96+34c+OXB+Tr4/Ezfb57LLXAlUi3U2ORO9Yel+KH+5/ORndu7nPbW4CbSwAAADBJkBTCdvz+AAAAAHtga3Mwbi4BAAAAwAjvqbYX8u2pUpaGfXsqphJLnx7Xh3znlNUHnjJnWs0ULN2feZh4Wp8f2Osw2LeekilVE5RUTKV1UeGS1tUrqabVTJ7qJVUzxTqu5YRNu+qGVuFUUL1kyrSB2mgu7DuWj0u8MOjrrP2x/LQ64za1s7TFLO7rpDnW7c/0/BqXG7I07Ns7p2OPbuymX9eFfaf9bcfJxiqTGjWTp0zz1Ez9vuvrGqqahvXVUFIZeXWOlY09oUJpk2/bU2neDcqk+66kIjrPjYa1Id/eNWRp2PdSpdNcub5t4/LHhnyfImB8z3BzCQAAAAqETb2pBAAAAGAfbGsOdjrTJgAAAAAAAAAAPDpQLgEAAMA0QQphO28qgfPgWSb8kO9Ia7mxsU1sWKb5rSmXHmlDS4VnWZlaP0VtmKy/bNger+cFq5xjCTu4odx1AeCHbl1d2HfcnyUL3F3hrUTeE+nbdHzjmBcsVb5VbnxsXTu2weuu/csCojtbkxPKXSI9UoZh4s02h59Ix96z4TTro1UuHa/b1pKWH2Nt4He0nGW2yjFL1Q3j8v3YB3OsioNxTcPca6xyeQD7YbRsGOxuzvim5W8H+9izzp2S/FrQEBybWK1tquZ64l/npu2zp8C35c6HdZfCvlOsa3/5fKwJTZ/7Tii3bbp8jWWutv2r2dgcDOUSAAAAAAAAAAAcDcolAAAAKBCqX2cO+6cU8m2pksF5gXcp5HsYDt78PnhVukPpyXXtk+NThH33n6tTInU4aiYvALykZoqBycEJj87KD4K5l57XJVVT2sLRK+5Vp2ZK2xPVTNfJf1VCt3+mA6Kz463dB1FttObV9qWQ76suaLzf6TddWPk4ALxrX7r1Ydh3slEv7DuGb5dUAkvDvn2m1UylMHdprGaKSqZmWRzzsTJwqGBKy905I9aVC8vO31NgWRuHAeDTqiZvmRe+X76+edeE+1Mz1Sp5StcdK5wvXl0PVdU0t83Stsdsaw7GzSUAAACYZGuvwQUAAADYA1ubg3FzCQAAAAAyDjrMPgUf5jAFR9mS15DnMN0may14GoyoZJjPY8o/Nf9UOy1Xy7Fqpk6JlKm+xplCwyyVVOHlqZmGdZR1TurUMUMFU9q2Q6Y+m1Yq1SkkjhJ3o2MAABiMSURBVM/w8dRMwwyfq7S8M+ZXncJmPo8ppTTKXg5TJM1jug5erkyuZvJUONnx03700Lb1Jil3HccyPYdsWpG2Po8ppRnXOKZN+Xk1052NVTvpeR+P/z5vy1MGjjOagrsfCwqnI6lRosxRynVL6/fUhXVqnbES8lyU6q/JaMrLX1bVtKTcuI1Ls9umj7tTHFMPDW4uAQAAQIHg3jQAAAAAgHOyrTkYgd4AAAAAAAAAAHA0KJcAAACgyJb8/nA6ai0WQ3tcSvrEtfQi9VLYt1u+Iuw7L+9ZZ9ZZEpbabJYGgLv73wkAj/sut7SNX1ceP3kI43XR0uVb9+qemq+1ytUGRF+F+Lm+vGeliuPr2dCWWuVq8MK+DyEvIUnW2aHGx585y2K4edqsu66uZJ+HJ/m2Z9pbGq94HFjlNaDGKlcKc0+3Gfubh/tHm9h0AHiKFwp+2wVnXybsuzZQukQp5Hve9jU+zy9FzTYPzrlaLl8bUP+wtDOnaM2W5mAPa+8DAAAAAAAAAMCmQLkEAAAARbb01AxOgcl0lamOal57natkplVM/tGUh31LvYrJV0blYd95O45XM62lpJDyt3c1Krc4ADxEFVdSvkLNlO2lLuzb61P8/Ph4OOXr7qsDoi0GYyflQ1x2nZTPFR7XOjjrptVMUckkHX+sZHUMxBnpHunVVWMFR7ftZFVULB3MUe2EeJ4dH/btBUoP182PfT6upTD3Zn2uZkq3fRfGar6o/PIDvedVTXPL1rJUrbRU6XQKZZTHuZROw++E2u0cCueGX76u3ng1K70cIqV8HT8vW5qDoVwCAAAAAAAAAICjQbkEAAAAkwSFe8lsAAAAAHjMbG0Oxs0lAAAAAOgwNVYEbzrrWeW8iW9NyLdllq1YR2J7sbxeL+w7LXHQOqvcuewOpXpzm9uw3LRlTkptQ04AeIVVLt0nnc0qpAHsbR1OQHS0yNWGvvt2rBI1AdF9W6/sqdF2rsJ128axzeoqWrCSfd7bq+J20ta0YdCeDa1gs0rHtwsMLxzH6T72gsj78rklstlAvq4U9j3c1rj+caB33H/HW+Wmw9ylsVUuDXP3rHKdrekElrmiHfGErLGvlayKW+ByN0iWGbNqbXSRY+10+TYvb627FNxcAgAAgCJb8vsDAAAA7IUtzcG4uQQAAAAACdY+WR2rUlK1UXDUK8PypZDvVHliGr9efvgE2gv79hm3Z03wd1/HZQLAa4ntLweAT6uZcmVYVIsMl8gN+74qqChqFQrDz85/ajogumtjqvZq1S5XIaqUvOM0VbvYYN040NtVHbkh6NPj6imYXKVTFyA83mi/LtlOiOvmw76bbbXndCHsO2W4Ni1/DjWTF+Z+m3zSFgaAR0qqplSNcukA5zlV07GKpdrw/bXKomDHfz6qzzyWtqukmvXLa1H5nlTFu+wYWap+2hLcXAIAAIBpQlAIt/PlAAAAAOB0bGwOxs0lAAAAAMiwcJhQtiSvN2+VA0Hjie/Sp8ClHCbvVdTDPCZpvZrJUzKVclmWPq1eWr6cx+SpXcoZTX35cV6Pp3YZZveU8pia+kt9aSipL5bmMqXbu7Gbto1jtctde6xcp/snxGXXSfl8f14nW+jXHa9mGpLmN4UwrZKJPbp2VDXH5jE1i/Jxzc7tgprJy2Pq+lFQM+WqoOmRjaVuU6Vip2bKk7+a7dRlNHWfcjOauq0my2ywxO/LY2WNUumcdUUV1LGKJ2n595e3pbo6tnPTqBZuLgEAAECRrQaIAgAAAGyZLc3BuLkEAAAABcKmwiQBAAAA9sG25mDcXAIAAACAjibK+5DZzHobmheKPMazytXgfc6fVjsWtraNZXvcdB21od9e+PJwnceczW1JXbWfTbc5DADPLX/zVrmSpapZPx8Q7R8rx1nlPBtLDIVO29u/4r5v65U9Nar/Kly3dY0tVVcxPDrZZ0OrXLrOs8qZE7A9XBftccP6mu0oWefRtLEm7FvyxvXJqLxne+zD4p2xL1iB0v3plRu+BCC3rTWkVrmujm6XOZbI1CoXy9vtqD13TqD00NaU/x1fZlB3ji610W1JqXIscwHmNXj7/xQWu9t4PBeCxucY2vKWB4ZvE24uAQAAwCRB23oNLgAAAMAe2NocjJtLAAAAAJBgo6esUQ3kBWkvDfteSk3Yd7MsTLaxTs00H/rdbGe9munY15xbppyZr8MLJPcCwD21y1DNVFa9SJ3ypaB68agJ+045Vs2UtTW2MT2m2hDoq3CVfT7fTqqmyRVLIdt382omT8lUG/IdE7pNqdIpH99S2LfkjGtSvBziHs+9npKaqa9zaUhy+XgYqpnMGV9PzWRdW5O6bLyvh+oV79jK1WTT/fOuI2upVf4sDbYusUYVdAql0iXqTPG/747jNhmHNYqohw43lwAAAKDIY5DoAwAAADw0tjQH2+9tMwAAAAAAAAAAODsolwAAAKDAtt5UAqfh0MZ6D/HsZfcR9t1bW6ZtetmSe7DKlWsd2+hK9jZz1nnLytuc33ZqpRpa5YqWquaPbFkp7FsaP41fGvY9V264JB2hG7tp2zi2TcV+5IHPze/XyX+dwmC/XDsB1KXWe6HfJeYslNNnoTQM+07r68Y1C/CfD3FPz70aq9wae1bNZ7O47QqrXGpju+3aOB0AXrLMpW307ZSaXLdnTmlbO6W9z8MftzPZ7mz8HTh9fm9rDva4jnAAAAAAAAAAADgpKJcAAACgyJaemsF6TDHSe/7l55If9t0HVo+f7KfB3JGlaiYv5Hu4nZx5NVOdkmmiLmebUTXhhXfXLovE8O5atZKnThp+9momHHwYDF1UvUg6tCqO21YVVFK9NOtzNVO6D3u1S8/S3JFYvibsO2uvE/YdA58zdY9iu6dD3A/ZPo77sS6AvQY/LL4hHd9h2Hfz+3hcu3UVIe7Zugo10yEL5B+f70uVKUOlkFdnUc3kqTDT8qNrzCkVkXUsVTqdW92TKrXWhHvXcO6+3Pf2xtufZktzMJRLAAAAAAAAAABwNCiXAAAAoEBQ+Zka7JU0r6RXlcwrmKSpVzjnn02fFB+rZvLKlNRMuZIqlxjUqhD8ujRaJuVZLUtzmbK2da+7n1YieSqWWiVMabQ8FVRJzRQVTDe66dcVMnwUnjTrkqZ6e2rYxqV5TKaxii4lri3lMd0lx8h1zBRyXis+zGNq6s/VTCEZm1OomUrl5s9eSVne0HzOVhzTtFxJzZTuu6VnQklVUs466q8PUTnVKdq83VVQM926mW9puemMpq49laqmXo217e9eTwl5nxyb93dqvO+oabY1B0O5BAAAAAAAAAAAR4NyCQAAAKYJ2/L7AwAAAOyCjc3BuLkEAAAAAAmmg2wQBu2FLo9Du7t1nr1kZDvzbCzTVrlaS8PSsO/eguIEMxdCa5cHgKcWnXmr3FzY9zDk+86xqM3VWyavd2lAdLqdmxDHZBwQ3f1dCPtu6osB3eOw70jJKuet80s39Xth39fJmEfTXwz7Tuu/Ctdtm/sP9Da48XEZe1n6L+Qp7XFNK6JNry7se3jM3oX0XJ23ynnjm1rlrmLI+pksQHedTTW3x2VlFlrl8vrnS5WuJ2lYdo0dbmnYt8fWbXclHooFzuMht20t3FwCAACASYLON9kHAAAAAJ+tzcG4uQQAAAAFwqYk2XA6POWMH/LdLykRlT6he0W5p8yZVjPNhaAOnwYHJ4DXbdeMXmRyzarXkM+rmeaUSMOQb5tROpVbU6tmivU3lNRMd8m6eNykoch9QHS7LlEpldQuUc2Uq+jWq5lqjoIY9t207a6tI45Xcoy1XU/DvofHdinsO/39UmqmNcq0GjWTF+bujW/c27UB4HcLVSBDBVNKejyY046k4IhhG/1xW3Y9SbEwPH7u93s5tifMtDvivRigXH5df9Nr/n0ohU43PtuagxHoDQAAAAAAAAAAR4NyCQAAAGbYbz4AAAAAwMNlO3Mwbi4BAAAAQMYw0Nuz1USbS7SS5GWmxfF1Yd91VrmUOdvcMZwiAPw22rmcwN68b7lVzrMd5W3L7UlpiVLI9yksc57FZWivOmTrnH01sAEekv1z29rPPCuVwpNmXdKssm1qjGeVi8s6O9RMRHO3/TBeNwz7zrbZlR+Hfaf9ve5C9Btus4D94wLba8c8N6jln/Vtj/NWOS/M3RvfaGE6OOeLZ1E7lw1neDykxHZ4bYzntGfF8o7F4vUkDfCvDAO/NMfa41JqrHLptfJYi9y57HH3bVF8SHBzCQAAAApsy+8PAAAAsA+2NQfj5hIAAAAALGaoPMnX+c/op6hRM+UqnDo10zk4VwD4WM00Dk9Pn7t7iopSK3o1Sp16xWy+3CFp/1jZ0tOrmfo6bwoB0VERcqMkQNtiHW0AeKtgaraVh31L5SDvpUeKP+bNaAS7assk4zUI+254qvknqrKcsO/0P2ad+skN+47tqqNGzeQrFb2Q+FId02qmdP/UqJnSfX7VKk9qA8A9zvHGrSx0POTt9q5R3ksGFqsjnbH0VEOXVjN52zuXmunY67+nbj2Fmuk+v48eGtxcAgAAgBke5yQJAAAA4H7ZzhyMm0sAAAAAkFH7umjJVz5EVU2qFuifTtc9UR+qmUq5TE2t615dveYJdkmF0OMovApqprts3x2yf5vf2xwaR+VwrNqlVtUU8dRNnUopjDOX0m1fD9o9l+Fz06pWhq+4l6SbLqdnrGyJaqY55UrN8eKNSf9q+6TcII+poc2KiiqcQh5TU19oF42VP/74xnIaravJ2ZpTjwzrv0rKh+L1oumvuXVNq5nS8e3bsSyjKevLskN7Nd6xkhLb7alpSuqn2sy0oWroPnKZTqlmmvtO8vZV/9lCXlUhq2/Nd8La76Otws0lAAAAKBCkDfn9AQAAAPbBtuZg9xctDwAAAAAAAAAAmwflEgAAABQpWx4AGjwbTho6HTqrhxcgPA7xHS7zLBYlq9zSkNU1Ya815bwtp8u69lq0WSX7s2iVm34NvIdnj3PHpP21FOxdslKlnytZ5XoLnGejS61ybZB3u6/v0qf5Fj83tk1Fq1y672qscnM2lqF16S45Brp9bE75rt1PJbXFse8DzGPgtxf2vXR8Syy1ynl4VrlDN4be98e8VS4d384ClwZoKw9S9wLA0/NyGLg926cK+9ah0mpWE/Jdssd5n60N++62k/TnPixyNdsuWebqj0Vvv5zeMpdSc/0vtWG+/u3MwVAuAQAAAAAAAADA0aBcAgAAgBm24/eHh0Ep5Lsv4x1Xy5QAl1QzrX1l9dznvReS9w2ZVzPlYd95GHRTLiphxmHQsZw56oCSgmkuRHxUPlk1VDPlx8q0mmm4vaaOpm836pU/w1fbp6+9V3gyak/NkecGRTv73wv57tZ1Yd9P+uZ06pv+eOsCv9t/+p4tH99hGPcc51AzeWOZq+3iMTitxLtzsmdqA8DjOHmqJpcTikVqVCtpe5aGfC8lKoTuU8HkUdueUyqclu5P7xpQo3Ba9/2xnTnYqiPKzH7ezD5vZp82s+fN7PUT5d5tZl8ws1fM7P1rtgkAAAAAAAAAAA+HtbcrX5T0HSGEvyPpdyX9zLCAmV1J+gVJ/0jS2yT9MzN728rtAgAAwKUI4Xw/AAAAAOCzoTnYKltcCOFjyZ+fkPRPnWLvlPRKCOGLkmRmvyzpPZL+35ptAwAAwCUImwqThFMQdKdQbS8o4YV8R0ph38Naaji3Vc5q7TQVdXXtyvZBXu+tY5PJQrgttw/duadpapW7a+uYD4Mebkvq7XEp5liRllqqok0srd+3Veb132Rh3+Nt34QYlDy2TXXbCf0+juMUg5xPYRjKQ77j8RO3kxQMsUz62RaLRfoRGYZ9N7/HfTVt0XFtet26ZWOZ1ztfLj2eolXO+27px748vsPz1wsAz+q14TE1tsylVNvnTkRteHQJz6Z6bk5h04vUhq0vtfN5Nrq6Y3ZZOLhfR/u9dPT4bmsOdkqj5Y9J+oiz/C2S/iD5+8vtMgAAAAAAAAAA2DizyiUz+7ikNzqrngshfKgt85yanLkPelU4yyZvv5nZs5Kebf/8C+n2s3Nt3BFPS/rafTfiQjymvkr0d+/Q333z2Pr7bYO/PyrdPH3G7T2mfftgGc6/fv3r/5b5136hv/uG/u4b+rtvNj0Hs7DSa2dm75X0PknfF0L4c2f9uyT9ixDCP2z//hlJCiH8q4q6PxlCeMeqBm6Ix9Tfx9RXif7uHfq7b+gvPDYe2zFAf/cN/d039Hff0N9tsfZtce+W9NOSftC7sdTyW5LeambfYmavkfSjkj68ZrsAAAAAAAAAAPAwWJu59O8lvU7Si2b2KTP7RUkyszeb2QuSFEK4kfQTkj4q6WVJ/y2E8LmV2wUAAAAAAAAAgAfA2rfF/a2J5a9Keib5+wVJLxyxiQ8c2bSt8pj6+5j6KtHfvUN/9w39hcfGYzsG6O++ob/7hv7uG/q7IVZnLgEAAAAAAAAAwONlrS0OAAAAAAAAAAAeMQ/m5pKZ/byZfd7MPm1mz5vZ6yfKvdvMvmBmr5jZ+y/dzlNhZj9iZp8zszszm0yEN7Mvmdln2kyrT16yjadkQX/3Mr7fYGYvmtnvtf/+tYlymx7fufGyhn/Xrv+0mb39Ptp5Kir6+71m9vV2PD9lZj97H+08BWb2n83sq2bmvo58h2M719/djK0kmdk3m9n/MbOX22vzTzpldjXGMA1zsMlym/6OjjAHYw62h2s4c7Bs/d7GljnYuMw2xziE8CB+JP2ApOv295+T9HNOmStJvy/pWyW9RtJLkt52320/sr/fLunbJP1fSe8olPuSpKfvu72X6O/OxvdfS3p/+/v7veN56+NbM15qstc+Iskkfbek37jvdp+5v98r6X/dd1tP1N+/L+ntkj47sX43Y1vZ392MbdufN0l6e/v76yT97p7PX35mjwfmYH65zX5HL+3vzsaXOVjY1zWcOdho/W7GtrK/uxnbtj+7nYM9GOVSCOFjoXmznCR9QtI3OcXeKemVEMIXQwh/KemXJb3nUm08JSGEl0MIX7jvdlyKyv7uZnzVtPuX2t9/SdI/uce2nIua8XqPpP8SGj4h6fVm9qZLN/RE7On4nCWE8GuS/rhQZE9jW9PfXRFC+EoI4Xfa3/9Uzdtc3zIotqsxhmmYg+0b5mDMwXZwDd/T8TkLc7B9s+c52IO5uTTgx9TcqRvyFkl/kPz9ZY0HYm8ESR8zs982s2fvuzFnZk/j+40hhK9IzQVE0hsmym15fGvGa09jWtuXd5nZS2b2ETP725dp2r2wp7GtZZdja2Z/U9J3SfqNwarHOMbAHCxly9/RS9nT+DIHqy+zFZiD5expbGvZ5djubQ52fcmNmdnHJb3RWfVcCOFDbZnnJN1I+qBXhbPswb7urqa/FXxPCOFVM3uDpBfN7PPt3d0Hxwn6u5vxXVDNZsbXoWa8NjWmM9T05Xck/Y0Qwp+Z2TOS/qekt569ZffDnsa2hl2OrZn9VUn/XdJPhRD+ZLja+ciex3jXMAfrYA42UYWzbJPju6CazYyvA3Mw5mBDtjq2NexybPc4B7vozaUQwveX1pvZeyX9Y0nfF0Lwdt6XJX1z8vc3SXr1dC08LXP9razj1fbfr5rZ82pkoQ/yi+8E/d3N+JrZH5rZm0IIX2kljF+dqGMz4+tQM16bGtMZZvuSfjGEEF4ws/9gZk+HEL52oTZekj2N7Sx7HFsze0rNpOaDIYT/4RR5VGO8d5iDHVXHZr6jmYP1MAdbVGYrMAfL2dPYzrLHsd3rHOzB2OLM7N2SflrSD4YQ/nyi2G9JequZfYuZvUbSj0r68KXaeGnM7LVm9rr4u5rATTdFfyfsaXw/LOm97e/vlTR6ariD8a0Zrw9L+uftGw++W9LXo1R9g8z218zeaGbW/v5ONdfYP7p4Sy/DnsZ2lr2NbduX/yTp5RDCv5ko9qjG+DHDHGzMDr6jl7Kn8WUO1rCnazhzsJw9je0sexvbXc/BwgNIFW8fkL2ixlf4qfbnF9vlb5b0QlLuGTWJ6r+vRup7720/sr8/pOaO5F9I+kNJHx32V80bEV5qfz639/7ubHz/uqRflfR77b/fsMfx9cZL0vskva/93ST9Qrv+Myq8lWcLPxX9/Yl2LF9SE4r7d++7zSv6+l8lfUXSk/bc/fGdj+1cf3cztm1//p4aefWnk+/dZ/Y8xvwUjwfmYGF/39FL+ruz8WUOFvZ3Da/o726+pyvmJHsbW+ZgO5mDWdt4AAAAAAAAAACAxTwYWxwAAAAAAAAAAGwPbi4BAAAAAAAAAMDRcHMJAAAAAAAAAACOhptLAAAAAAAAAABwNNxcAgAAAAAAAACAo+HmEgAAAAAAAAAAHA03lwAAAAAAAAAA4Gi4uQQAAAAAAAAAAEfz/wG/B7sCOoB29gAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABJcAAAIPCAYAAADO7D/8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9efR1z3cWBO597uclRJJAIAhkIFHECXqJGIhpoDt2o0AaO/YSaRC1wSHCghZWgwMOCC4CuNoB6NCGgDFGWhBF0jErrWBrDINhioCEYHcMCfklP6ZfQgamzvdzq/+os6v23rV3DWe4w+et512f995TVadO3XtPnVP1nGc/hSEEmJiYmJiYmJiYmJiYmJiYmJiY2ILl3g2YmJiYmJiYmJiYmJiYmJiYmHheTHJpYmJiYmJiYmJiYmJiYmJiYmIzJrk0MTExMTExMTExMTExMTExMbEZk1yamJiYmJiYmJiYmJiYmJiYmNiMSS5NTExMTExMTExMTExMTExMTGzGJJcmJiYmJiYmJiYmJiYmJiYmJjZjkksTEw8ERPwsRPzQvdtxSyDiz0bE31vJ/z8g4jcj4ncj4t+NiF+LiJ/VUe+nIWJAxBcn/5cj4m/Z3vLHwfo5/5Z7t2NiYmJiYuJ9w73Hboj4lYj4Tzt5iIj/ASJ+OyL+QUT8CYj4P3XWWx0nIeI3IuJP3NruR0FrHDoxMdGPSS5NvEkg4o9HxN+PiN+BiN+GiL8PEX/Mvdv1aEDEL0bEX6nSHm2w8G8BwC8IIXxMCOF/CCH8iBDCV96rMff+fmqDyImJiYmJiWfFWx27jT4AOviB0Y8HgL8fAD45hPBjQwi/J4Twtx1U9zAegIirPnicmJjYh9mxJt4cEPHjAODLAeDnAcBvB4DvBQA/AQD++h3acgkhvN76uPcCIiIAYAjhemC1nwoAX3tgfacCEV9CCB/cux0TExMTExPPgjl2Ow2fCgDfGEL4y/duSC/mOGpi4nkxlUsTbxF/KwBACOG3hhBeQwh/NYTwu0IIfxwgDhoQ8d9CxL+IiN+AiD+fP8XQyhQtC0bE/xQR/+z6ZO2rEPFHsLwvRsR/DxG/AhH/MgD8fYj4iYj4OxDxLyDin0bEf46V/+h1n29HxD8JAO4TulXa/O8i4p9fj/3HEfFHsnr+bUT8pjXv9yLiR9fai4ifCwA/CwD+hTXk7L9AxP8IAH4oAPwXa9q/sJb9e9eniX8JEf8YsrC0VUnzeYj4+wDgrwDA34yIfzsi/u71yeP/hIg/nZX/AYj4ZYj4nYj4BwHghzmf96MQ8bsB4AIAfwwR/2f9+yDigoj/EiL+z4j4EUT87Yj4/Z36/iZE/O8Q8bsQ8XcDwCdUvutPQMQvXz/vtyHi71mPVXw/7CnYP4WIfwYA/pu1jn8SEb9u/W3/K0T8VFZ/QMSfi4j/3zX/N6zEHJ2f//Z6fv5pRPwFdH4i4udBHGx//nr8z2fN/olWfRMTExMTE0+Atzp2+6r17R9b79v/xzX9n0HEr1/HGF+GiJ/olUfEj1/HJH9hPeaXI+Int75QRPynAOA3A8BnrnX9ClTKodrnNOr7xzGOMz+CiP9K49ifjYh/ch1zfQsi/hJE/D4A8P8CgE9c2/Pd6/F/OSL+Z4j4WxDxOwHgZyPi90XEfx8RP7zu/ysR8bLW/bMxjnP/rfX7+NOI+FPYsf+m9Tf+LkT8r9cxEZ0L9P3+pfX4n8n2M+ubmJgYQAhh/s2/N/UHAB8HAB8BgP8QAH4KAHy8yv+5APCnAOBTAOD7A8B/CwABAF7W/G8EgJ/Iyv9yAPgtbPufBICPBYCPAoBfCwB/lOV9MQB8BwD8OIjk7d8AAH8EAH4ZxKdwfzMAfAMA/KS1/K8BgN+ztuNTAOBPAMCHnM/1k9a6vh8AIAD8HQDwQ9a83wAAXwkAnwSRjPlfAsBHdbb3V6rj6M//Sev3+dnrZ/r71+0fuOZ/JQD8GQD4ERDVkN8XAL4ZAH7Ouv2jAeAvAsCPWMv/NohPJb8PAPxIAPgWAPi9ld8zAMDfYrUPAH4RAHw1AHzy+vl+IwD81jXv09Tv+t8DwL+zlvtfAcB38d9VHfNXA8AXAMC79e8nQFRkWd8PHedL1s/00QDwDwHA16+/0QsA/KsA8PvVZ/ry9bf8oQDwFwDgJ7Pz80+un+njAeC/Vp/jKwHgnza+I7O++Tf/5t/8m3/z79H/4I2O3dbyehzzv4E4LvrRa3v+bwDwVZXyPwAA/uG1XR8LAP8pAHwpyy/GBSzvZwMbYwHAZ1Fb189a+5zpOwSAvxMAvhvi+OmjII6nPuDfuTruhwHgJ6zvPx4AfrQ+vvqtvgfi2GmBOI76Uohjuu8DAH8jAPxBAPhn2Wf6HgD4ZyCOeX8eAHwr5HHafw/RUuF7QQwL/E72OT4N2HnTU9/8m3/zr/9vKpcm3hxCCN8J8WYSAOA3AcBfWJ8K/aC1yE8HgF8bQvjmEMK3QSQSRur/ohDCd4UQ/jrEG+LfhYjflxX5f4YQfl+IoWH/C4gkzL8RQvj/hRC+YW3Tz2Bt+bwQwreFEL4ZAH595dDfA3FQ8bdDvOF9XQjhw4i4QBw0/cIQwreE+MTv96/t62lvC/8YAHxFCOErQgjXEMLvBoA/DJFsInxxCOFrQ5Qx/2SIEuz/IITwQQjhawDgdwDAT1ufOv3DAPDLQgh/OYTwJyAOJLfinwWAfyWE8CH2+X4aqlh6RPyhEJ8s/mshhL8eQvgqAPgvKvV+DwD8EAD41BDC94ToURAabfnl62f6q2u7fvX6G30AAL8KAH4UMvUSAPyaEMJfCiH8GYiD5B+1pv90APh162f6doiD2B549U1MTExMTDw03vDYzcLPAoAvCiF8zdqeXwpRXfRpTts/EkL4HSGEvxJC+C4A+DwA+F8PHtPCj4H65+T4aQDw5SGEr1rb/K8BQM0C4XsA4O9ExI8LIXz7Ohas4b8PIXzp+v1/HESC8Ret46o/DwD/rmrXN4UQflOI4Yv/IcQx2w9i471ftn6m3wsAX9b6Irz6OvabmJhgmOTSxJvEOqn/2SGET4aojvlEiE+qYH3/zaz4N/XWu8qyfw3GMKzvhPikDECGWPG6PxWi/Pcv0R8A/MuQb1jdbQkh/DcA8PkQVUp/DhG/EKNHwScAwPcGgP95Y3tb+FQA+EfUZ/jxEG+8BP2ZP0OV/1kA8IMB4AdCVPJs+v6dtv1OdpyvA4BXKAcEnwgA3x6k50DtuP9XiMqj34VRfv8vdbRFfwe/jrXr2yCqzT6Jlfmz7P1fAYCPYW3ldfH3NXj1TUxMTExMPDze4tjNwSfyfUII3w1RtfVJVmFE/BsQ8TeuIWnfCTG06/tRmNgOtD6nbnP6zOt46iOVuv9hiA8hvwmjJcFnVsoClN//OwD4MGvXb4SoYCKkMU8I4a+sbz9mbee3sTRdtwevvomJiQFMcmnizSOE8KcgSp5/5Jr0YYgyZsIPVbv8ZYjSY8IPZu//UQD4HAD4iRDDvz5tTef+Nlzh8s0A8KdDCN+P/X1sCIFUP6226M/y60MIfw/EELS/FQD+eYjS6r8GtndRq72WGkenfTMA/EfqM3yfEMKvcfb5ZgD471T5jwkh/DyI4VofjHzmBr4ZAH6KOtb3DiF8iyr3YQD4+DXev3nc9enmLw4h/M0A8A8CwP8FEf+3lO3tptr1z6p2fXQI4fd3fKYPQwyJI3yKym8pqCYmJiYmJp4ab2nsZuBbIRIosRFxbPIDINoEWPjFAPC3AcBnhBA+DmJomm7/FrQ+J4f4zIj4N6xtNhFC+EMhhM+BSAh9KUQ7BID+MdRfB4BPYO36uBDCj3D21e38/mv7CPy3mmOoiYkTMcmliTcHjGbSv5jMDhHxUwDgZ0L05gGIN7h/DhE/GRE/HgC0KuWPAsDPQMR3iPjpEKXAhI+FeMP7CMRBzK9qNOcPAsB3IuK/iNEA8oKIPxLz0rq/HQB+KUazxk8GgP9z5XP9GET8DER8B3EQ9dcA4HWVEH8RAPw7qzHiBRE/ExE/qqO9fw5ijH0t7bcAwD+IiD9prft7YzSE9MwkvxwA/laMxo/v1r8fg4h/xyo3/s8B4JevT+L+TgD4P1W+vxa+AAA+j8LNEPEHIuLn6EIhhG+CGMr3KxDxeyHij4dIGplAxJ+KiH8LIiLEWP3X9Q/A/s6sdv1SzObp3xcR/5HOz/TbAeAXIuInIeL3A4B/UeX3HH9iYmJiYuJp8FbHbiv0ffs/BoCfg4g/ah2r/SoA+AMhhG90yn8sAPxViCbU3x8A/vXG8XrR+pwc/xkA/FRE/PGI+L0A4N8AZx65jrN+FiJ+3xDC90AeR9Fn+wFYsWcIIXwYAH4XAPzbiPhxGBdU+WGI2AwFZOO9X7624zNBjvf+AsRwvjmOmpg4AZNcmniL+C4A+AwA+AMYV/34aohmi794zf9NAPBfAcAfA4CvgUh2cPxrEFVA3w4AvwLiIIDwJRClzN8C0XT5q6GClUz5ByH63/xpiCqj3wzxyRms9X/Tmve7AOA/qlT3cWvbv33d5yMQDQsBAH4JAPyPAPCHIIZg/ZsQ+3ervf8+xJj4v4SIX7qm/WoA+FfXtF+y+gl8DkSp9F+A+ETpnwfn+rH6AfwDEGPjvxWi1PjfhGgACQDwCyBKjf8sxKeS/0HlM7fw6yDG0v8uRPyu9fN9hlP2H13zvg3iwOxLKvX+cIhG2t8N0Rjy/x5C+Mo1T3w/1s4hhN8J8TP/tlXC/icg+gf04DdBPBf+OAD8DwDwFRDVXjQw+3UQfaW+HRFHfR4mJiYmJiYeEW917AYQPZ7+w3Xc8NNDCP/vtb2/A6LS5oeB9BMS5SGGBn702o6vBoD/snG8LnR8Tl72awHg50P8Xj8M8Xv+kC7H8I8DwDeuY6CfC9G/kxRpvxUAvmH9fJ/o7P9PQDTk/pPrsf4zkHYMNfwsAPhMiOPkXwkA/wlEcpFC3j4PAH7fevy/t7POiYmJDpCr/sTEewuMBop/GgDehWi+PDHxMMC4HO4XhBA+tVl4YmJiYmLiPcAcu030AhH/EwD4UyGEoxRfExMTDqZyaWJiYuKBsErTPxsRXxDxkyCqrH7nvds1MTExMTExMfHoWK0YftgaTveTIarvv/TOzZqYeC+wm1xCxE9BxP8WEb8OEb8WEX+hUQYR8dcj4tcj4h9HxB+997gTExMTbxQIUXL/7RDD4r4OAH7ZXVs0MXFnIOI3IuL/iIh/FBH/8L3bMzExMTHxsPjBAPCVEK0Nfj0A/LwQwv9w1xZNTDwpRsdfu8PiEPGHAMAPCSF8DSJ+LAD8EQD4h0IIf5KV+WyIZnefDTGe+teFEDxflImJiYmJiYmJBET8RgD49BDCX7x3WyYmJiYmJiYm3geMjr92K5dCCB8OIXzN+v67ID5l/yRV7HMA4EtCxFcDwPdbSamJiYmJiYmJiYmJiYmJiYmJiSfGoZ5Lq7ne3w0Af0BlfRLEFaYIH4KSgJqYmJiYmJiYsBAgrgr5RxDxc+/dmImJiYmJiYmJ9wBD46+Xo46KiB8DcUnNXxRC+E6dbexixuOtjaaG/z1HtW/i1rB+8mfGW/k8b2l1yJHf5Ijfb1sdCFu/9b2/VWv/rfU/yzm05zfv2Xdr/eV+bk14n+tOCK8Qwms6+E/6ST82fOQj33Ha8f7IH/n/fC0A/DWW9IUhhC9UxX5cCOFbEfFvBIDfjYh/KoTwVac16j0EH38t8O7v+ejLx685gf2vt+X1wEqLKePXDSx6BrL/dSmdV6aWtenSrSMZBZ39e+B+I8HL975dL82rwSvR9zuX26F4J48UnHOFbRcWHf7ZNQbrN1a/FvIcnmedIWWav49Xh3lmNVLaORJH3qfHWlP2W1DfkPofvTLreyM/ptvfZ1nOauM5MPth8MuknmNY1OQ8I40lWL2vPI7VM8s9eq4HPVvb0OoVMrX3XV8JXravPzaPpS8zzvGsvI988OG/GEL4gbT9AGOwofHXIeQSIr6DSCz9P0II/7lR5EMA8Cls+5MB4FututYP84VrvQHgckQTD8JbIRhugfMXIrQuAP07j7Zv3+fB4ePVEcJ1454D+20+xoGofm92nv1dl2neb4Leb73hN6S6wsj3TnC+f6su+3y4dud7x7MnhN5nuQfpVLsGGL+5Vb7jfCnPlb7zqTiXBs+51nXDPVc31MXx17/nz4rtj3zkO+AP/MHf2L3/KF4uf99fCyF8eq1MCOFb19c/j4i/EwB+LABMculA8PHXx7z8oPCjPuZnwhUCXNc+T6+v+Jq2A7yKvCte0zXquubx/HQs4zqiz+eFbS9wSflLWGCBBXAdH9IWAMAlvIg0XF/pDwDgQvUAAiKu5QAWzGUQQbyn8gtNdNWMdcsdnn8DfHJ5DZS/Tu4a29eQr9S5TMj5aZIo065rSt7Ov3PAKysrf2f6ja/Az4O4rX/7AFcIQealukKul+5RqUyQ5xUvMwJ+3aPzCTGeN5i211e4wMLex3PnksrQdjoPUxlWDhZYwpKOh3BJx10AAVmebtcCfLpqn1GLdQ8zcD3wfqyPybdTH2H9K/cb1ucw51HfotcFqeza73CtD+Md/mWhOiC9xnLUb0HtC6L8sqbHduY0/p6j9Q3zb/YaZDptB5Z/DTLvlcoEgA9SWkh5gZW7hiD2l+Vi3hUCBJb3QepLAK/r+w9S3wup71P/5/2c+hv1f9H/jGt9zts/Xyiu/8Hou+yan/PW8229L/D8fH7m7eI8Zdv83JVl1mOp81iUUdv6XkEt5reOfF7Ks+5L/tyv+Ca+fe8x2Oj464jV4hAA/n0A+LoQwr/jFPsyAPgn1lXj/l4A+I4Qwof3Hvu2mMRSP84nlnbhYKKnebgTjre9zoH9bvw9HYG93/URxFKexizVtHPRutG3BwLvJ7G0FPseRiw52EIs9Z5LiEv624UAANfreX/Nz4HfZ10wBBDx+wDAPwAAf2Lfh5rYgoD7JxGjWDofMmIoJxxFGeCTAzTLWUqH2qT+nnfKq6V4MFUQJbGU6hDvr+I35pNLTiyJ8s59gYglu93WwwyfWLo1xP3buH62zklOfsZt+/zpIZY0OdqDRYw6ts1frH35xFxPzjl430K2Lydt9UQeIE+2ifzRpJDum3kCb6eLNkEmmjwlyug3ZR2nBq5G0mc377aatIqvoSy3EkslkWyllcRSruea+j4nlnMbfGKphiu8pr8aeoglC5xYatVtXuvVuQhQJ5bovD+LWOJEqMAdx2Bbxl9HKJd+HAD84wDwPyLiH13T/mUA+KEAACGELwCAr4C4UtzXA8BfAYCfc8BxJx4Sz0dInIkziCVe93YF0xPgsO+uX7W0F7cjjyZ8dP4GHedAz3miy5jnwIBiqUUq9eDM686d8IMA4HeuA7UXAPiPQwj/5X2bNPGWsFiMEkgFk7mfk86rG1mU+dpZ1lKmWIRRnETaRJKnWijLvRZEz1WlSZXaq5q45rxgvO8Zx+wd69QmqABZEaHf57SsTpJp8iHSEhb3WFq11CKWtpJCFnRdnrKpfq63J+dE2uZ8e980GU+T8pxWBhbKfbhqifalujghRWk1AmiUHKL29HRTUi214BW5GmrGkF79ioWyihFL5jGUOsmur04seeSyJpSu8Nr1oMAjlrRqSRNLut+NnsvV8hWLghaxZNfXl/YgGB5/7SaXQgi/Fxpkb4i94OfvPdbEo+N2E5pdIXHD2Pa5bjHB20YwLdCjXIkHWB4jPO4JMKJUOUJCfCiCHizcQ4k0grH+f9z1oqVq6scoEdmrVDoHoUthdBZCCN8AAH/X3Row8TBYKk+ozfJi4u6pmer7pbSOSUPML7dHCCYAf/Jv1SO8VYJNJOn3WrVgt+EqyCCtWirbcS0mlDwv1VNRLT0r/DC2RZxLmljy6vCVTvVzrzccbpS4skLheuusTcw1pIMaC0NiJFRfPXKy3mrBmTOK0dEUJ6Rq5JTOK/p4kMolrlrqakeXwr0s01IpnQ1N+MY0Q6HUqVpadJoik9rtobrXbXFe9p559xuDbRl/HWbo/bbxuHTiY+CJnpLfyGvplsoBOtYYyTRAMN0Dze/vhFBDr84e9coGoqA5mN5M7J31uz5SSJyHraqlHgVRm1jq8VjaGgZXwxtUKk28IfRMUprn+MA1Nvtz2OEQvZNj0wiYh/AUed1N7Ib2V+LvLa8l/b4WDsfBw+G0moHC4fI2Vx9VCKVwBU+1xMvI7XaZXpjXaMNvKSki2HuAGPpmKVO1+sJSY3CvJQA/bEd7wvA0/b4HVvmt/ks1dQc6beSTcz4xj3kyNM7yWgIoX/NxKN32WjL3QU5UyfepXfozGl95S4HU8w3zkDgvLb2yY0bPpcC82KSSiULjYlnZEh0al497VdeM0mctlvNDVG9JLFleSxYsNaAmlmp5/L3V8/aGw1nE0ggJ+iyY5NLExEQdU71UxdOHwr3x37Z4MnRQOFx5nOOJpXuolWJ91uj6bZ8nE8+Lngl47yT9rAUat6iXNPbur9EKibHIoLyvVDHp95wQMhehuLO6YQRm+LKRVguJs9Ailo4C1bnX5LtGNrUIsdF+xb2WIgnVrgfV6yOhJzyu5w57Fe8VkRRsIqle37V6DSjKn+C5t2UMXT4wGH3Au5+01Xm9ytbNeKIx2CSXJjbifhPq24bEjeNeKoJxBdOzhseNTND7PG22qpaegVgqz4dHUkONotb3rd+151rRUiS1z6EuEuhgYmnrdWaqnCaeAfkJdNs4eaxeeuKcV4nzyog0R0UR6+o79laCyfRXcoy8R72WYp70WtKqJblf6b+Uy76aRJJsd68R8Pn3nNq10FInWasZUjkerqmNvLknjLeKFU/T72tpGjViYY+xN4fuNZYxNxr52tCbylsrxAGU4XTZk6meFveVfdbzsxHtrHw9C/b7oXHVkYalPtLeSoGlBSiNvHXoKzf0zkqowNKkcjGv6Mj6tkEajawOd4ZiqemT1vAwo5VCeVq85htpG8LhWtd9T7WkDbzT56lX91SY5NLExIF4vonbA4bHPcp3eHI7jvJeOtrUfcxv6ZFC4jrQIguPMPA+WbG0SVV1xGpxR8smJt4czniqbWGUUOqr0x7an6Ek0aiZ8/aA+6vQtlvOuefoFaJ6vZZqhJIOibumJdKlkffWVeICXA97wLMgJ4fGHiqZKiZYhs6dI4glq9xetZKGFw5ntsVZjTHmUR3+vlROrrCV03OYXH5FKCfsesU5vQ1qn3vAOuOFMXfFX6nYL/B+bKuZagsCcK+13nC4o2B56mmD/Z6+YPfJvn5Vf4S5Pxwu1TVCLD3ZGGySSxODeJCJ/4SL01aReyj10v1xxKD2Ic29nxLHqJZa+Ucplrb6K42QRM9HdE9MbId+ij3k0WQ8ghZLplfCHc6KgOhB14pVDZ8l7rWU680Ty16vJZHHvJZa97et9789982Rc6NUK/lKukgn2fmcENWqpRqxtJfc5PuPEk01xZJWhCAjknSLRV8SdayvziRbqp/GwBVQOr2ou/MrHlEv9YKrlizuQB8vGOW1aonStN8SkcuW1xLfNttZeXBwKwPvnocKvQTSKIFbu857xJJZT4PMujfJeRQmuTTRgceZpOwKiTvZzPuRJnNjIXLPGh6XcUpIXO14D9QnxnDkb3frpyhe3+8gljrOj1ED762KpTPVSm91tbiJiR54kw9rYrvvOLeBMP5lE8mro1LiE8qgSCU9sdSTyJ5wOErX/kqcSLLGHFuNvK1yveDXwkQ4Yj3EElXoG9WRQt9EuFsMicsEUXk8gEh68rCdHmLJO097xr815fHW898Lg7PC4VIZCjvlxBFXGLGQODqGViBRfiahpGoph9NJ9ZL9GWzsnczXVnbLIW4y/8ryAEqD72sIRb0x9E1u8309vyXP0Ft7LdlKpvPD4URYaDD6rDLyTuecExLHYZt0o3n+amKUq+6scDj94MH8bOqc9MLhamkZzzUGe9YZ0sTNME+R9wPP8js/SzufBF0D90e4oZ37OKfHZ2m4zjdDLE1MPC9sc2Fn8o52eVmfLH8kroxAMvM7CX1NMPSsEGfm7wxz3GvkfYoCWwHhIkLi/HLj3l7eCnFe+frx+042BOwuuwXtdvpKwK76PXLIUBxZx9Z1WCvEdWmaN36FXg9t9dwe1ZJOqxFJ2nOtB3qFuKKNN/BZ2oIer6WY3ncvsM7fXN5LPykc7kkxlUsTBh5zknJbI+/nVS1xnKJgOku9dLbH0QFG3o+mWLqv39IjYEs4XEuxBNV88xzoKDOqmhtt1+l4oqdmE88Fyyi5ByNKJVd90TkR1pMQq4yeSOwJodEhL0W+KFuGvulwuABSleSpFoIy7Nb7ZTNg6bUky+W8FGIXso+L9lqS7W5fZ1ohcTXVEqbtWgjbpfogQJ93pLhAuFTOSV+15CmW9ox5rX1H7u/W/qYShJkeY6PssqqTolKkVC1x1Uh8XfMVKaRVSzwP2LY1sbcIKHDSzgiD0yQS39YKJ4D4m2kjbx3ydg35l7X827KakXqwNPK2vNYs1ZKs8zxiSauWNLRqSeQ1FEy1NOv81aolUUc6P9vEUjIRd4ilLjLzicZgk1yaUHisyfNheFDy52nxQOFxvSFx/RU+87miQw32/kaP8BvvJJVPDofdSixVq3zqc3Bi4nx4E48WJOHE6nMuM3vCZs6YnHJoI++e8v5Kb5n8AYDCa+mqyCMLt1AaneVRWCOavHSExTQglsSKJKM8Yqlsj53ule9RtVGdLZKpl1hqtalLCdjod1ZIXK2OVn2jeT2wvs2Rfs/PaL5KnFfGbYcRGseJJVlfn9fSI6F2Lm0xvLeIUf6wwVsd7uhFHuT5+za0TJNcmoA3SyjdCMdNBGv17Lvwn2LyfXOCaZ6nZ5p/P98qcZrUsR5Tjvko1fJvoVh6OLUSIcBTPTWbeB48mhqUQCoLgPLJdFH2wPmARRJIdYN/paZQGMtrqagTrylfey0RsaRNu2teS3n/kni6NsYJnt/SrRFVSRexbb1qWEbe3GsplumfGI+syFYr5xFOo4qommIp17nmGyvEcZKJVEuxbH4lpdGCuXV6nq2VTDxN5Kt21cLhWn33SII4MGUSeSsRrGMECKWPk1AyUbnSW4lfB2S4nN8XPdXSWeFwnt+ShlD9VbyWOHFb+CoZafp9LW3r6nCWz5KnWKoSS082Bpvk0nuNxxzUWbhtSNwt0fsb8HLbDS7bBBMd58YXsSdQajzqJMhD87feTAzekljy+v0BnkjDxJOuoE4sHRkGt4dUGlV4jHiiTExsxZErZY5421gYfRI98nD5bPUSQBkCZ6XpFaI0tobDpfKh3Ldm5J3KBL7i3LUodwZ6rqe1VeJ8NdNSnEutya88Zp8iqBd7Voqzjt+aiFuqD48IQmPyzcH354QTJ6YSCaXq1vk6fRSjfbgw42Zp+qzm24G9Sm+lNfTVMvg3zP2D0+9zmgyJtYz8zwiHq620mMvIkLhaiLT2WtLvCS2vJYsY5WSSp1ja6rNUS3srmOTSe4vnmSjfnlh69O+m0xvpFqBB2oOEyI2gR4lSLXtgO85UJGU832+0C0Mm3XViqLUy3J7z4wy10taQIdq3vOI+10olE+egZv58C9SebhdlO59I6/zRqIRbTRBqq8T111F6LdWUDD0TSU+1xL2W+HatbaNoXXe7li43vJdq19w8+Y0hcabvS9DE1FhImXeets7f2jkxQjS12uSplmr79PYToero20UcwzvMUUTTCHp7qOW7pN+bZStHqJHLAL7XUnG8jnDYmBfL9frl9aqWLPQew94XRThcSreMvb1+iGUfsGCSWl67mvU91xhskkvvFR6dNDkJJ6pitisK9rZpm5KpPzzuhgRW13e4LYxotNx7g6dYJa5ftVTcxCvE0qhiaZRYOiIMbuR83UMkdePJJNkTx+MMT44tpGxhptyYrEc/Db9M7+ReP50G6J+cblUv8RAYC9rIm0JhtJH3yMTyilfQqqX8PquWhGm3oVoSx+sw8pafq32ujVxTtZl3fC9XibONgFdfpYaKwjLy9ryWYl4ZsqPzvO0adFmPfBhVRHk+NQB11Yfenxt5RyIoG3lTSBzQe1avp1qyVoIDI90ro0FJvV11tE/TWU0hcbxv6zC5lB6yakmvBpf2Y95rZlht6rPxn+e1tOUar/e5wnUz+dNr5C33ofNQrhCn+5ZWC+rzV6RZKiPI56ZMB7GPDofrMfBeDBVVgScbg80Z18TERtyPWNqHU4iWrXWeQvqMS94nngUdxNIODBtv7zjXjuiHNyGWJibuhJ4wilzWVpG8RdgTSH9SGfepT0y411Lcll5LLRXTlnCZe3gt1VVJ9VXirPdyf6yGaI6SmkeExe2pQ+/fo9bg+/YYehf7OcUtv6XefVpAqEzqO2Gt9NYDizyOoXR2RUKNpHbWHksAfT6dWrVkeS2ZXmpO3Uc9iLDC3nQeQI+CcfzXrRFNGrVwuFSG1/2Gw+EIU7n0XuB5B1xvy2vprN9h3Cep339p4CYxGiK3c3Ldu0pc9yT+DiFxx6L2vTeeFHevTXIrv6Ud/V78ji1VUcXn6CTF0l610n0IpQD4hKGvE28DW6/BNSPiqHyoT/apvHmnOXhoYhn3Wu/NlamMspaJL1ctUJrltXRlxr7W5FQQT6E09g7w2h0ON4LWRJlfQ5MKwlAt9aC2ShwApJC47A3DzyX6Z6sqRJuNdNtQuO+Es1YP7FU0ecfWx7dUS7mcQZKxMCJSLVE6vVpG3vojZ58mWXfKp2NZn8shAKyyowomQjDek39SMMgnOpuvIRNFoo6gPJmYkfeVKZW4gjGIfi+vAbL/172WasTSkSrWVkicZ+TN86zyAKUi0FLdLToN5Xuex89jS8mqj9te2VBfC2p4rjHYJJfePJ5lYlziPsTS835fW0imvjpPuKC9wTA1ixw40pT0Nr5Mj4D+ft8Oh6vBJ4daE5GjiaUeTJXSxLNigeXQCUmrL4wSCZ4aovCWudGQxAuFkxPPMgTOUi7kvGtRTuSjTSTJ40siybq/ud4tlZC4USPvvQ98UKwIdymv52ICm/NrRt4jsEJ2+Ktoy+BJR+Utkkkff7ROvq8mlnr8yvi3hKqe8piQ8mWYXH7l+7r1VNpzr0fXOiQup8dXvUocD4nToXQcwej/9rXglouybEOPkbdMU0RSpU95qJ2/PasKAtjz1p4WvCUZBcAkl94wnnvyfhixdBKJMT5JvOXv0UcI9fsvDaKlYLrzd3e0kXdrla/N3/GNnlL4C1s/Ghq/xQ5j7Gp/3mDefaRi6WFIpSeK9594exg1fb01+JjljGuq5cci8rWvUqfXUi20xVshzvZVGrs+bAmJu7WKWJJM7L1zLmLImiVeR8sLxqxrJ5PJ968RTb11AIxP1BfATAZZZahe5rWEgkjqO56nEEGV7/nfHA0vRM4KmauV8XqU6MOKZOavtbBYS7lorRB3lGppEYSuRQ7V/ZZ4GQ6vf8n9bMLHIkYtBVMOybRVSxaxlNOgSAOQ57ZunUtkPdEYbJJLbxKPPQhr4X7E0tlha7fEkQTTRvXSIcTeGaFznfvuJJZ4mTNIvFqd+453z5A4r+9rgqd1jagpiwYUS4OhcEeRSg9DKE1MPDD2KDDs/L46y9AaHd6A3QRT2LACnCYLrFCYXOfVnFhaJt48HC6XfTXf0z1GGHs7K8Rp1RInls4wineNt3nYnFoljvyWME1y6w+cKCQuTYqNFeIsE29dRuftIXQA7HNI11kjm7w+IsON1jRr1S1DwaRD4sjIO9Yh60z1KHNvHU6XFE1iwp7TaziaWGr5LHlqoxTmBuSzVNZH5FEItpG3aIejXExEUscKcbcKh+PQxJL2WkK2KiPP6/FakmbypVrOVgvW6pRlaqFvhxJLT4ZJLr05TGLpbDzPymNHhrSdFB43cRAGfpsnitt+JBz51PwsYqn32jRMPtLod2LiDUCE01QmB2CUaxFLeyEmosGfQFbrsJRFhiqhtw7v/RYT77NQWyVOpJ1A3PcSQFy11BMCt8eIuHaejKqieoglTcxuNRJv3cHcx09ORovE2oKeO6FWL2nvpFZvpFXieuCtEKd9lXJ5Iw01AX0+sXSkGlV7LbXOP0sVV9un+WCi9xqwlVh6sjHYJJfeFJ6F9LDxDMTSOO79m7RJodPC405Er5l3X2Xj+w2vKnbX7/iI4z6OaqncTeczJdJAniCPTlIsHUUq7SW49f7P1v8n3i606sRfmcsOWcrKkvpEni+dDuA/ra71tNqYpaVe4j2uNWe4GsuMk4rB8lnJ+VmxwNN0KIwOn7HC4SzVEkevaqmGs65DCEuhWuJ52kspmXavfkvLWkarluJ7TqhkI+9WOFzeJysrdJr8DHXoU2jExNtDaT5uQ/cdbYC8sDKeaolC4kCUdbadNnHVEn9fm7QvyFdfKz9v61vTxt1CdeSU1WnXEFg9qh+HTDJnU3BSM0kjb+835kbe+bhlOJzXR/cSS1ZIXC+xZK2+qElM3s9MzyNF6LTC4VK9KPdvhcNZYZfvm2KJMMmlN4N7kxgTJR7lNzmKYHp+9VKv+uR5VogrUf0dgx5gPM+TEMIZJHTt9+4x7y72GSUfO4mls1ST7f4fniref2LifUKNOOidGF4r/kuEI7yW5DHHjLw91En7zns+EnFUvxbzSbFHcLagw+FqxFLv3Y7KeWdCj6LJKm+1wwqHS+WqRE5ZX7FiliKSsv9S+epNyF0SrGhPKLY1wXQ0uHea57dUUza1vNcAtLpQGvmfFdp2NOwwUtvLrKeOZWDkWFcwrWUqlVlZNf+wPmLpucZgk1x6E3jeiTDASYqlk/yW+id3j/abPCPBtM0A2SvXa+TdXCls4wT/ORRi92pfn2qpvTrcuGqp5bMksg5WLPWQSrcKw6XjPP45OjExjtqKXF6IUs1f42yltZ5D8k1foRBEOIw1sax5Lcm6pGop+yVt91qKaeeG0iX/FiMkjqNnlTiqL72vGHnnsqXXkqWiaxFLW88uvV9L0TRapxUOR9t8/sxVS7St0TLy1vvUQt9GP5Umlnj6XoJJ13yF0qibq5BEWWeVuLhf9lsKTM3IVUv8dYvX0q18lgiW3xL3Wsppda8lT83EvZZq5WNZqbqj/WMZG5ZqKdXbQX4WYdZvRME0yaWJu+G0wdnTeCLdGs+vPPJx2wn4vfF+EABHEsQ10omhQh4dSSw9EqlkH1ddmwM81VOzieeEVIKMeePwSUlOe+yRuuepUlOXtCaVRXk1sYxlr4bHytWcYHrEk9s+RSzJth9v5C3C3VoPhuAiQuKsOmK5RbyW7y+ZSGITYA69clUtXKdGKvWumAZgq1paiqYaettSTOydCTOFxOnwNbPONLm3SSYr5E2vEOetDucRSyPgBtwWUpibIIuc/h6oPurLpdE/N//m6WBs18Lj+PuzwuFcQ/1G/7T2a/Vpj7x1y3Njb0YmaWI0pkliqRUO55FGXjjcUCjck43BJrn09HiMye5z47G+w55J5WneBA+jXnqs3+T9wD1XiWujrVpiWb3qtoFwuFrekWqlRyEwJya2+LTcGi1PjhFYE+N7oycMxlI3lGWk1xIAmf7aRJEZAtfhtdRTz9loqZY4tpCYPWn2vplMsgyC9xBLvHyNZALou6PX2mJNyI9SXMjjlO1BI62Fo4kljeC8t7zUvJXjrPyCPGLEsvZayttEEF9dryUPklRu9+ej7CN6bQE8dZJbr1ohbrQ/mW1QxFKtDIBPLFl4K6olgEkuPTmebxLyzKbdZ4bEbTGIJowRTc8YHjeOru9zMCTuOSf9/m/U57d09uTy7HA4nwTqNfBuKZaK/A2k0lOcW++FWm7ikcGNlLftT0+a7VAkgjXx3xIS1zL15rBIIb3seHCMvQnexFJPFC0T7/x+fzhc+7OqCe+JRt4A8fqKwlQ4G3bzsty0O5t3SyNv/lq+z0berXA4vk8sw9IGV7LS5w7fv0U09aBGLFmmyDE/G3lHRRGf5Mc6E2GEkMqmMkZ7uSpJfx6tYLI/x3njGW7mbXkpCQJKlQ2wkkTJcykI/yW+amSNSOb9XxxfeS21FElWvue3toVgWhy1Hwcqb7PcT2yvJd3HtIl3rstWLVnhcFqxZH6WigKvV7HUTSo90RhskksTbwt3n6Td/vjjXj5HEUNnEUyPR/A8xeS/hSe6MY2hU6V0gJppe53nEEu1fd+P0MmJidvizAdkfBI5vK8b2tJXX03FNNyWRkjcLeGT/f61k/stpTSlkOMhcbTd3yZJNNWIpZ56F0D3d66pmZr1bmkL2uQs5bXSSsWUv68uf49H182VHtl7/RO0fhMvW4fM2cR0XiEy7af81mKa7bUkjrdjnD+uDOREZntspFeI885RQfQ0FHet81ffAzaHur1hTHKpCwHuc9mq4TkmuzdVKm2apB07MR3FUfWOm/HWiaHnMJ8mtL/DHtNmb7B55G9/zvfqrbizV7V0L4yolmqqIVt9VDsXbqlYGjmvtpyDep99591zrVQycR8sYSm8fFIeLIf57IyszBXL20oQ4bPhjFV6nirThKI10RxBzbQbQC49rk18vYkl91mhyST3WorlbNUSle818RZlK8TS1uuSvr7pc8I0/VUKJqrHM/Iujulcy7MpcVYt5X1sRYUmllpquhb0PjU1E4BPbLRUUz1Lt8ftrFqK9VrH0mW1esTfR6uVtKpJm3xr1RLP6+22LZ8lXdZMV/UEUKqnVE6GwF1DMI28gZUvlExMuRhYf68RS4Wq8KBrdlL/KdVSzcibl+N1xHTZz0rVHFfKlapB857QpVBCt2w+92zFkrVffyjcc43BJrn0lJjE0lvAGYTVkeTFWwiPe1o8DbG3BxuuD90+S51960Riaa9a6ejrw67V4GgEPDFxA4w+7bbrKCcUY/uz9x2TjltgRNXEvVZ0uJo1YfRMvGvXC89nyTtGrPvce1uP35K92lS5ehyVtVRL+b0Mo+NlPEXFKLHUmoBaPBHV01I03QLie8AyJM7cxyCRvBCk1qpyNWKJto+6u/HbJDfh7lGO5RXk1tcGwUzvLcP+LdhCLNVC43qv4yM+ZrXrec+13jLx5sSoZ+Lt1tc8ImtfB7HkjvqebAw2yaWJw3EXUukhwpbOVSKM1t1HDAHsVzAdGWbnozsEqWNVr2KfByds5VLOfeokWUGrnJV/jxtZQ7VUKeuhx2dpj3n3CLF0D1LJqv95VIkTEz5GzLxp0mDltia4HqxJ7RHjf236W3qrlL4rrRWiSLGgvZYs1ZJ+r9NKsuq2K8RpJIJnJZa411Lc7lslLqWTyoJdx7XfEga5PHouV4aSWcuit4ilEe6Hl9UcBq9zNORSfxavTZbXkoWej+R5J3nKpB6vpdE2tKC9la6MROKvPA8gjrLk6nHl9UKvIBn9mUK6DljKxbgt/ZZolUjPa6kVDrdVsTSqKu2pi7zMcrqtDATI1/mYJ1VLNpljKfWornXbUS1JZRy92qqlXcTSE2KSS0+Hxz39nk+pdGRI3GMQS/o4t5tE3kvBtOG7PDkc6flwj9/NulZsC4crf6OOcLgNiqWeFeG2kEr3OMfGVUzPJcmeeD7YYUg5lKI2aTlqQlPzi4ntkQoMr44RH5a47RBDbKKpzbxbK0TxiWVp8PuqJp1StTQSDmehd2J6REhc67f3Q9ku5nuLWNLH8ryWRPhbY9ILYIfr9BA4BOu86SWavP1byilL9QFQ9h3LyDuWK1VLFBKXyhQtoH2dDJanJ/5ctVSbobTUSwUJ1MqvVKaVTAHC6re2Ek7rtq6DXwP4dcAiluTxcn/nBLMXDnf0Co+tkLiYtp4n6lrvrRDXUgYKYsc5p61z9wxiyTq2RvsO9lxjsPdh5nQQnkeOdmug6uS3b8A8jT0cQYyduUpeL7aqlm5xzLeJt3W9q60M17WPlX/AOfl+n2MTbx1HhLf5dXeEQDzBA6+zIx16V3DbauitVUtHT0yPBBqhb3x1OJNQcojNBfxJsAcxATZmmJ6ywjUpBqzmN5V3bP+epd3dehqqDMt3ifstyTaV++hWtUzAR4mlFrb20eSfFByyqKuOrFpqlYuvpd9a+xjnEUstCE8lQ4k6Aq4M9I+nvPY6CMtqfUaZ1vlatuntYSqXJjbhYQZtmydn7w9ZcURoW78KaouC6dzf8Nmx7Skwex/0U6x7E0dnqZbqKiNdz1bFUm8Y3DOQSkMKpid6ajbxmDjS1NtCVp04k+3UjrpS5B69M/mzpFAbawWoUr3khcMAlKtDcQLJMu7m6VtNvPPnkURV4edykJF3Ti+NugnayJtIJN8rZinys/GwQQqx846rlmrhcPlYZbjOkYbeuu7eReNqbdKqpZgmv01SLVUNvVNZXEOYZP2WOiSpntIxyjLFZ7GTD4H+OrU1jqVwuobAQunCqlbKyiRaNbL0UgrAjbyp/3vEEjfyBvBVS7mt431y1FKiplrS5XKfWUQZrQy0zbllHlcq+ceEVJbDUy1JstQhgFny7nvNE43BJrn0VHiQCcnTE0tH41Ha4eP9CJEr8Rb8lt57bDHq5ruf/PuOEEtHrPrmYfooTTwrjghr26q6eCTYS4qHwodFl9WTy+K9CpOxCD7PxPuIcLizTbw5eq/3Xsi0Z9Ad81CU4eX6lHRrPUY4nFfHFjNvqqsWNlcjmWrHtMLhRsBJpFHcuoePrgyn/ZV69xNpmlAKwbwGeCbeOiSO8rxVPM/zQdumWtWKQM9rScMKO8159WPWQqHTsQ3CM+fZx34fFUuESS5NdONhSCWAByKW+vAISoU2wXSUeqldlyx3Q3SafXcZLzv7PnJYQKlaurWR9wbVkldTh2pp1GepZt7do1jaSyrtuU7wfQ8nmgIAPtFTs4n7AmG52XVwKzFVPMl2Ljvac6NW9ihk5ZGVVjfu9tJJtaS9ljwT71aIXE211MLRXku9Rt5W6NuSFEkXRhStaYH0ExfQfktcWdHyWrLC4TzvIp7Wg5oyqWbm3XuMnnZZXksin+rCsi5U6iO9Shy9WubeqY0IhqokmGX3wlMlWb2SVErcTymwVyoTQ+aymok8lyz1IjfyLoz+UZLLQfX3nPeayuR664QzwDbCSPstyfpkSFzdV0/2MZ6OyPPKfXI5VRcCWF5Lns+SaE9S5PURS6US0IbbL59sDDbJpafB/ciJhyKVAA4glo6c6HWQEDvbeySJcXuCiaD36f9Obu23tIdYuhc2rSB3c2wglnaEw+0hllqhcEeqlc4gnkcNu+cKchP3QoscsiYlo+h5Mt2LI4mlUS+XYEwq7dAZFSqnQ9KUv5JWLW0Jh5Mrmh6/QtwZFgWjk2VUhsTxva9Cqq1cFdsB5raux8OIMml01bjaSnGWamlRZSgkrlBroSSW0v7Iw+Qq7cL86qmgasSSLj/SB63V4DSILOqrzyCPDF+msKqXtJE3vZKRf2qD6nOkWvJ81XqIpSPRComj9JoqUHuEaQLXC4fLZYx2tRROtX0rde8mlp4Qk1yaqOJ9JZYeAU1D4TV/lGTaSzBtw+2/9+L7O4p86vhdbvPU/o2TAYO/V02BZKX3lNflYtk+YukepJJ1jGMIpoER88QEwwIXMVE523fpKJw90LdC3UbQWiUqEUIoPVY8pVKAq+2d5BBLsoxNLN0C2msppYsV4HwjbwBJMnHVEu1rG3rbk1+TZFLbsd12ea+eVhlPmWSdZrTfntXisj9SRzuVqijWQ3nO52ckUs23SbSzsx0j8MgnKxTO2y/6KdmkFFc1yTTfHVOvEmnnyX6oy/pKR7//XuG1SsguIElbb5U4/b5m5G15LXngBG6tPn3ucmK0tTpcj8+SaNNhxNJzjcEmuTTh4qGIpRuHld1LtbRFEaP36SE29igVbqly8L+/+5CE3X4OJxFMw997tfytQ+I0RsLh2qqlXM85iqUjSKV7hMeOqpgmJs5GPfzBn7x4E327rFSJ5Emx/RTcbIuaaJyFICaiMiSOqxZ4fi4viSVu4ut5LfFwOB0aZ5FQdpvHTby9/VrQ103rHOAhccl8Wxl5W3XJ1eIWkaYVSnnyXJJJVqhOTU0h9m0RTUayJjV6DL1raiYLvUbj4o6MWbVE2wCeiihP4GmCz9VOfB+epr8PqZAyCLOziWLIoW78O9bbAGuYHFDInMqrmHiTkTcnlrhqyTLy115LOhyuJJzOJ4atcRQAAPdasghaj8CtrRDHVUtawaTD4WQbbWJJtMkIh5uKpYxJLk0UeChSCeBAYumxVUuPFWp1ZHjc+dhklGwNUB/AG+ttYs81ZSwczj56f9nuOp+AWDoUTxTvPzHxvkN7K7XQY+LdCofzjm8d4wy0rrFaUbFnzKVXsPLLqYmoQyxZ6F0mvTe0C/EY8YOlWqp5Lek2HHEnbH3zt5jFjIa12itAZgI5p4Vk5D3cppNVoS310giqBt2Ns8QKO5V5rK7Ok6FpwN0Ih6vu66QPEUtPNAab5NIQAtzmknU/PBSxdOhkrL+uW3r3pLIHEku94XJtRcN9CaY9qqWjibpHIP72qpZ8kXUucQ7M5z6qBB8JjKkGe3yWWmVHFEsjpNKZysXjw2EfjzSeeH9R6wvWql06b9Mx8dwrvTWx54okyqdJqKViSGXBX4JcHJOFzlleSzwcTngv7fBZOgrW9bNm5O3WA20j72Utg7AURt4LoOm3lOvK6jiuWtITXv3eUixtUdlYRJMXMrdFJWG1zwopstoTt7FI58bdHFq15CmZKG/U/0ZjwT6SiPstiZA34/01lQspJI6H0UWVUyiuB8GIfCLiSRt5877PVYupLatqiSsUeZkR8/4eNL3zhAowE7PayFuHmwq10bpdhsqt77VaEKSJ9xHhcD0G3r197C0qlgiTXJpIeLvE0hk4iIA6cSh7TGhWnWB6GnSsEne0suRc7yWv3t7jPctvuk2d5IXD9WCYENq7QtzGa8AWz7XN5FGAp3pqNvGcOOqJeK7v2DHNEeE1590RckiMnkBqNYNn7Mv3GcFZ4XA1eF5LhOWEMWQZNpcns35Im20u3EMstfyMLN8uqoOTHjWPpRZGiS89j7CIpVyWjiGVT5bHUm21uFwmqO12e3tgkU+hkd8LWiVOhMauoXPW72t5rVF6bJe9Qtyt4PktxbRt1/eW15JGsRKosW/t6lDzWUrHMMqbdVXaOIQnG4NNcukpcD7R8jDE0imk0tF1dihnHoQc65mAPqL/0qN8fwB3UC11hByI4h3ff1u1dBb2qJY2hsM11EmFsSva9W1VLN16tcGtxv4TE6PAsAjT6GrZU8l1iV4SiSa6lkExxyM8UdYqBWuluLhtrxJlGXlrfyWtWuoNh6v9rmf5LAHY6gjutRS3L4lY0kbe0Y8pq5jyK1NOMCPvmIdCXWGRSdzfi3vAWOFwHqTyoe8E1OU4GbGXZCp8b4z2aeUHiu/EnnRnIsknnartMoineCx/hbijUCORKIvMuXkIHPkxJV8mCGZdnucSqZZk6Fz2WrNMvHu9lm7hs+QZeesymhAa8VoiEre54psVoqpUS+7n2GDgvbXMs2OSS8N4e6FxdyeWTiUSzlUt7MEtSYvWQL9OEj2S/9KGyXzPZP+ByKz3CT3XnhaxNGrgbaXVVoQ7glS6RV/vncxv66+G++jExIOhpSI5GgjbgolrK8VZviwpzzDzBaAJpk8slfXYJt6yHX44XP4cbcXSFvSGwxX7uWbBl6qRdyqT3tshcDr8jSsq9DmHbB+uUtKKpRqp1Lpr6G+b70/nWI1k6oVHLFn5PIwt7ZP2tetFLNO4esRbLc46ltWmLejp1/qW2ApzCyovEVFEIIdcziKaYl4ZDsvfcxNvrlA8g1hq+iJVVoEDgETair6tSKZUlyJwc3mf9OEKpgXr5+4Z4XDWp+8hluzP81xjsEkuvee4K7F0+oT+PoTBrZULvTiTYDoSZxM9I9/9I3gt1fB8/jiV73PEo2yjgfcRv+cjEkv8WKeoRZ5Mkj3x3NB9hvxvRJnGxKWF0vR121hoK8EE0FaQ1Egov85yEtmlgGWqpWvlvjJ6fbnFPcq8Ju8MsUwhcMoTxi5LirjSa6kX/PzrPbOpXM833OstZO1HGOkjepLeo9xKZa1jO23qbs/6evTZqL9SL4Qu+ag1OAJNLvPV4izl0tHg/XtvyL5My/2Re5j11WeTTai2RZ5BWIo6K+eQdf7pPJ1/LrEETzcGm+TSw+OxJ7fDuJlCZPw4faRGY1L7oMQSP/YZk89HWu78qO/3Vr/Tcb8Hq0eE1hXDH7MVx0PfJI8Lh8t1lKqlFrHUa95dK1dLK9p1Y9wyHGliAuEiwjEsLHDZ9JS89eRbtuOcPqefaOd0+X7PFZSHwIFRlzbzzfvZS5DLumXY21UpkaxwuHzc1y4Db2+ie0Y4XMvEe8FMRGojb9rmr7H+0sg7pvMJ68LKl6E6heqIhelYnkvWimujE1LiIfh+9I3XVEwcmujwiBut+rBCilpG3jwkLiu71HFa7TDydUhc0Q7jfc+ZyYkg/qpNva1trkzi9aX3wMy6A5Xn5v4yHDbvpxWLpGWSXks11ZK+FnvjhQBXg+gvSduF9aMadOibzENxLK0MTGWccDgA2b9SHayfWeeup1gSbaNwapGW3+8llnrC7Z4Nk1x6j3Fz1dIDE0tPA/0dbhm8VSafe9VL915t6tGVRsfg7GdvR+Doa0s9xK11bfHOi15iqbVvz7FG6yFsmqDtUik6eKKnZhMTHLcKk/OgDXspjcMTKVnqJj7BtKANf3snk7KMv0/PynC3Ggdwr6VqOY+M6rheeyvE6ZA4UlNsmSwWJEtHFVSGnzsWeYKIrgquy6S70ZjSxLtdZ2/52mpxsg3O/mNNGULPYzuAqEai/m6tElerM9ZLRFO7T/EV4uK+bZ+0M2GpTnle74qfw6GcO6/5R5nBA/T15S480RhskkvvKW5GLN3cy2ajjPMA1VLXcUbrGPUT6hzQnUkwbUX7NxgLR4oFtpMEd8HpA/LHuDn51586iWSGuDXUSa6SaaNiyQ7B6DuHtpxrep/eSdtUME0ciQWWrlCMJSzCTLa//q0rCbXUxGria01cjMvREZOLnoUUvImmt1KUl0bKBcvIm14tryUrHK7XZ+lIxRJAea3Tv23La2lpXPe5aonXL8oOGHm30unUay2HnttpfjxxLlohVT0kk6VkasHzgNKqJXovlR1EtMl9PdWSKGuoSKyV4+I+/gpxR43sgnrlIHWT8EsKYVUm1R/d0X4p7G2txFMtAayeSkyxyFVLlol3uX9OP3J8YK0S512bdaip1Yda6kBN4pJqyepDNRNvUQ5knuWzVK7omN9PxVLGJJc24blNvW9CLN1lwn4msbS/niFiaWubaL+Owd1ZBNM5IXIbiCUDtZXCauXujfZ3aYfEPQ744J3ribeRunZMfz0tPeEeMO8+glg6mry8TwiqIb2YmGBokU9bQ+O2t0eOc55lxMZ7mWfom94nIskPazHTw1VNMv3f5VYeS83xE8rwtp59LCNvXUcimgSRpEkuS6GExaSXJrytybL9+djxGkoeDSKceB06ZE4rmXI5eY5ZKiWLAOtdYYvvY31G1+TbqetIRYmFa8AmJdzyTbLK81XieEhcUdYMgwvCyNsqJ/dph8MdRSz1KP96ytnjNyz6jeW1VCNlvZUNU/2N862Wt5VY2kYqPdcYbJJLE8fjiYilx6mf4Yjvr5NkOlPdMBJ680jqoaOXid/6/T6v6kTfOHu/z37VUk7sK+dPMM4jlh7pnJ6YeGTUVEu9k5cz4E2cb01UWWa+mlDiE8mr4b/SC0+11LMy3E3MuxWxpFVLyLyU+D69yjhu5C22lYIp1W34scR0o26mWqoRNqPoMev2HgluNbLXx+fveyfP2Dmxbxkrm23qakE/LPWS/s4j6UTqo756yXPpGrJOyTLwzuVVv2z09bOIpdrYx/PK00belgfT4hFKjqcZLyPqaBE/zhlkqZZ0HkBdkdST/9YxyaX3DKeqlp6QVHoo1dIZ318HyeQRIEeEx7VUFkdOwIvv2Fl6+K2gZyDfDss4+klI4+nsUDicoTriv2HFwHtPKFyTZHoQQqlHwbRdnajwZCuVTJyLBbD65Nzfb796qaUA2eO1wZ9ui/STJwo0EU0rSrHvNoj3ZR8Uy5GjJpxexfsA19Tne8LhvGtHMcHdSSr1mnh7WBTRFPePqiUZ8sYNvdl7x8jbI5ZIUVEompiJd2w3pHzLwNsjlUbG6XR+6NC5mooplavUW1NiWKolTQLRtv4uKD2HyeXXMiyprE+00THyHrkLt0i5nhEUmXenNGb+TaQRD58LqwcTGXnz4/CQuBzymkPgAMjIW/V1x2upbO+gEhGu7PwfD11GuJgPCJaiX0qySPexuE/paeYZ5sdtu695Jt6aWBIKKYdYOl+xtOLJxmBva7Y1cT+8x8RS8zhP3M3q31H/50Jcign8VHa8D6j8xnt+/w2KpSOIJbc583yemNiErV5L98JenomHIdXUDSPkXWu1Pk3ojRJ8PT5LW9EilkTZG46lPK+lXvLSKmf5LBVlBs8wc5l2TVZ5k12nzhFiqYd4zUTSMSwtGu/3EsCFObcR+raXiPJgrQTpHqMgkH1C+Z7q95ridIsadetDA36kIx4SbFUsvWV/JQtTubQZz+e7dIpq6UkMuzX6J4LtcodMKs/+HhsKJhq0jSuYBpux6XOe893sMWam/W8RBiCP0TieWDa6tZbJHVVL4rvfoFpKdcoQCTfNIJZqRFLvudG3qtz2yXPPqkw3W6FxxGRi4r0A+SwhXEyCY0tYcDXcwglZ8svff4ymlx/XaTnP91/hITLJxBeVBwtSzmvSOQBIQ2/La4mrlizFUo1YOuO602PiHRVJfjicJiy5kTepluI++TwihQUP3al5L/Fl0UlNQaqlUtFUEks1FVDvJDh5LbF9tZKp5sfE2+OhxwtKKjy0J05O19AKpRhSV6Z5ChILe0aL12BXLvowKZAgj6CurAypmKhMLh9Eng5946/ByOOhsNzEH0D2/ZhvG3vra7FFMuu+0+Nvyc28eUicVBKiaeRNqiWZplRMytMslVNqopZCMNaxT7UkP7fE6cTSE43BDpm1IeIXIeKfR8Q/4eR/FiJ+ByL+0fXvlx1x3Ik740mJpVuiSVbgctvvceOx/En02W13nmC2QpVO+k5JoeKZQx+F1oTstmbOW9Hz3ewPh9tCLGnUfkcSZ+vyPQa0e4ilkTpa7Z+YeBQscBF/bjnHt8NC7zluGi3fn38SqBv1Wgbf42bccdraNvQ+m1g6w8Sb113zWuJG3nZ+vs/w8Bz9kDZNTnW6cV5xYokTKXzCO3I+WuVx/cfLaCC2FRhUzkw3VEvaa2lxjsFD4mSd5Xu9uzzebSfa3rx+63w/CMJKrhInyhWEkCSW3Pod76Vcz/7FFXRom1/OIBZVWq/Xkt63augNJYnL3/d0td5wuKlYkjhKufTFAPD5APAllTK/J4TwUw863sS9cTNC5NjjnLVy01MBl6qCaVxKu8Atl7g/a5W4W6/6NQ7vO+757s/+fbaqltakQQPv7tXidiqWRtVKe8mkWr09KqbzEJ4q3n/iPGBYitAMgrVi3Mg95VGI0FsQTrVQGB46V64eVfqqcKVSdmeRioWWj1K9recrlmpo3psNryUNi2QiYol7LUnDYU0kcdUE81witQPKya5l4K3nml54WesU5GeFVilRvZ6KKZXpPM+l95Gt/KjBMu7uMfP22jCStwVaqUSomXnHtNi7QlItMZNuY5U4MvIGKPu8ZeCvV4e8wtX0WrJMvEU7K8TSFV6rpH8PpDrJ6ou1h2HtFeIAcl/jZXKevGLUVja0DLy1momO57b5JsTSc43BDiGXQghfhYifdkRdz4XnCY07LCTuJhPs24VB7WnHbhPvwfb0DLy7B44bCKYjDL4fFXuIpZuFJZnYetyzn/pxUse79ljfaYU0qhBQpql3g1g6glQ6i0yy0CKY7nseTkxkLGEpzKVvclxHXfIsEJPXyjWah8R5ITCtbcvEO4XQ3SAUTl9Pe8PhABgZxMLjtEopKZ2UuoIbefPj6gmxDoHzPJc4sSQ/D6VLYqnmWTRy1vKydKYUpt5rKc/0uwcWsVQvI1VLNRJJK5R4CJz3XcT6A3vP2qHLsrwtq7hbu1C4W3ofZFouF1h5SSCFoE37133WkLicrkJfmak3Xx0ybr+a14IzFEscHhGljbwpJK5m5C0Ud4rABYDCMB9Akkw8/JTy8rH6SFHzPB1ULL2vaiWOW3oufSYi/jEA+FYA+CUhhK+94bEnngbPQSw1j3cHYonKnWnid1uC6ZhzYe/T8D5fnQMm9vfefzMGbqQDIQ3+0SR51Ess7cH9VWsRd1MwPdlKJRMTzwSPSAqJQAq77uv63qRDanrvXbVyun177rtWOFzell5LNVhkU3sfP9RHEkYl1aI9l0Zg7eEpcgoFEtQfF3EVE6+7RTC5XjPGBF17LQH4j49aKzK2Vokz29TIR+wjmDhxpNOa+zKyqajDSLuyX6UkkaRyiatFuddSzO8bExxNLGnsCWVurgJqnDQ9fmC1cLhbquF248nGYLcil74GAD41hPDdiPjZAPClAPDDrYKI+LkA8Lk3atd7gUOe4p02uTp30naWgfSuyWbvBHvjd8P3qw5IKybfNYPvOo4imHb4bTR9HAbqPplU2OKt1DMRkAPJW9+QHNWSYeKNlbQen6WzFUtb1Epb+2136NAGguls0nnibYCPvz4KP/Zu7dCTFGs5a89suRdlWMW5sHqfmEAa4TFFGWbqCyAnmVypcIXXwtCb0rTXkg6Xo2tLj2Kpdk3hS5hrdPsmmfcJvxyV9QyHuWppCaRPso28s7KJiCRHueQqmrJqqWcZdJ7Wgi4XVUoZgZXpMf1uwfJwqk3QCxUXYlFWG3db0OV50VrTR4UjPeQRmXMDMEPvwPNUv02m36Egm66ruXcqK4y7S6USD4fTxFIuW4bDyXC5oxVLdp+kPpW3ZagppdGr9lqyzPJFXcV1W5p4W+GnPeFwVj8s1YiszqlYquImj2NDCN8ZQvju9f1XAMA7RPwEp+wXhhA+PYTw6bdo28Q98YjE0tuCZUZcFhpUUd3xe52/6aNj6+9T2W+rCX1DsXQ0sdTV12rt2bk/wMn9g5a9OeNv4iHAx18vy0ffuznuBObRcPQZ3FqSXITHIJ9A1k18ZV452fRI61L5dK3WPQqhFqpeY8sV4nId0muJrxC3tS01IikqamRInF6xSjw6acw7rfwFsfjr2bdFWB0dNqqNvPv389MeRTnS6tt6LV8rRI5WiYtlJKEciaYgQuJIqSjD3CTJHNt27SKNRoml0fJ6lTgLOSjO/2GPXt3TPvfH9wG4EVnSwhONwW6iXELEHwwAfy6EEBDxx0L8nT5yi2Ofj+fxXdqMQycs53fR7ROs40J2/AIdqqgTvqOmcsHxYNruvwSwXTFzvipM7LLz6epDIPCn2a0bxVE3kvp1b0y1BCKtDIWwVElKxbRRsdQilVqE0tHoUQ3ePjwu3DHscuIZwX2XepRzW/tSz4TkHiM04Z3CVQrab8W5HNNy5PF9tum2y0qFAp90hiCVTNcOBZJQRxnEUi9q6iWCRyB6+2liyfJaspZT91RLsQ1ymXTtscRNhvXqVdpbKKdn4on7LNWUPz3KB12GFDOlUinCUjFRWzj4+dryVrLarsPXSLGlVUv8++D1amWSPmbeDm4e1b8F14BmSJze9jThuh9bdQkjb2ekVjPw59vaxDu/l6oliyjaEsK6sP6m0+zyPpGERp42yxd1Ke8lgFJ5WvM2887bWn8b8VnqVSzVSrVH5c81BjuEXELE3woAnwUAn4CIHwKAfx0A3gEAhBC+AAB+GgD8PET8AAD+KgD8jKC1vxOnYPcTisMm2I9MKt3oGHcilnTd7uCwYvJtFn8AA+H2KjIN4uAxnkfcEHe47BrEkoQT6jbguyTzfCPY4v1GYukW583WULZH6JcTbwMLoKuiqeW9z+h9CGyNgK3vs1ia3FEq8bAY95iG11ItHC6IhxbnX1PoemuGO1vXdVWuNO++NK/VCyzuCnHlhDaH0PAJrwjzwTzR9UJzWpPc1qidnxG0b41kCqmszJPHrChKFInE06yJdTEZN9JRvVrlLRLL2ueMuzEPgwOQAg8dIndlRt08RC6HwUkzbwC+T1YtUVicJpNTeJzhtWSpmDxi6ag+7PmS6ZA4ABCkbVmPH3Kq1YEAmVDSXkstE+8aesLhRPkNxFLPLJz307eAo1aL+5mN/M8HgM8/4liPiTeqXnqviKX7kwyPSnRs92sZVTA1iKIbKom2HGvXpL45iO9N21LmKPABR0PVlL7ffsK1tWLfaNoWYulR++hRcM9fPdKemBjEvXy/rCfe94L3TFUsWd4xxeATzWrom/JTSunMaymWqxNLR8K7jveuDse3AerqCY7kuyQUSnJiTNuo7mXV1eKc9JSPTJXB1DlbQnZ0OU0ycd8fbtity9dIJo2e8DRe5Mz+xVVLKW1Hfdbnb30ne26DiVhi4W/NfbS3krEKZ8919Yhr7xZTfJ62rL3J3scndTWhRGneSoE9Jt6aFDJDNNX2lnP7sO7wZGOwW64WN/He4UQVzh2IrxFTyTJzx74Ho6pgcky+t4XHERZokxzjxNLod9ZtInojEuuMidbtjLw7nx1uDYdrGHhbSqRaKFwvqbSFUNpzvrT6Tq2v3m3luImJChZY3PAtD7U+tnW1R2/J+KNRG+7TUuXuvk5ey9g3pTMFAzfwFmFwiYR6hWvQht5OmN1JiiV9rbQmoW01sq9uWlSoHIXDWXVHI28ihnI4HIXsaKNhygfIqiUdEqdVS54hdc1MmOfXYJt4I8sP1VC53uMQLIWH9loqlohnK8gtvJyqk9KsPOv4Xtt7u7gIZ2uVDeW8nvo1N/Ymv6VrCEnlFCCsK8gxU28IBZnM/7hqKSB7b6iUdDicZeDdSzzVwt0sApenLYY6SRvk6zyuWtLhbQClOjDVif3hcKkM7d/od1SHhRHF0huUmgxjkksTNh5YCXQPL5xHI5Zq7bl1SEw/wQRgEx7n/J7PrjLZulLc86CHkKpj77XgEfZ/mt/0iZbBnXhMWA8pnv06fSZGww63rAjlrQ4HcJtQOA8FEWVca7XXUrU+RSyVdTVCd5wJKSeW7OOiqaQww8kGZqVcmUTtOkvXUCOWeppcM+5+65CG33KVOAqJo7welCrEso8evTLcraC9lji2mH1vXX0xHi/jYRaBe6Ix2CSXJkrsmjAdP1A8h0y6kWKpVXfnviPfAS9bm7g2FUyGeskr3z9JPnEiMbrqnfXU9GTisvUdbQqJ6yYnzjLydsLhqqolW5Ekj1JXLZ2pWLqlyTvV2eqrR6uXnobUmnivUFt1yFrW+gjUJjUjyJ4s5bXWDYkT5t7GfqrfR3VDVi14CgZu5E2qpXgM3xC4pliqXWdqix54SCFoWBJErXA4btrd8lryFBbp+Ep1oVUV4nOyMlxBwc2+uWpJqyc8YqbwFGqcjnSa1E28cc3zFUxU1kOvosoy8jbr6ySZ+Ipx2ujb+2pGu7BUIqFII6WS/m4CMKPuVC6snkpyvwBMrRQksRRA9XtGMJFS6QqlasnyWqJtC2eTw3qVuKgGXEArAuP7rAqkbY7WSoz0PqsH5XW7x8Rb+DexdH2c2h1mKpb6MMmlN4yjlxtt49hB371JpUPacMBn2NOGPRPXUYPviXPxvGSAHw5XoDMcbth/yQihyNv3I5Z0/Q/7Gz9ZvP/E7UBhcAiXwjCarxhH2OPb0YPbj3vG4a0sBTCuVsr7tUnm0tC7b1LaIrBDeB0KKd4SDteuszTvFpPbkAkqTizlstIPRq9exUPi5DEysWS2S5EjNWKplyChcjWSKYe+ZS8me9W4cViqJStsiBNqNWLJUkbVj7++9jR2RWsJKS87GPk9y1FR6Fxh5K3CXbWRd0wvQ2DzPjKs1TPxHiWWrJUdrb5Gqy624Jnk8+1ePzMARf5UyEzr+u8Zwh/ps3T6XefJxmCTXDoMb8TUe/ME6piJ17kTuBOeeJ6oWjryu2hNXEfMVvf5L42jy2+psQrcrVaJO+o76K5DPGm+xY2n905bffbTOEJb1ZTLlqqllNcy9O6YDPX2wdZEuNeDpnb+3MsQeWLiVqiplkS5pD55vjGXFwajlQxyEpqVDBykceDbOh8AkmqJp+twOO+606uM9AimUfSaePP7w6LznEmyVlLoNJ6u38e2ZDUF91ziZAdXLelwOI9YKs2KffBfySKZWiomftzeuar8HD451tN7OeGkj1EjmRYMh/T21h20ZvLNV4yL25k4Ir8liwPQfT6qmDwlY6koJNVScPp6D7Gk+/eR8wtrlTieB0D9NBNJhSpQ+Hf5JBMvL7TxxsnRe77s9Vl6vrvQ+Zjk0sQB2HeRekRCqadNTYKiYyn1PccfRUvFZE5eHfXSrQimR18hroUuMuAUtYqu8yziyQmJM/I5PANvD14onJnnhMJ5xNJoeOQWRYXep0Y23UvBVD9meKp4/4nHgaVeemZsuZLSp/cmnf5+oSiTiCaUk0tu6E0hcXE7v4ZwrU48xYT14MUCbLLfnpD2hMOV+2iSiZl6q3A4Cq/M/7CY/MpQt1WFo/JoxSovHM4KydkajmOVoV+Lk0wtFVPMkyQTLy+O1Tu51qFLBTlQ1ldTj4xO1o/2xOEm3ibZBCyEjoW6gUqnciEwYinoEDjfyJv6Lu/rnom3GxrnksbXrjGvNMm3x1a5bO5btG3XyfoP2H5mlnk372+pHdgOh4uvcoTa6n+PRyw91xhskkuH4o2ol94MbkdMFHgwYknXPzR5HQyPO3tyfNYqcc+DR7nBtIilDO215JYbUC3JeutoKZZ66twapjMx8b5hy4pxE9tD4rYf7zF+I2sV0N797JWsnIcagysP1pRxLUKjRproie1IKA4XvNB+nGTyVEytM+ssg+09d02tZjoD5LcU33tl6iovrmwC8FXkpGxKoXIGeeyBh8C1yqX3O8bhPeNsa5W4lNcgosryvmJQk0yxTD+pWJCdjXC4HmJpzvTrmOTSRMbwJPw8VdA27K+3e7K69bPfmVjix7FuPK5pt2Pw7SlzjiCYur+LJzDy3o6+71AOZs6aMHTcTreYeA/6LOlQuJpiqde0+9aEEtXrTe5q/XNLaFzpobLhHHmieP+J26Lmu7S1Pr1dm+h7eUcZdW9Bb3e5qvAYbu6byiQ1w2rui9c02bSWH9dG3qRaSscIbFnzTtXSaFiNd33VRt49Jt7cnNt68KBNvFNZplriZsM11ZLltRRDuXIYHE12PdUSN6QG2hdkmiaWRv2WABiRtG5fWb5WMVlhcjGvfaL2GCHryb4Of+PfSakqkfuVxy/bOPK9eR+R+ylxM2+dz7cpBC69X/OunDBa02k1ODLzzmbgOuw1G3mTaokUirFOOwTOC4fbM/bu8lNS12fuY1bWJ1VK1Me0MjCVd0JPY17ub2WbpGqpZ1VDi9x9aGLpicZgk1x6o3gGU8tj8UDE0kaiYstTOwvd3klHEEAbJ7tnYi5trXHEDanyBNceDh5wTHaMyspwZXvax+57knb+efQoCo+HNRKfeAjc4jy1/JZGlSb3xJ5xv/ZgoYln7701rh61TjArfZl7Len09D5o0+/jfvfRa2rr97f8lSh9rF1aFbF//GyTJGteg1iqrUjFyaDCcwnaj5a0ikmHyvW2YwRHcrxnKaw89PRry/Q75Skjb4tU0t5pZjvUCnE8/QjUvS0laVutR4Sg1n8sz9PMLOtkWasyVo9phMP5ZR+IWHoyTHLpcDxpaNwNVEvHqUPOmbh2ld1BLFUv3gcqpnSZ2gB1SCFBbexUMPWsVFdrl5n+homj2u9kfod3JQRGw9H6VUujK8ONKJZaht21yc9Ws9qWd4k3cX+o1eMC3Pl8m3hELIBuWAc/r8/wXXqGMFWpbOBpwVVTaNQmnTpP30PIyLvmuyK3X908a9+tY7pe1RIv02PirUNxelVLsQ65cpVWLWk/pppqKStzsmqiRSz1EjmW6kiolSjPUTBRewBskqkGrThK+6p6vJpQlJNpntLpSPC+aBJB7JWTSoGlXdP7sKqTcp2p7rCqlpQvE5HIfJU42T7mu7QqFGP6qyonFYu1UDjad5RwbYGvvpjSuAIJeF+VqiVdNpbLdfAwOLliHIp+0zpfRn3OpErqwYilJxuDTXLp4XGFo8mU/bgXsXQ/UgngvsTSEavSjYawHaVKGp0k7zlXtqz2NVLmqMn+o6m9xsAH8FzPbhNJo+FwFrxQOFmmn1i6Bamk96+RTI+iYJqY6AGGxV0q20ONYOpdJa55jAd4sDeyaqdWi3hEHTf4zdPPHAIn68ghcbE95QpSV7gW4XAjxNKR6A2HS+U1gaQmzVrNlOo1zg1NLFkTXyKW0JiY8m1NqVghOnHSLPfTk9ieM9gz6OaeS7x93Icpls/H6jlbTVLIIMn4Z1lQhsqN9EzPr2pRxzwbLdUSXyVOl78GZdrt9HVt5B3TWNhqCn2T/T6m1VWGVlneX0YI4sXsa1zR1P8LWwSuVYc0ikc7HWwT71o4XG6HfayHI5aeEJNcmhjEICHzgKQSwAnE0sZ9zyaWdD2HEEyD/ktUP0B70Hq6mflO8mmPmqR3v3q5Vh1nTAo6bqtbn2A7xFOPasnaT+ZtJ5aOWFLbqvPoFZhuh4aj6cR7gUmC9mFviBzA2AMIvlpctVywQ2u2Xpd6Jqdb7ulWOJz0bdIEUklC6RXi8r5ZtRS37ZA4PunNbVjLMNUSbad0to3Gvh5GJq9aebQgFgRTUjCxtJ66trZpCx5hwq5XhdPm3Tw/sDz9fSbVU/BHYVy1BOCvBpnrdBSHjGTyyhwRLterdkoqJaYKBJDkbS5r/+qCmHSIWp1maeRq4XMA7X5o4RHO02cbg01y6RQ8aWjcwdhOFNyfTEr79bTlJELkjBCwmoppiDjZQDDRMQAkgbIrJPDIkEZd3gvNu1m4UiWkgZuzVp897r0Z6euYo1pS+b2qJXkkm1jiqiVN9Fn7xfcy7ELnx5ZtI5X2eJ31qJiOxqiZd8w3zpsnGthM3A81U29LvdRSLfWGv/VMYLbiGvxJC+UD+Ndi8lOylEm0epT2YqFXufR4GQZnhcTUVEtUzrpeWdcGKrd3POIZeYsyKhxu0YpVpZ7oDYcDALE8uiaWLJPhWpgOKoWOftUKHsv02lJW9IaCWeFtXMUk1ErgG31bddXgta9m5M334+SbZ+Kt0y0z7z2Q6iJ082pH5UolaQZOoXLMxDvkVeJkv+b9/VqoE3lIHFctWeFwvN+2SKUrvHaTRgDGA9m1fxF6jLzptWaWD6CVSqui0FTIseMYCsFWOJynWOL75s9bR6vP9g6buoo90RjsVurCiUfGCeTIWyCWDjn2TtXSWfDaVQs32lOvdRxNFgzjYVd4G4CxUo+PB1UMjJKDA+FwaV9Vplex5O2vB0SIlyaxRK4BW/NbsMmuN3COT0wwHEUmvW/QxJKnIEthNMpvySO0a0S3nsj2ElIeal5Li3qYUOyrCSRL3dSc6FpqJx2Kw4khW9UU3+eJKU2ai0cxfBJstswu20KNnElpzrG3mmsvauKv692L2uf3ss5eDJKrmEiRlFd888uKdGXkzUmllpH3qProKHNvDeuaTOQtAY3r+pZQOYDyd22t+mme/91HZm04mFh6nzGVS6fhSPXSo/gu9RMHZ9R7zrGdeg5QLG0llvYqbHoHe56KyVLm9IbHuWV3YouR+S7vphMn9cPG3dW6+GhG73v0U459qiWOWjictzJcqWjS6e0wOItUsnBUGKwfhmqHyN0j7KjrnAsAcH1QcnPiYeGdzz0eS70rxd17kQfvYbIOm+GTy2TqrfdhigZLyQQAcMVrMYm8wiuEUKaXHixXW52kjb0PvgZVPe0aJBFf5MEKh9NeMJaJN28DmXhbS6NLw+6spuCeS+QlRO81saQNrbXPkqeqiMftA/063EOJHz+mBalWYvt5KqZUf0WpVzMkFwokkCqTVrgSgJwxHTV7ymbaLA2yaimFvLE8y9DbqpOMveM+azjrauRNfZzvz428r6KvZ20SqZYsryUrHI767pHE0h7y1jPKt/oYACRPM56W9kNJLPHziXstxXroVRHCnaqlEWJplAg+RHD0ZGOwR2AsJu6J7kn0WafKQWTQXhUMr+uANp1NLNWUP0eogm6lYLonamFv90flJnIzs9WOO+hGE2+zqo68WihcbvV2Ymmv+qjWliLvBF8ngDGC8mFWo5t4sxhRIt1LtRQ8Q5qdoBCZ8f3ypLNmnB5DZspJ5VWTRQOqpRax1BX+W7k+pzLmtVuaeGufJf6+Fq6jCSseEmeh12DYUu/wdD3ZLcJ8HGJpAXskjKqO3F5ZvrZSVm0/TxDSE/72PkA/uuPm3bxbWz5MiUROIXLyOiDII7QVTK0HTTViiVNYvaiFy8n+t+86jaofxDR+LK0YVH2Jq5x4uR3hcKJ9ftYmtVJrn+cJduvHVC5NHIZbKpaOJgCGJ5RnhBL2qHNGjchZeW8i6SmNuhRMVP+Jk9Qtk/3TjcGP8F16qom9oVo6IByu5rPkKZZSvRsVSx6pdBb2Kvlu5/HVIJueKN5/4jy4aqQbqO6QmTTfGi3fpc31KhWDB1qanPQNOmTtWvgsSYWDXiGOiCXe52+xiqm5khvKEBu9OlzyXtIqpXWb18lNvBfAgliyVEsxX01MWXpWL2U1UyyLglgi9Y5WI2lPImBleia8Op37KQGssQ0oFUzkw6QVTF7dLQ7UC7MDkEQWV3alfUXZMTXTHhTqQceE29umNL0f9ZLrqlLiddMqcbpOrVqKaZI8ln0891/La8m7V5uhq3A1xzg1ewEPnMCtKQPpfSzL1UclsSTbtB7H6B8FeWuke8SSdYxY7hzF0il4ojHYJJcmOnD0YG5bfXcnlACaE+qzFEtHfPbaim0jIXLdx3Pq3FJHmVE+tRyp5yzVknvDP3mFueP9mEbuonXVkqy1klfx3BgJhesllc7wQxsncG+7gtxUKk0cBQwLBLzCAlgQIzVT72eARyTpdBk6w0x+nUltawKvTX6t9xyFUbez3bsCVS+8ySoHXUO5kbd5ja6YeHs+SzwcLk1kjXA4FCvGyZCbWA8nkFh4DuYwOM9YuFz+XE1SkYeG5Ql1D6nkTWKT+bYihBbIBBOVQ5AEE+2nV5Kz2hCCT3TRvoUvjl3cLaMJp15suTPrkDj+Su/1anH8j9IDADPpLo38r5AVSyIsjhn6X1eKSYe9kpF33Fahbyxd91OuWjqCHG6FnZr7GMpAy9DbC4mzQk8BGBGFvL+heb5YSj2Rb6V1Ekt3J5WeEJNcmrgxHkOFcgaxdBYOJ9V2KiFG/JcmzsO5q8TZsL2WjHKDq8O1fJba7SrLbSGW9va1Wt86w4ushcOOx9dgnpg4Gb1+S2cjQHCveXu6wxVCmvBbefl9u//aSoU+Yo8rmbw8gLHrYndof+U3LlSqasKr4YXDpXylWopp8jWVrS2JnsqUqqVYvwyHsxRLGlZ4nQft32KtCsfL1QgmvY/Xpha0aknXcdS8/KwJfk8/rpHCgZWxQmAtD7Wcdy3SNSFc81I6mlhqoccrT5Q3+hgnlmr7dB9DkbeUBsBUUKy8qw6s1P8QeLIx2CSXTkWA4y6tj4u+gcf2cK49OCTcpWc1qxMUS2eGdnkqJkttZJW9hcF3r2ppcz263J3Iw+NXitt7AxLPFJ0inkrJKN8RDhfzfQNvT7FkhcGNkkpnkLcA91EJ7TnmVDVN1NAT9sbLcPVS774jbTkavcum1Mb3tbxkAqx8WVK+eH8VZYKxHLmYWAZmAOysEkdldDicCLepKG/3eTg6pA8Lh9Mhb2UI3CUpKcS2CpXUqiVOLMX80mDY8lqS5t5SRcEJR61g4gbeMZ/Vy/K0SiN/7jq0cs4z7W4RTHwfgPYIo/br90zMXXKNvepV8BbcPpapEULczFumZxWTFTIX/ZOYigmYwokdN4W6hui1ZBl5a68lMvKm9/H1VbzycDitbmp+Hx1qQw7L0wwAXHUgN/Lm/UerA2MasDT5mo6H8Yjaa2k0HM4jllpKJ13/xBgmuXQ63g+C6UgcEgJ21ODzIcydz8PesLfeG9uZqo1nMA/vQd+qXfcjADZ7LfG0SjicldatXNpAAPerouTEaE+4T08/OMu7plgRavRceqKVSiYeD7Xz2jdaLkOabo2aeomX2Vx/aPstdddVrBb3eKGJqPyVrHyNnpWraMJrwVMp1crGtui2sXJikospTdTlqHo89IaW0dnClUw85K1GMAGAqZqrkUz6W72lsfdRh9oi+qAwOOs74d9hWpEuyHzut1TsL0JVXxmxZIfE3RKtMLizgeoE46syHoGecLiHJJaeaAw2yaWJBvri6vfUMVaXs++RBMOBypgtqqUjJ9SE2kSyy7jbKVdW5ofH9Xow7f0tW99LL8GxF56xYhvyybM1tNkzmanDvqPaN/ZSteSFw6HKswy8adtaGW6PYqnbb6t76fM+sqmmDpTKwNv6LlmYqqWJPbB8l+xyJcHUq0LCwZCMe+MKkJYlz2n174j8WOJ7fxWpXP61JI3XNMvIW6NHtcTz66u/lddPcU1m13EAcL2W+HbL/4X7LMXjrcqIipqiplrSXkuxnVlFocPgeEgO91LS4XBWnlY85e+l+BoTEpG0bgdWnlRMLYKJwzLzbvWy3H4vrKkknzwj5lvM37XfklYtcaVSAJkm6gnZSymRRiGPxYgkTp5LwD2WWB5wtVIQ4wdNKHkm3pZqyR2HdI5rPEJJ+JpBOdbSDwB6+1nNaynWA8JrifKFCrAzHG5kZbhbk0rPE+g2hkkuTVRwxGCuQ1GwYWJ/uFrlhDacQSxtJUFaoTpbCaYt/kuueXjPb/pASrJbruIFAJXv9Kg2FLdZo4j3/fed66aaqbIy3KhpbExrrx7Hj70XVMczGRhvOm9PWq594v3CLVaV2wMyM+5dHa6H6NekElc19JQHALhiDIW7stC4XP61ef3RIXEjxBIvN75ibUWlpAmkNQTaCoeT+y2F/0sKfzOIpZifw3TSe2G0bRgOp0lxnqAiyAktf6/DbniZGrHUO6HlRBLfn0gmHia3kJqG56WyUsHEfZhqMFfeYm2T4YB++89Ga5W4WrpUH0EKg9P5kjSWx7aVStnIW68Sx0NerZA43dcB+ogljdHQOEEiFf3NXomxWWfDa4n6G4c28a6dW1Y4nHfsRxQnVfFEY7BJLr3POMC8to7jiaVHIJV62rFnZbgzUTUc7iSYiv02EEy039G4l2/S+4eOsDUsJw18Hy88orYyXE2xNKpWOto0+NFWyNoqpw/w+mafpk08Bo7yTHr2kGhuAFxTNfWuFndV91xrv57wWErb8zBLq5by+4tQLQGsBJJh4i1JplLNZPm/WKgaC6sppvZakm3SSolMIInV5VQ4nEW6eMRSbcLLw+EASnJEG35beTKszvZh0tgaBsdVW1Z7atjjt0Tw7oC2n5L87ooyLDyOvrMAQZBN2k+Nq5ns9tnKRO21FI/vXQOOG3PoPmeXaY+bdN/SnmYxLb9a4apateS3p5HvFLi3YsmDt9DDs2GSSzfBEb5LvXaTt8EtiaVbmXIf0Y6m8miDYumWhsM95t3dip2jV5CrrDjm7tJBMhyFITWIMlPVIXC1uuQzb13uqBsTnwzQKGARedrEWywdbYS0caAmnnaGwvWqldzVhAbOCz2B0/XrwV5Pf9kaGnezcDorTmDivQeGRTyBB5DKpC2Eq+6j9/RbIvT4LqUwG8+jZb02FyqmNWxG58WQOBk2wyeiWtnAjbwtlZJ1rWgRTT1KJbkoQ30cgyL0jQy6/XA4Ho7DDbwpjRNLlJbLj4XDUXiOVhfp8JzSdDqXE5+XyoKs0yKVWhNdrVQCKEPiijSqi52PHsEU65AkkwdOnI0or2pldNaeHu/NzYN6tRRItC36cgpxyyFxwvg7yJC4fiPv1aifeS2Rgim2M7/ycLic3qtWet30IM16AKDDT3uNvGW9JcELACL8tGXivSUczjpv+bFrqF0B98xwhkZUTzYGexy2YuK9wk2IJVzy304cQXA92lPWI5cXdvOfQEk01U4+ek0UbWWQTSpxn6Xe/axjjRBLcSKzn1ii8qP73BtVsnL6LU2ciJGJzdFqwlGM9oQzvO9oAloei002d4YVmn6AlZXibgF93R9VUHDVkjeBLeuQZSzFhWiTE/amVUsj5Agvq4mrWrp1DO+4NeXUGXgUFYgG+S0dX29nOea1JA29tW9a6bl07SCTag++atB9rfA6MxSBPR54NSP91kODredQTzjcEceZqGMql26GI9RLz4LtIWOpzCgRc7S6Z/D491QstQbktSccrulwQ23Ro3DKGQcomDaQEEX5Gxl5a+wbnN9q4i+GuEZ2XbUUa8iqJR7SpsPbYllGCAnCie03oFiqkUoaRxFDVI8e0FkeTF1eZTvB66/VLcoZZsDOXk/11Gzi+dEKnTtC0XSFABDK8CcLRCQRdcCJJa50SOVXM2+hRuImwpVwmaKd6BM/lvcKVy3p7VItu59AEgS/UKVeCvXqsiqYkkqJ5yk1U1YiZdWSNhXWy6EDcMWTVFJo1VJsTzYUpn1i27OKglar4uFw8VUSS/E4vuqJ52lSCSrbdH7xdFIg8XTpq+SbfBMsBVOspzwvPb8ardyq+TJZ2DO5J380es+RQ9hKhQhXehVKJJZ2Te9DUjGRXxqplq5AIXCkdAqif3Mj79iurDziSiXuuxS3c58tV5BjakYdCrtu945zauNoHZbKX3N6SczWfM1iGqRXCj/lXku5j5ReS4uoD0R94nMlteA2xVLvKNHqV+fgucZgk1x6KjxWaNwWbCVh/B2O+z62KosO/0y9xx1c3apFMrUIps3+S3fCPZVi1e/gtCfBW288W0d3JWnU6o88NIKTSrqMt69l3N1LLPUMtnpXgtP1bn1ieAscpjy48zK4GH/wPwwA3xJC+Kl3bcx7BGslOHvVt1zu0U2792CLWqllozFCNOV22Ia+5SS2/jv0XB+2GHlrWF5LOa/0eskEkWXoncNzMMj7gl61Kpavh8OlutKENI+09TLoJjmU8lCk6VXjLLSMinU6J5o8z6UWwcT35QRTrmfbmGCrN9NebLGpae3SqtO7DhCxRODhsN4KkDLc7SqIpVxvm1g6AnWyaR3zOUbemvDnxFJOk6/F8R1yshZGmttXr1uUPYBY4uWP+CWafktPNAZ7bqbi6fA8rGMN9UHGdiVONxlwULhbHm4s/cfm+zuTY32M2v5b6q2F+NTbUt+vZ6K/2cNoz+/V+wTmxqFKo5N2T/rct7Pt4nEmSnG/QSalsk4InFAiOSRQh89ScR5WiCV9nnthbFSO/9XK7MXW89NTJN3Mb+lx8AsB4Ovu3YiJcfT0n1uHxPVMSM94UKwnEELZBHKZ8qvYfk0TTytEJsBrd/hrVjTtVSzZ17QFsvK02EevEKfeZ/WSMvQO5O4ifZb4MT2fpZjvh+ZoE29UCgsAGZpGk10UJFRWM/FvRfvFINvf83FC9SfabOzHy3mG4dqPpmey7qGnvFemh2QbgdWPuWoppQUsbGu4gomrl7gfE1ctFfkQFYq0QpwmlYiASsQQStUSrQCZ9ylJYg8tYukabPLZQ2mgvxK4irzN+baCiRO5PN1bjbHXa6kFi1jyVEsuiQtgfNIJhu4x2PweJxz4xMfoPq39usidHYSSJpG2kkkAeZLcQyrVQuFqxJJf50GT3Eo9W0IWLQLqMNXQk3nbbIE28y4L8EGCN9s5SrVEBA2NSOt9Tpt4p/7lEUksDEKHw9WIpWQbiZccaqGIqxap1CKSWqjtaxFYt5wsjywl7ubVBqB8VH3GXwOI+MkA8L8DgN/c9UEn7gLpddPfH0oT7/Ou+z2kklj1qfUwWYXE0YRzy3FTnZ0PIiLhVPZbrVpKZBIzB7bMu/XfCMwHDJCvzXFbTl5zmDMLkwMZ3sbD4YhYAojqCR4OZxFLse6sWNKqJTLw5kbenFgi1ZIkiLQ6Y/0DeTfVq11ZZt6aHLLIJHDyLMXTXoKpNZH32uD1Vk0O8M99FnrOWotg4qBwt8DepzyI47AYFpdDXykkjlaJs4y8Y/tKMvm6ksaBvVI4nDbxvoYrbFUs6Ydx3jhdK5Li+6wWFCGpjOj1zLt5OFzNhymWLR9sUjgc9zMjcpcTvHKfcWJpD0b3Hx6xP9kY7O3P3CaeHzsJpUOa0EEoHXEMN++Eiaqr1ihUIgd+7gMUZwD2QHYk/1bY8mS4STadhjZxzL2WRlR7xUpBnfuOrFQkWnsy0XNv4+H3EL8WAP4FuH2nmGigx9g1ld3Zb84knc6CXp48p5dKh60QKoVQhtS023hct/J+I35Nbpl16zK+z0smlng6QauWrHA4XmebLMnqpJpqSYfDmavLVQgWIp1aRt49IXUaNYJJ11/DvYyQt5yplpF3bZU4C3Fuz/uvU071ax6mytWI3EetR8XuPfwJK8E8uirnFtQeHnjlrDSxeqLhtaTfF3U5eS2/r7OIpRaeyCqphl8LA2Ow6bk0YWBLV9uixKkcZ4CAOJpI2Eqm9K5yNZzX663k1NFcBr1j+fSW/5Lp2QQV/yVqq9e2wfNmy2/2bKvESdXSeXPs9lo3xvdGqiXTmFuRTFy5JMrZiqX43g+TS0/UOgml0euFdw5b/Ub7L9WWYj/Ln0yGzlXMuwdl8yePkD4BEf8w2/7CEMIXAgAg4k8FgD8fQvgjiPhZZzZi4nyMEExHmHb34BoALupQ3CzY26dIU/ncbyXVW2wH0L4s8f0V5FLlTNUApbJIm3vndGkGXOYfdw2S12VnTAjy+m+plriBd9wnG3xrA29ST8R8TiLVfZa0ikKH52jVElfhELFEq8MBGOogYz8dWgcsvQbP4DuwvGsA4aXE06lc4dEE2YOJ1zvS6/SvPBTKdKaCKUh1CBd+BJamQ+Vi/8whcVGJuL7nYg/IfZzC4qhvl3/Za4n6NFcpxeOWqiXts9QKdaO0URKf99XSR6lUDHLUjLzRKuOQq9kQH0Uf0eo6T4XXY+Ct8UgzgKbfUix0ZhMOHYNNcunmCDB26Z6o4Uhl0r3asZdY6lV3VFd/uwfBBADmSnInkD73JpJ6SYTbLgs/dh1yvZY6Qjx5OFyRZ0xILGLJPIZLIFn+SftI43sY1d/2fBBHvvUB/2II4dOdvB8HAP97RPxsAPjeAPBxiPhbQgj/2O2aNwEQJxpEftzLtNv2/9g/pgohgF56nkATd3/f3YeX9anV4bxlyFuEkfZlG/Va2mrkLVaPY0be9sOBMgSHg69SRcQST8/l+KSSqyTq54bO5pPc+JrDcgDs8yBPokGU6SFPepVD/BTTxt08zQKV0wbfVlt65q/md/AA05qRq5H+mBbR1D5eyOGwhhIxk8YNf6SOhzujHkoeelSD7To0AaUUg8bJ0FqRsSjPj4f2I8/alUmXL1ZkrOz7nuLQMdgkl+6CPQRT34pxAUKHAuEojKmW9iqWtppvH43edpyhWNqr1LEGl1sIJusYwxPiOxA/9yabSujv7OxJW3HrNYosKZ2Hw9F2zZRVqpNkOJzns2ROPBzFkvZWyse2Vxw6AhZR2rMS49nwDL979+nKI0fTOyCE8EsB4JcCAKxPzX7JJJYeCxiWghAB2EZAWeTRSOidh2sIiSC4QnAJKW+ENTTpNFVN+/sP799XpmYITOVg+S1ZasZDFUsdY8CsPsrX9EWladWSNvDmK8NlA2HbZ4lec7lStVRbCl2G6EhiiauWEvnE9uVnFldbWL5LVKYFKqPJJE0wEfSqch7BRO2+qno9bAlXauX1gBO8Vh/VqkEOrWDi5axwOFI3hZBvfSltJZS4rxqpligkjtSIFAQXVUsByMg7G/NnQ2+tWsrtfd1MLF3DtVB0a/A+mMmibObNwa/Duq9ZRt7ca0nvpwko7rUklX51oopve6scvgli6cnGYJNcmujG6RPyAQ+XZlUntfWoNtySVPLq8QgmgP4bWI+q48jwny0hcTdfRa72WSuhST3lI3Ta3hsOnwDQY9vOc1eHtvG6uJGrDo+rEEutULgeYsl/Ct731M57kthzLuvQuFF4k/HRleK61Ql3JMYm3h4WQEGk3EvhdCtoBYg28xZqhjWPT0KpTLmaaJ6Ixm0ij/xV4WrXhbPIJK0sTdftDmJJEkw2sRTz8uxwAXkf4cSS9ljiS6H3EEs8HC7vB+m9tYy6DtPh6QhlOY2eMgBlyJoOiaM0C5ow6lEw8Xq99umQpBHsffTtnc36uyC/pXIVuHK/ayi/Dx1eRyFxAJBXieNeTCAVTLLNtlF/gKvR/6/FvZlv64e+I+gpz0NSpa9Z6XHmGXnrMjokjve5VN5Q/Yl+yPYV250G3q1Pbp3LhytT1XZXSNyTYZJLE6dgWLW01Zup45h7sDmUZrNv0/nEkq6v6cl0gHrpLH+ZZ8VzfhdKqVQJc6uFwHkTEzfsjuVZ/ko9aqVRKTiVt0imZz+Xt04ywwO4UoYQvhIAvvLOzZg4CXWT2PMfEtRC41ootaeha1IiQ2myykGW8QjnOjG8lWDetJomezDAUQuJy8dr/+5ateSF5MiQm9L3RbaN8nhbtHoCxeQWVDrfn/ss8WNYHjK9pJIuw0km6/Qi4shTLIG3H5TncFWJ1G5yVz1nwjLy5gjqlaeT35JM43WrsDhFKgWmURJeaphVS1Qu7aO8luJxpO8SlRPt3Ri+ao2LamMlTezKvJLQNetwSVas9jFzHyNzK7FUu+xT3r05oGcag01yaWInBpQ8g8TSHoPszW3ZgT0KmiNIpVq5Fhmky2gF0038lxroJhmfU/RaRTCHgzFnHPZdtFQt8cnAWDhc3L7IMDjDwFtPOBawjb2pPgA+WfFJpSN8BXg9mmQqzncVUrpXvbQXNfNuka6fjN6xzRPPga2hbuP7rJOUA0LitoImE97Eo6Va4uXo6fSuVeFUCA1A7MMhXMUqcTG8ppyMxnKlQmorPD+87KOkVU057KZm4u2Fw3EDb0ux9JLuGbaBNwDAha0UlybCTC2hlROcEMokkh0OJ7+DXB+qMnqbp7Xghb7RNieSrNA5Xg+plwDsELk92B8Gh7BgGDIR8cgznm4qkVgYHFclhcCIpiBD4rSRN6X1GXnz0Di5uiPv1z3EEk9PY3l4BankvoAeF+vxEvVDnifIXMPrzFUMgq8UBKD+mVVLwiMNKgSUQQYDZNWSRyxtJZWssqME0wPwQXfBJJfuhj2+S4+NoSdTNySWziId7u3f03P8XpVSq44RBdOj4t6/F+Exvrv9/czu7+Nkqem1UlEs5WPpJ2jbiNra77HAxQ2Va6G2YtwW9ITEyfIHnWf3fmw38XDwSCMdGvds6HG25N3hiB5mqZVI5RC366u+eaiVPzMkNoVEq/C38npdTmh1OFxNMZHrKUNxqmUKlYStWkrHVWE5HNkEXJJJFvYQSz3wFE10TE/N9OzwPkdw8msfuxamdDXq2nut4yGvcdsx8L/DmNEcl8FS9DEvRK77OKrf8L4XQ1fpOGsbDug0j2BCr1EdZj3RGGySS0+JPlPvI3HKhHxQHt2t4HkwEukMxdIRbSmURY6Cid/oaoRSr3oJYHyA3GMYWit3NHqUIb5axDbvzuXX1/TU6sgbyphqSZThqiVDwWSFw1kG3lyZ1KtYssLgWqTSHh8C67fTBFNLvTSCFmHUs4z43lC9xyA7Jx4RPWSRZ+qd66irl0bC3nonMCEwaQaURt4hAFzRN/fm5fhEpDbGp3AZq2ya6CqFAzfj5iE0eT/7e7sqJVIKtQklETWiWNLKBwtW6DNXowKUDwP4ynDaQFh7vACAUEtwxRIAUylxBZNSLAFEpVKso+2zJFVGWZ2Eq0LJMvHO+9NnpP3LMDlPwcTTWuAqHB0qx8kjrXDShJImobgqo6Zg0r30jAm69+hdK7V0Ou0b09C8YmnVUoCsaCLiKLD3XLV0NVRL1xAKI++sT7KNvPmrJpZy27Lnkjm+XPfbO+b1FE2c5CVwv6VcvlQCciPv3n6XjoFSiVRbmbClWIpt9vffgi3qpfcRk1y6K96ueuloNEPODiQVjjTNrubfmFiy6jFNvYuQN3/SvCU8zip3Fh5FpQQAYJtzj+LI76z3u5GkkfZaKgcnF5P0s5afjrWX6ZZ5N9+uhcAd8Zt7Sr89CiaNe/g2STJq4HNow4mJiQYsQsoimEyfnoPHRVtGWvoRnjehyGE0sgBNPmMZTjYd049EqAyUJPOtyWJxHVfX4IXdE/T1WpJMMuRGp+k8i1iyylkT3NhO57M46iO9apz3XofDxbbKMpaCyarTMtX2Qt14fitNH8sy+ObffOuR9i19lXjIn52PRXn96pl6W8dK4XRCraiVhpIs5iFxACBUiHmfMiROrw6nUVUibvRe0rBWibPC4Xh/015Lo9dwTSSJvqNUS704iwi9C8H0ZGOwSS69YQQIULdD2ws/jCVtW5eDwVC4uvJnuzrhDPSrq+5LLOn6mqbejGA6wuA71tkmmI5Qso3i8DCmO5AII+jxWorlSqVS2iaVEo/zT2m8nL8yXM1jyVsJblHHsz9f+zzxfqNHDv0cVS3VPsejfsaJ50JLvQQwplDqwVYiSquYaMK6y9S7MvZvTQs06cb9WeL+5KVUrixl7Z+Oy9RNeRJ73P3NDVNTRt4A+XrNPV60UmLEZ4kTS/FYdGzf7yW3hcpK1RJXTmjVkjiGSpP78++hj1jyyBnPY4kIJr2tw920/1JNvQTgT5x7e21vz7F8kUpFku+7ZPU1q4+Vq8eV+Zw4ChCJNPJbsupLJt4hrOUZeQx1Q/4rUy0BlF5LuR7bi0kjwHVoHiS8L9kr+Z6lcuZKjeWvW8vn5C5XLQHUyUh+XrdWh/NUSw/0WFngeeihfZjk0t2xVb10+9C4FravkDZGKnUbOz8IkZTKD8jMtxyrp4wb0mYQRiPlRd6AKon/lnqfexpzH00wteCFxEnotNHblLgN10t659KGcLicJokgLxTOM+7uJZW2nDe1cE19rnP10pkKvM2runHSqdPIu+u4T/TUbGKCoEmkkTK1URbvJZZqyTsOvcoQmpjOzX/lfo4Hi1pZqueaUTPxF6HBTmhcjx8m91si1RKfyOrJ7BKkz9IosaRD4SxiiSaeF6Za8oilRBYxYqk3HA7YtkUeaWKp13tJh8Fp5U6PeTcdw/JbEmU6lRktDrY1s7EIJQ+tmRIPh6NtTSzxVx4SB7ASSpD9ligkjquWrpAVSsnsO6mVLCPvNSROGXnr8Lj8GV7NcLjWGKOXYOLjJk70ijKBj7N4WConokoj70QkKQN96icEFOe7TeoC2OdFD7F0dBjc2aj5exmFz2vIwZjk0sRt0avsuaHRdy/uVfeeVeisslsII4CScOHlt4bHyfqX4acwj4C3rvqwQt8Ayr7YGw7n9u1OhaJHLB1x3mz1BLsVRs28DzzwUw1sJh4Dz27sfQTO+vzV0BmlVNLva2k1eES+NuWO7/uIqYWF3GhV26Imr9bKVEV9FcUSGsRSbBdvI6QyvWiFw+0lliifziRvNTjtuVQLn6vVC9AmmB5pwq6bybd1SJy5f2hsE/nLMrywOLnNwuIUEVx+hoPC7VlonLUASg9EiGuoj7FE/1J5gkhCufdIVE3rU1RVUA90nu7Ck43BJrk0sREdSpoNZUZJpT2mvWeipVJK5TaSSns+x4ip9x7/pdH8WP928rHrfNvhg9UDV+rsPoFqPZHybiZ7VEs8lUa9OQQuf0el11IrHC4bu+ay2sDbC4VrKZZGSKXainEalipghBzlZbco3jhhNLpcO4DyW+lQLZXHf0wibeJxwb2T2kbdYwSTmKyE4+/XVwhwca6HVmgcfbIl7S8RmNKB6qdXHj7Dj2+3qzTx5hPSK7xCCJSm1UevKVzOMvO24JFNvSpprkSNaVmtlNLoHrCqlLJaIht6W+FwL+vUZFSx5Jl38zzLSDi/YqGAaKmWaqbdHsnkkUoL+v3kGvJ0nBNJPSFx+pg94XH02XuEFWf6LVFoHEB91GP5LFleS0G9Sh+mkObwPF+bfYe1bOzjWbXEbbxJgUiqJYA81khm3izE9ZrGiK+mYsl7sKT7YZFfGQtZ/THnlebdMV32xdiGfG5qUpeHrQKUar4a+UrKQXof89AsG4/FPnflnBw1z78V3pJR+CSXJpo4jJDZGL6yV5FwS1PnEXLilt5KteM0CZ8KwXRUeNwZeCgzb4X7TujV92J+T+0yxVPsIQVd34BIE0utELgRUonv00Mw9ezzqOg18q6el0/01GzifujxXfJwtJG3B736Ww96PlGNRKspHTixZPXPntUiPQjPpROuWdZ1v6aYEBNYEYJDk9FFbHvvW+bdso1txdLCJsiIdnp67OKcOxZ5pEkme6W49rV1wZAIFE0keQQT1WqRRx6hpMPlLILpTDVIInihreaysOVxXK0X1VRLtEpcizy/rqvFxfquIr0HPYrlo1T/toG+TTQBgCKO7D4Z3+t+pY6h9rXOsV5iqYYzidAF+u4ThKGQuLjDWPk7YpJLD4Gtl9EzsO3i1PQ92egZZIbj3JiU2atmKeq7g1qpBstfqaVg0vuPhMfpY21t79H7Hf07Pw7EMJal1q85hRk3ewoty+RwuGzGnVVL2sBbK5ni+0tTseSplWqEkr5+1MgigPpg75bm3i2z7qPaMVVLE72oKZCOVi89AnqMvbVqiSDCY9gEgspzRaqcbJZkk6xX+rPEOl+L8q0V447u93Sd19dobeDNr+latUQqNe6z9EL3jvVe9QIL9Jp3jyqWkgoJ5URYKCuU4kibeGsVhiaZWsRS7WwLrCypmCyCiQNZPn/PYamXLIKpB7pYz8yG2o4gPwcnmIhU80g4b3U4K1yOq5ECZOKM3nPvpaRySuol5o8GeVv+Rb+lsBJK2msp7msTvpZq6ahQeMtvCcCZY8GlIHvj+6xWou2UzvsZI3hN7yRG7lpeS9zEu+azlNvB6m4QvyPgHmcad1kx7okwyaWHwSMRTOejFQ53Fql0LwJhr29Sl1S9kxjcujKWIJEGwuNuoWB6BJ+m3s+ozbvvMcEviSVODrVJXm3YnfeVpBHPE3H8iagqQ+G2kkpbwnD1b6YVSVu8w7bCmlD2yOItnBEeF57oqdnE46FFMNVUS54nj4ceE2+CVjH1mgxrE29eH28HgPKAcb4DrfYitUNarpxNTC2/pSIkO2jC6dVML9tvh8b1ptHqnot6SJDy1ynqosgkrlji4XCUlvcnokEqlTSxxIlBy7w7t7cklnj9+biUXhJL8XOy74Xl0z5l6E8fqaTLEMnEw+QsgqkVHud5NXkE05EYMfKu15MrCSlNvlKeThd9kvIg918eMpfqUSFxZOQd67smYilRSigNu+MxeHhrDomTJFM/sRTCa1MJzsGN9QncWF+UDbJP5jrqfVMTSzKU1CaJCjK28TlqBt5WubeAZxqD3X9GNrEDz/nUuddnqasuY5Irj3URf7eEtWrW1nqq+eyJYFd9lfKtUCc50a+s2HWgCfn7A+nPZOYdDeWfZL2vqQ5JtcSJpVyH8TTbSON1VZvqEEuj579Xp1V3DVtC8M7ElpWiJia2okb0eF5Jtwp764U24NXwCCRRR5qYyrKlSbBRf/Ji4eqlsh/7q8UpAulehv8r9DWc3xeW5Kt0SSbeXCEBwElE5ufCJrGFaskgluJxaZ9yUpuOxRQTegKqVUs6HK4M6cmvtTO8RSwRCaX/LGgVj1fOa8+tJ91HzIuvAcVfz7Gs43IiiiuV8j5cbbj6LSVVYemEaRl5y+NdV7K4NPW+qgdBFrF0Nf4djUw6qdXjlHJJ7MP6oyabdF8UdbL+wsNOizY5qiWPWNKHOvscfzNm4SdgKpfeOAIEQ6VwLI4IiXP3tepvTHZHcQ+io9c00807gBf2VsYqlEeVELk9/ktbQuS6FWp3JK/85d/HBgTHmHmLoatTZjHfIyyp75bhbtLEuzT5ziSSNvD2QuE8xZJFKnnnfw/hoydqVj/gCqYzlHd76muFzPnH9Jcgb/ZB/uh3YqIDnvcSTTpoQuZ6eRxs5l07e2seTEQKIWKTbGpxUXyCyt/n/JVscjyrLPP+KwuxsdtULm3O80bHIjrcOWmM1LWctsnImwimVjjcZSWcuGnwZa3rAjn8xjPvplWpuHpCL3ke06ViKdZFZFRp4B0/G/tOKF/Vm49pk05ECumJcg3ajBugDJMLrFyPeimtCgeyb5yhXuJKJS9GQ6fz0Dhw9qH9+D78+7EMvHloHF+AK7DtFDK39rhARt8QKkbe2c6bG3mT+pCHxeVtUiW+qvsxGX8fM+7g1gQ6XZJHrE+zVRwtJWEmfxn5k/pRJpY0wVsjaHvC4cwwu5NJpTNVfN14sjHYlA9MnIsG8XSUwqVXmcTVREeoirag5zOfTSy16jvHu+pxLzcjpOTtw9i2Hq9xh3V+454QVbds53krVxQqvQBqxJIFvhJRC4+mOOrBVkXC9FSaeFRo/45bwyKCEuFjqR0qzFFNtaT38h8a6DpLA+BcR/160Gv03Vt2K3pVpdxnSaY3QuMMYknszxRLUiFUKpY4saTz+HZNnYRGviSdJLGksRh/HnQd+piaCDOPh/b7ERw9kffmz1ayFdq27Zi53wtVU6XO0qD/2rWQgReuGt/398Uz1EsW6uHKOS8RsA55xJGJou3SB/dRaUeFqP66jjdVSkOYyqWHgsfp13CF23OExxyvNontjvmvmfk+QOjV2Apa+wil3mNZg0lLvWEpmEbUS73KpJ5ytyTbRlB9YlwNc9MYKbsFRNbQCGCR6cpriVRLpqE3M/HO21mdxMsKA++GebdHLPneHXUj79pAje/rKZTOVi956PZIMlQMvft3nbcaT/TUbOL2aJl6jwDFKmLbru+W79I1hMJLx92/4QvjdQehTgrsfTEZZebAq0+LXrq8aQAc5HsZVnN1rws9CiZrbGX6JzG/lwWXdC0X1/REH0WvJVItLSmH3iHXNAGFwi1ASiJMiiWuXNKKpexvtE2xRGnA6tNKJHpF45XypLm3rVhqnd1FPlMnkcqIrySnVUmeobelXtrrvdSawfA+ZRl50/7a2JvX79XLX7lKiW9rI28KiePvqXyAsKqZQjLzDmlf28g79eGU8spypddSgNcUEqfD4YqwOiOSACASTNb10ey7TEnI+2Ys73ugxTQZpspDVIUZN+RzMG6XqiVOLKX91r7I+xyVsRRLuhwYZeT3UQfPf+hRzhONwQ6ZlSHiFyHin0fEP+HkIyL+ekT8ekT844j4o4847sRzoaqAaJyK1sDHu4D2KpIsFdPRf73YQ55sOZZXvmm07vny9B57QAXzPqP36fYR6FLSOaojqx7T0NsZAGEaxrAQO5ZmEUuWSglhEX9WWhdBeyCJew9MpdLELaEnNnr7yNC2rSTT2cjLktu+TbV94vt9fXa0z59xjeBh0hp8xTg9gaXQG0+hpIklfjWnslYoHK7/9GSWE0txf1uxlEghRizFeiU5ZBFO+v0IsYRo/5nfKyOuYD2GRWw9Olo9pjWfrhl16/1bobGxfCg8m4hY4mQSAAhiqWiXMuQXx1qJJS8cLm+XIa9H9t/iel3xW4r5qLapXNl/ayttStLVK2NnjCiWRpRJfJ974K2tPHeUcumLAeDzAeBLnPyfAgA/fP37DAD499bXiQJb1EuPg14ViTSG7ic0YnmflW8d65HQnNQPEm5bj69vVlqlUfNSyvv43kvFdkUFwtt0V98kz0B1443d+7znkQH8GjJIPEJULdG2yGPpXLVkh7FJ7yW+MpwOhbP2z59EKph0+gisc6+2QpzO24JaCEst3M0Mhxk4X45aJW4t9FRPzSYeB5730lbkJ+jH3B+0wolv6xW2eNpI/fx9LwHF/VlyWvZOEsrFCkF1tIm/uKajviZn4n8RDw9sJRoPh9PKiOy7lIklTra8YJ7EasWSNXkVpBAnfxixlCfLnKiSdVrEDSefvPC5GrHUEtNRfgh5vyu0VUVc/aMVSy1l0lb1EmF0RThdXqucqB08v1YXt6ixvJiuKT33Hk4sURmATBwLo2/ht0SrxK3/kHRMUsFkGXrHuq6Fz1LLR63fMsSfawFk0peb6Xv7Uz6Rvrp8Do1Duc2IXt0feTl632PgzffxiKWt4Oc+R08/WGC7kUUVTzYGO4RcCiF8FSJ+WqXI5wDAl4QYtP7ViPj9EPGHhBA+fMTxJ26JipJFX7icvBEiSNbfRyp1X3R3kBe9E7ej1T1b6+ypTxNAAHnQ6obEdYTH7WnT08N96rT1u9l+c7FC4tB8T+WlEomHwwEASKJJhrRpYgkAoGbezY+n1UpWGY4eRQN/smiFgB5BIt0Lo6vEVcNjbhT6N/GcWAC7yZGtONrIG0ATRjHuR0+iaqberRA44bHEJqIpzMZ5LJ0MvNMUNU9GY3omk1Ia67P8usY9lHQI3dZ7sXig4FxnUyBbRdVcGnln1RIPh+MG3l4onFZGXLjSyJjEarUShd/oSawVypPa70yMrXA4mV4qltwJsvntZlxZeSKZNMHEw+M0NKmELI3neRPoXoJJPx63HpfXHqHz9lmEk4ZWLOlwOJ6mjbwpJM4y8k4hcUQRrf2Zp5GRNwAUYa2a/OWEMFct8XI9xJL5nYXXYgwWv8NM9HIsbAxmQSsK9V+qh5FI3PssHsNW9fH9PBPv2Ha5r9VvjiaVdD3PQ+U8Hm7lufRJAPDNbPtDa9oklyZc9ITrHLHPFpxFfhxFLOknioSaUmIrIdSlbBpQLz0jiiWh7/rZem6vi/leey25EwpjwiEJ5PKJdtmCUrFUWw1uK7FE5bR0veaxNIq95/OZ5pyHKRfemm574hSYfa1TvXQGsVQDEUo19ZKHUZJNK5iyMum4vt+6Bp0dNqtVrMvqngQAwmuJT1419ORVKyTckDI+sVXEUiqD5X7y2OUE1zPo1oQTpflhPqq9A8TSFtxqhatehZJVzvNa6q2/pV7aChFKp+qJfVcmete2GBqnQt2sMDnms1RbDXZErbk4cwVtMSD26R5P5X5lEfJWLdRXrHC3kfO/pvI7ilgaAeINh0ZPNAa7Fblk/ebmt4SInwsAn3tucx4do6FxG029wxW8FaN2o8fzqKJmqimWWmFzXlpvWzjOJgmO8HjxiKSespps0iomPmm2QtbKkLpjwuO6P89Bw7IAr+k82zMZ7xu860FEzcx77/lHA32tWpLQvkqUlvKYakmHw3GFEl+6Ntd7EaFwNOnQkxC+X2y5leb/3pZJt8xf1rz2OWil34IQzYqD0oehNugs8jdMIt8S2TuxDXz89VH4sWYZrV7qNfLeEh53a58lrl6qEUz88yevllXtUNZZhtL0QC9fHuCaFQ8sjIa/l8c9rj9balXSNQBAEeqcrvHiVVp307sXyHomCrm5AIpQOFIsWcbdnFS6GKSSZRasFUsyT9YlVVA24aRJJlItWeoLj1SqTZp1OFxSbjCZTzbtlubeAL5iSUOrNfT2VsKKk0dUjyaUaoqn2jGDKqPD4XgaKZWuKS2k8LjAy/GwOchG3qWJdzbyJuXhK3xPPDbrv9nI+7VQLUlT/vL+Lz/rdfOYt6Y8pB4IIFVLlqoQUYaqAkAqQ/0TYFUzQe5n8pjtfgngK/28sFSNXtLTg6VeuhVp++y4Fbn0IQD4FLb9yQDwrVbBEMIXAsAXAgAg4vwJ3xiO8gmq1bfHHHtL+dFJ2UgbjiSWvP1by5z3TKo99VJL1XTGhH1XuOMAsXR78+RjL4c1U3c9mRirl5tzq3AJRiTRtoaXb000vRXjKN0jmW61jC/HI5htb/cMc7jPiTcFPv76mJcfdPj4q0YwnaVaCiFAzVx2FD3k0HXDE+baveeIkN1W3+/1cal5ZForUQFAMvIWac6UUHu46HIpkNuZYFrEkqjPCIXLebIucVws071wOAv6G+glliifTikKh7Pax8PjXlV4nHUIj2g6agI96ruk92k9Zq81UZNO5XsZ0qr7LIW/6bS0PyOU4vFiSFzMk7+Q9lrSffEKpXH3PdBSa/buY6qZsFQStsq3ygDsI5Z4uUcnjJ5tDHYrcunLAOAXIOJvg2jk/R3Tb+l2CBDA7tK3wUioV69iqYtkutFTz6OP0zXA20kqWXVxkqmlYKr5L9UUQHu9mERdB5J0e3A0ObZvpTgx1HXKOF5LnufSgGrJMvAeUSy11EoemeTBUzNxgskz8Kb0s/2YakSXqUioDFJHMLQvfxw8MaGgCdsagUskEpFMZ4bCtdRHVp5WL9XAVUu8XoCsdKA0fl0nrxZuBAwAqxFwuRS5f/xSzahXmBr1h/RWfhtdgCQrIkqvpZdEQmVVxCXdFwBecEnEEmI07/YUS5wkIm8my8vF81cCUSfk/dl7y3OpvlpccI9jbaf9jPPtSuoPIlxCJpiIdLIIJ666qBl7t2CpN4o2DpJIXjicFR7Xc2xejqu0uIIppfF9lLIplmNqpqRi4j5LvpE31zElA2/ukbaqluIxryIcjmCplvl4n9RLvWQwHwMtYiy29k0WrhrLSC+0WD6rlmwDb+pz+SrAQ0RLzyWpWoppkhSObZHH0XVZZO9W9Kr5amVPxZONwQ4hlxDxtwLAZwHAJyDihwDgXweAdwAAIYQvAICvAIDPBoCvB4C/AgA/54jjvm2MhsY9JrzQtybhxNULtZC5QVLpDJLhCLJkr5dSUa7yHfgrtbVVTLmsTTC1yprba1vvHZaz15um58nwPSBD4tpx+DxEzlIw5bysUCrC4djKcJTuKZJ8I2+fVNqiKNQkUQ/BpHGE0i5PAstlh919jDxvAiknnLaRt9emiYmj0FII3tpfCcAeVXm+S826FLFEk1ANi3jqa6vlwZL789W4jnjLlnshtcNKbiSD4PVBAj14AH4v4GFwF9NryQq3yZ5KmIglIotaxFLNtDvVCfTeIHsc8ojn5e/MmSyn98E8i2rEkkUq6TxOMnkEE2A7BG5BgFdDqQSQQ+uCsV8LvYojTnK1CCbeNq+uVl4R7qbC42jFuFg2rOWUQimElMaJJoK4zxJRrFaIC2tYHJXR/dYilfT21ofKWl3olutUGPKQuEwCs23M405k+/jErnEMlg8gz4MjSSVdzxPxNw+No1aL+5mN/AAAP/+IY0142Oi7tAMuITL4hKtZX2eZPfXuwS1WNuu5qfQOFGtkjlYxydXg2iTQkcqk9wop1p7f2Ua/x9E7bFYh5RpK4pZPHArvDVFerRiXJh42ccVXLOkllobUagYR9Myrwh2JTX10jromboij/ZZGyKPaynGUX92/0Q47veyTVzFpzd5rPcR0z8OSHg+X3vFNbTGGXGZR13ZJLCFL45PKHmIJQBI4mljy1Ep03PR5eXsFaWSTTDUD7x7FkkcsFaQQI5laJsKxbf7KcZYa42h4pNHIvgCStAKWpstbnkv6M16N94G9EgEV8+UqcZxQSsQvMr0Slqs85vbZBLAVDtf7gHcU1opxdrjqIvpkTMv9VPQP9Yvq2rzf27q2WuTvo6DVX25m6v1EY7BbhcVNbMJx6qWzQ+O2DFB6wuGsMt6S6bVjxfTjQsk4zrgZHKFQGtm3MC9mKibXvLuhXhox96b29Coo7kEk9oYapM/QMGeMOIqIK57lqGzdj8r8rDri4W+SWOoNh+PE0sLr4NvqfWy1JJt4nvh0FdXDlXm6WIQoJ5g89VJxPEVK6fP3SOXPnrqOIHZDuN5opDTxyKiNFrSpt19um7+ZJpZGiKaesc41BFgQE+FkqZeoC/CJkLVylE6/MoWDVjvw/XJITRCKBpquys/kG/zmth3vXWg/RGD3iXStl+XiKnHSyPsSLmLi+kKlcA2aW9UQF65cWkrFEhltv6yMwwVLUqknBI7yAUoSyVIwWe/ldijK0fH08eN2Ph9qBBUhKXlWShARkqH31VAvwdqm15ANz7mqiernaXuVG154nKdS6gmH4yomDR3+xsPbeDonjWKZbL5/DQFeQy6jQ+I4sRQgwAdFAFwklrilNzfyTkqmkLd1OJynZi4+b3iNY3OHFOYP9uJ3Z8+VJMErA+E4LCPvlL72OzLy5uFweuVGTvDyULqYX4bDyXzeftY2p8+MzHKt0+poD6b3VQ01yaWJh0KLWCrLt4mls0glq/69RNMtSCWvvhFip7+sTzDtrXuijVFCecQg3w5Jtc/fmkKK0EMs1UglXUaTTB7BdEscFVLXV/bYzzcFie8fRq7HHpF0LwN9D6OP7DyedSTEbc8+ozgr/JWPTaxxSprYarXq6rUU8+Srh54Jq/U4Bb2JKMvzyCLKa6mZCvLIKSeOSfnGxx4xHq6ubOWoJzzVxVnqpaPC4whWHULf7aiUglOWG3d732eXaX+jL3leS7qMRSxZD3JH4Y7FGnOHVh+1QthS3SrLJU2rx3fqruwzUkaX7+0DZ/WXETzTGGySS28KR4TGHRdeZzLrFbbdS6v5vtjlt11Ut8BS/JyF7rC3jhuRubKbUnm0QuQCZENBMhfkJoNNIslbYa4xoTnjdzwLpW9G6YFxPOipFY2S0xC96FcIS8oXhq4dJt7JZ4mrmFgoHSmTehVLXliFJ93W0IM9TTJ551XVfPggsnOL9L2XqO45l2qqu0nmThyFRyOStmCP9xJXLfH6tJk3z4uv13Sdsj1bXoXygYfTWH3bCsPp6ec9pt1C9UBKVfLYY2olMgv2vJZWF6a4B0rlEpkDk8rowpQPWgXBSRxu6B3b008q0atOG1Es0X7Wt6gVSzUPGQ2tLEohcoimobdWJIl2sPyzYBFMPeFxvCyB9vGOQ/tp827xuiqSArD+yvK5kXdYVU3CxDv4Rt6h8FYiU35SI5ZeSzocrkYs9aA270hjN6FW4v00G+2nfdK4LKuWlrWfxjpzHu+rcV9U/ajsr5Qey9vqQoCyn/K03NZ9oP31OdbqIzq/Z0XHajsccvhZMcmlid04arLfu0KJJdHO20YdHe2zjtNzkdd1nzFRO5JU0mVHyZ0tnkpcvdS/z2MpmG7vI3Xu8bzQUjfc0FEdeavDaWKJ76tXLAGQaiWCJpVaoTGUb5FMFsE0/ZcGrld89D4xAXFy0avEuTfpFEIAVI/VKTQul8mTmhbBpD+3NPfNx/TMvPkS5vx78TxbWjjzXuk9JLQeVIgJbND+SnL1qbgfsvxMJpGBNymWWsQS/x2111ErBI6/1spoxZKF4tjsffyMZX/pVWR4oWt8UkqhctbZUJss752gW+ghmLR6iZfl9RCsz9BzBaJQN76t9ycjb76SHBl5c6KJ6KO476vox0QqpYeKcIUrI4ELrzTIaa0FPY6wfGittmuZ7ZdlpCcaqr4nyiqyl1Dzs7slsTSKu6qXnmwMNsmlh8eoiPvO6AyrKY2By3C4lmKpplbqVUjV0CpfU/+Y5XueHA4SdXtvOK6fEpuEe6vIWQTQ3pXjmvUfRGQeBfc37Vr569os2wdx+3XKLMV7Ui1pYslSLaX0dYWguH0R5WMd+Qm2PLoOlZBP0XjaKKlUftKSZOIEUw10zm0lnjSJ2iJVeybcrZXiWu0YIUanGf/EWeglmPb4LW2BRyRZ6ZpUGn3SfHRYXE3dGEJpFrwV+iFBSlfXdYCsQuWqCE4scXPgBRBe0v2ECKbss0QqiBaxlMin1F5fnSSUEpUytG0RUTktFPl0fI0exVLNuJorLCySxVJL4NrGa0B3P37s1tzV9T4K9mf26vAIJmoHHUZXyY9fhrvl9EK1lNRKpE6i/LDuE0Rfzh5LctvyTSMjb04o0asw4WcklF4dTsPyVOolmPhcynxoJ8ZhFzNdlieiCYrrIVcc6f6h+5JWGVJeS2Woj6XTrfa0YJ3HvH/x+kbUS3vLvSVMcukpcD+CacRvReQ7T7v4vj2kk1ennuDWymjsGazywXHtOxglnnpxlmG1RTJ5BJNpxt1IG/Ve4m2YAPCfl9jXhTIkjn7jen8ulYCKWEpKI05KXUAbSHLT1wWUsbehWKIQCoLuo55/gIVgmHUDZIKJh38SiXS0suI6OKnrCZtrkdOnE0OTd5roQK0vtfrZ1nszEUGcEBoJb9PG3jzdAw+HA4C0qlTM40qmuoIJAJIhcEzjITTMk4XCbsKrSm+HWo8qm2r3A3rAIB4IJkIpG3mnwDcWEveyTlNj+NsizLu5z9JlifewiyKWLksfqdRSHW0llWQZSSyVKiX+vk4sud40/FwkdRJkgolOQgqPS/utBa0J7YIAr4rQ0ehRaGhilW8nBaBDGFkEE5Wz9vGgjbu9cDjKI5Nu8l66pvdZ3XRdiaZrkISSFRLHjbzjMZhKiYXFpfYW5V7dhUH4+67oC29s58zFaLxFfTS+z6QvN/IW+yZyl8jiTATHuttkMC/H6wDw+yZPAyNvBIs6P1tltxBDFtkL0Ne3XDzRGGzO3CZOxSjT3rO/Rzy1iCW9DO4WLOxfDVr1cQRG61qcf0PHFN9pPeTQVJr1/P4nEWYThF6iNpNF3kpBsTZHPahUS5xY4sflxBL1W49Yik/Gt/uYna16OBrFKlEN1dIooTSVSRNHYsSbKO9j34du0VeLcDZDenSk74VHKgEABMykUS5j+yONkNVHG/nXoB8aWBNZrlpK+1XC4bRiKdbN3huqBkqvEUg8HVmdfJvvp/cBUSYUefIz19FDLG2BVoZ07XOD59bW5Nwy4haha5V+aK0IV+u2XKVU5gVBFJPfUjoWSM80clqSdbCQuHBNBHEKiesIf+slgHu8GG1F4fZxVOwrWJxbmnjaci4JTb3TZ720M9A6zpHtqJmjPzumcmniOFRIghHfo3Kya5EWtvkvL2MNVo803F5qN79OhdMh7RgclOvyVltbCiZh5A194XE19dIWL6cR7IlZL1Ul/oS/PkBohTKNzmqKYfOa6qmW1LnohMSJV5Am3vSeyuSlqG0Db0uxZKmVPKm2zquBzmPa31Iw1cLjqNyj+X314Ii+U60jBAjvm657YjN6lIBbyKReMitASNfBrErKvkstLXgtzEeHzwDkiWuNTIrHvaZ/R0Kbe++5HqQQZyMcmitWFzHWItWSNPK+hJz2IkpE426uXKL3ZOh9wWzQzRVLlPbCyCYrFKc39K1Wht5rUqmlWErtqiiWxDEa9/7rSrYBRDKFq5eSoglLYjT7GcXQON6GM6/mnoqppmDiabztHjSpVKiXuBopmXRnZdMrI6diqBwz8l5ViKWRdzCNvLWZN3kthZVs0sQS37bGGkd5LBH0Az/qn9xmX/st8T9Zl1QZUv/j/a0VwprKre9bYazi+M51uUVseSo+K0/3j8LnjOW3+uBheLIx2HM91p3owGNPilphdn1KF9v4m/a1nozGwZG/ipz119MOr86tSqFRHFG/TcLpsKS+40wV0iNDEkvprUcsqTI0ueD7eHXop2So+oIv4ZYeACPndy2UrlaP90Rvz5O+EXSt9uYMQEfqnqvETdwSj6oa9ELdevyUasSSN+zv9VnSHm+kgJD+aWWZIzDsR8lXh1N+THniimuZcoKKADJfKyLY+0VNTikthecwYokrksBIsyawnnKJ51moTWY9YnKrTmHUCNw7fmsCzr+jGrZOoGsKJgDfR6mnHtqfiCWrnPZaqimltMdSTLua72vgXkt82yzLfNIeSWW8YJ4ZcZVhzMvl9KlTE+ZoUpbvP0Ig9Z6ztTK3UO+9b5jKpadB61nbLdBJMHQRMzkEp56vJ7ylYslTK/WYfFfb2CjP1TxFHhsEWoPsLU8uzxysWybInprIMviuqT38em6rXjoCVnx8S7V0zmcqnuc45crQTK5WqoXECdUS638pnamW4pEuom6e1lIs1YigllqBDwD1eczVcqSm4N5LZxIso+EpR7XltLCYx+6aEyeh1U9GVo0bxd57Xs13Kfu95FXjdPktk2i+uhSpUUn5kMrgqoJYV5uSJsA5rCa3NXuzUPkW0dSnpq3D9GvR9wp2zedG3txriRyYLrimKJUSIgqfpZdFeixdFumvZJFKAFAQQjXFkCaw9HutVrLq4GFopYJJqpa2KJY4Yi/EQkVB3kvXdeJPVS5wziVb9wnvGPR98JXsANpqJZ4OYBNJVigdpeUQN5nGVUy0H4XEiT4byJ/JXiUu9Vsk1RJTLAUq+Vr02dhG+bBHbxefc1UwkcF3S9Gk51PxgaBUjgsiGDD1U89vCVNdJVmUQ1S5Iin31XgMqVoSfZIRufbnybD66CgsDzOe56mTrHwPXL3U0wcXRDdks8ATjcEmufQmcQVrssml4veEJpZ6w+FqxJJHKtXC5rYim1Rb37FNOOmB4JlEUW/onxW7XUzOhSm3HR6n8ymtFRpnt/3xCaYmDhjUl+C3Or8Py5A4fo6pPmX0IZosiPqUiTcvb4XDxXKSbNKKJWEk6ZBKI14u3MCX12URTBq3CIHzzud7Ls2u8fR9buKu8AimnvC4R0CNYCrK8tC3hmqptu9ROLLv8jGZfqCwQA6JXtR9QgW8pccJetJKq05dmBKCwuG4z5Imkvj2ZT30hZE2Hqk0SijJfeqkEkBFITRILNUUHtKo2yaYRB7U56DmvpjDxDyYqqNa+dSuCE4y1Yy+dXqrPTosjo4tiCSQ3yMRS9zIm9porwoX0nWMh7UKYgmy0vAqFEhlSJww5G+t/DoYIqf7JkA5V9FjL6uM9kXj72lFx7hfVh7q8FQqo72FBClb6bc8Tb/XsLJq55DXD2oE00hdNXj1nhpWd2NMcul9R7hCzStpD7yVp3r2GVE/9RBLbjheI/TFmpTqurQ/UdxPexBdWPnjlQVbvKRon1Z7PILJyvf2PWLluHvgVm0b91sah7nyjyKMeLpWBHKiiRttez5L8gmZ3i4HO/G1HCJg8K8FgfknaZKpNrGteS+dBb5CTLXcjutDr2ppE6H2RgY9E7fFUQTTFvPwWyKqHspOUgutqaVz75ZecLVE3D7vGpcWYzDMgwFAEEv8oWZaLYoIIZTk0JLUTFnxoImmeHyqr5zU9kxWvXAeTipZdZWfE9LnidvtC+WIYonq9fyUqhNoYCQPBngNx/Wh3jPLIpm0iglAxmYUyixenxNGR3VzXyVKo+8uQPmdUZ/lfkux3dpv6SrGG57KULRHEUjte79U8uu6uu0pICuWquWCHHdx1RJtp1BUlk7QxA8nkZKqSZPAzv4WWsRS62zm+VY/6SGFOBEk/JWcOj2MElAmnmgMNsmlp8IjhMZJdJFAA0SRla4VSzVSySOUPBLJYvlViergLsCr3XZTyuuH0aUyTaLneB8Yi/jqUTDVwuNM1dKDE0kax5ok66dU66t5DO+4Xt9X519h5M2IIstPSRi38vfSxLsMh2NlDWKJzqELvIutNBRLFqlUI5OKb4SVpYGfpaIgQtOb6C5wqQ4SRzAyGRxFa/W4nvRtB4anMpOcOBZ7FX5bCKaaunc0xF2rkZLJN9hX1R6Fkada4iFxfBnzUg2RlzNPq0sxc2AOUjro79BTP/T2fVPBatwb4nta3fOyqpMuoMOeX8ILZCNvBG4QfMElKZYuiPCyGnovq2rpsk5Oo5E3iLC5CyOQSLH0Qrc0aJNLYOTl9FKhpPcBkHfZo0LhRhaLIlUDKZR4m4tQOYB0N/NIKNqvpVjqQe3WkEyTWdssFRMvy9tY+CY5x9XEkmXiTUbd5OcU1tekTmJG3rkfcyNvHRKXjbxTHyUjb4ihqzwkjoeqtryVjjD15gQw9dElZHUhQDkGk0QTKZVifTrUjVRLRApTGcvEmxPEvK7efps/09bvIkOHuwFI1RzfbtVpEU+n4MnGYJNcmrgrqvHDnRfWLcRSm1Syy+qJo16Zih+/DAmzVU1yv9uYCB+NI4mjZyChHtEMeTTkVXgusbC2luJPrxJUg84fJZa8CWbvRPUI1cQtQucsPHofmJjgONN76SjwFeM0eGjcKPpNu495YEGhNbeAVrHWygHI67k5YUV1zQcKh4t3MEuxVITbqIkp/9X0BHULqcT3i+1ey1XSRtRIui5dJ2HPL3yrEJvWfLeYtINUMQHYSiaAfqEGkUjFsStt5fuUPlL+kblHmky3H055K8I9EnTftVaIy0qkbOod9+X1SLSup62rbc0s/BlxOgH1QJjk0nuGW/ku+b5JxmSWqyWK8pk40oolKwTOMgrXRFIrFK6GC9r+LeXTlVLR1OPVtAejT3Ot4+pQOeFds36eELIZMi/vGXS3vJduRSYdvbzrY4DOd7rTpyj3MgwOZJ/M6bIvcqUSXx2OVEu1cLikUuIKJqVY0qQSJ5R6vch4uXR+rvUEvKa6o0IhnsMt9RLV+wweMaMY7V/m+OftfS0TA+ghWWsEk7VohF/PeddpIpgs9VIPweQplkjtEPOkSkmUY6E1FJprTVi5MXD985Aaol3Ouv95aeV9Yl0xlC/2kFQRWRFBBsEXuKQrPmK8cxCxtKyqpMuSVUlZrVQqli6MXNIKJsvQO7aX0vqUSSmt+C7aeZxY8lQYNcWSd7ZTOp0ZWr3EJ6vJ2BvRJZVIaTEyySWlD0AmYZL+uqIqouMRRFn1ncpVGDvb5bSFq5aCTgOAV+HDVBp5c+XhB6lnstdOI2+hWiLfJaU0tFZz3TJG5X0zpRm+aHxMt6QtIzQuqY2YamlNF3Wq/qZVSzw9K5lyOtXhEcK8HECZNwLtpQTQVjBZIXA9yqYeU29eZzeeaAw2yaWnw+OFxo3CInfqKyBYgx87VI7X30Mq9RIyfOBnqZXoWNdEIJVlODlTa8cI0bSFULL2t0gmi2DS+1pt3aL0eAaCaaR99c9fC4k7HrJvKLKoMhjJ6cysG+X+AHzQkhVJnFiyV4STxJLnweSBn48jk1ZxjButGsdBfWovgbWnr7Q+66M/ZZ2YsNBjxN1aOQ6gTjBZq/rUVQ5ENsmQtus6EaW83I4cYmO28+R7hrmgA+pFGS6gFal80Qc9YU1/SCtQZfWDUC0llVKpWOLE0kVNQHkebcf8ILYB5H5p2/0u/HKScJKhcLINskyrXg/WBFWHx90KFrHk9QCHTxIKJcuTCcBWdvF8qy06HI7yriFIw2+lYOJG3iHokNb8j4/ng+jP6309sPA4Fg4Xj2OHrnrp/OHsKNqKcjskzhMeaIKVQllTmjD/lsQSpYn6wCdhdTmo5I/AIlRHCB6v7CaS6D3AJJcm4BBT7wEj7mZVSrXE0/iKJZ5aaTGIprxthPlULsR00+j5XAFeixA6fnyu1ElpDaLpVrBIJo9g6iGCtPdSy9i72H8j2XSUOqn32McP9o+obyneIyxg+S3RNgrSSHotpXKrakmbuFo+S5Y6ig9kLFJpRK1gKZeSQiksQh2g2+Gpl7jv0r1C4SxsaccQEdp7rj/G1zHx4GiFx9XI4CMVS6TSbpFOFrqXhqZjsfLcZ6mod+M1hfxbyuPWfVtq6FnwRJRHucKUvg9kA29p5J1UEEy5RIokHg5Hk1L+nhNJWsGklUyxnCSUPM+k/Jn8z9sqb6mVvGP31t8DHe5meSrhOuPFG8x8u0PX2HuE0muJn8FazaTBy3rEEvkpceUV91oKBeEUin6ciCGlMLyC9FyKx/f7p07bcn+uPfwT2+Ih3kX0UVHOMPOO9UkyOJPDvI/6Xkvp2CtJnNsp+ypHLYTV60etK7p1+liqI91FtBpwJIxNqJ061Et5P0z3nFo46zONwSa59GbBI5sfA6782lBD1MLhKJ3XqYklPQgiWERSbWC1dN7gNLYQTSnvQO8it33e6m6KZGopmLS5dxfx1EkcnUUw9eRvxk2v/uozGEbeGkX4m/Ja4ivF0RQh5l3S+bywfSxTVwAwQ+E8tZIkmPomgXzixs9LTTDl+hwjb2PVuFuGxp1BAh2138SExpGk61FEkmfWPbpvryacDwmsJct1OhkCW/vkiWm56pT34IWbBxd5fAl0rojqud+u1269Wih/oBfL0f2BXfdFSFw08r4wkullNfN+wXUZc1zD4pCFwy2RZHpBgMsSfwsil2rhcZxQ4obDqb0blEIe6aR9lfwV58ryLTsvaxKtTboBxh8/0cTWO7yeXIuV1li6UAyFMr+XkF0Qi4l/MYFvfFeWasonlrKJdwBp8n2FAK+BwuDWerJ+kFFJ0sib91vPyDuFyon3fp9McwKKejjYxgFZP5Wm3YvYJmSV4bo/C5GL9UmyyDLxjvVIYslSLPWQSqPCJV5en16aZOolmHi5nnQLPYTVRuu/h8IklybuAh2SY5YxJ8dMMdEglmqkUr9ZuCzHbwhUp6V20GFxC8pV5zwjcH7M0UnhyI1oK3GTJu8b9n8Go24PrXbfU+XS8lDjqqW0rcvUwlKTz8al6FNmXVASSynvAGKJl6WJmkl8KgXTthWrjllFbvT82ESqHrTanVP5U8X7T5yHvd5LjwDP2HvEdCCFvFUm1ZJUuqq88jsk/5a0PahyOBpC3cQeMOj7AA+Fi2l88srqw7gngvR0iWlZ/SCIokKdJIklkZ6Ok4/ZG/ZWg2XW7SkqesJ3dJtqdVkT0T1m3Xvmrd6ZOKL0o7I8lEr3uzE/KOqH7XYJpdJKNPFynFRKx2CqJXlsHs66hrh29FWPVDoaoxEQyFRK+hzRq7cVoaUOEdRqQU8fOoJnoTpqp5UmmB4OTzYGm+TSU2JkCHQDeObdbNsy8hZV8EGMIpC4gbdFLHmk0sKexFnHsdCaTCKWA+tF3LAqdaufTKuZAOSN5mzz6RpxxhVM2uSb76/Nvbl6SYfGmW24g7E3gC81PvP4x9ZN5zw98llSuruUNFciMdWSVDNljw16r8PhFnxJ9WnV0iW8rK2wFUterD/V1wvqg3wSS+TRM5pyZ18GrV6w1QnW+03HfVKyd+LxcU+CKZt1y9A4S9Wk06jFtSff1vFyWT8sLi5nLr1brPFGoWIK2UC4qNMyB954/ZP3jkt6FQpWplZ9gXfrfSWqIV7gJRl5v0A08ibV0mUllsjE+2XJyqUFEV5IwYRZqfRubQ5P46QSD9UB8Mil7edgiyiqKS081VIvscTzPbKF+y4lQi6sZt/A/Iw61BIa2pdIp3PFkFWuWb9J2PXPazSpRJ/19Zrbx8PhSLX0yvbL5t38Pb1mpyUy8i5C4sL6PjAPNdZXtWpJ91UzlA5ei3lBD/hiK0KNTuOzkP3QaCyG6X/M4zTgpC/5pMXzibyWUt9bVYhatZSUSIwg1kon2yeNfx6JM4y8awqmPeqldLwGCSzrwiGS9tExyaWnRQ/B9HihcTVoj5daOYA+Yknsp74Lz2vJSueDvTJ0LCuN9qiZqMypCoQKesmdZ5y8t3CcWfeGY580ARtSsoEKfSDfpY4+wg28c31KKbiBWNLqJN3erQST1cceyWPpERHgueL9JyZa4Ooli3SqXZU90sy6lj+ygsuCfuBAWFSavgfIVT9pQrpOWIkYYpPNnB4nq1SG/9Evwl9rxFKNVNprCMzRquooYomXO2sJ86OqNZVD66s1ErGMuy1VU1GnQWZdQR5fKJog9kvP0DuTVErltFJJRbsZyctD5CivNTbuWd2xh2ByPZg653zSZoT66Vgn4aWtcDgA2Y+BpVmhcFa9Zxh518p4CqaeMtVjwD7h0bONwSa5NHEqmqFvWC55y/O0gbcmllpqJS80blQyelGEEoBxoeCDCEfNFJ8pZZJJ+zLFasqbyijh1Lox1Yy0AZiyh5NjzH+pPF6fesky9tbHv6WaYouMucinX9gtd/Tn6Tl32fmvPDS0aol7LcU91SQC6QkXqZqkqbe1Mpw277aWvJV90x9BWHlXCILktVQSCyzsydN1nUCW/kw9wLX1R4TITUw8O6wFICzUCOIRjBpy1+B5MvV6NelwOMtnia8SF7evIkRXL2lOk1QxvmBqCI4QmOdLz0S1cv+yvPfcckAPHOTfEqSR9wuQk0ucaF7SKnGremmdhCa/JVh9ltYJ50W9BwB4WWCtKwhSSZJLoTuc5iiyxpr49vos7Z007wmN82B9J1dG4BC8cLTREdAC9md4DcH87nTZK0vXxt7czJtMvLnXEoXF1VRLXGlIvmjcyJubeUdlUg6Ps1RLVn/V/VMv+NNrtq+hV+/N6TSaycok/p4beSfCFwDk6o6laokbe2cVE1PUgXxP26DyQaXpsr3gp4qlUNJl9LGCsZ8F61oy4ru0hah6Bkxy6T0EScW3wiJuuvbj5I7yXCrCd1g4HE+jehZVHsAnlhZFQPG0UfDbwCLSX+X3sX69Ws0kws0MJRMAFGqmWN229nqwzMX9siXBxL2XAPaF1zzyqnFFvfwplbdctBr43w7URxqTBKff5Xy2AhBSyAOFyHGTb0YYBakgtELhRLoimvR7C9LEO5NJdH7msJc2adSjEJxqJoYni/efmNAw1UnKe6lFMHkkmUUs2avFtacRlhrCwhn3F76gSqaLKhNXCq9hYTacWHrBBcism4e1WeFwZV7+uzC1Ejf5jm0JxeRUrhJnf+e8zLVx7+mBPk6P79O24+hxaDik/T3Qq9KldLXdS3pdTXKuXocguUTYG72XxBI38Q6BkUpBEsXayDsdgxHAfFyhiSI+7uPm3Xp1uF5/pq3hcQB2BAdZFeTt+tiLwuLIyFt6nZWG3Xo7toO3yVYsaWXTUX5LFoHUCoPz8vj+NdJI13cNkgRuqZeqoXFPNgab5NLEKaipkdx9sDQI1mk6FM4ilkZIpV6CLIfg5P2vLM8Lh+PkiCaZauFy6Rg3ICgsc/GagomgJ/GtyXiveukonEUwPQpKvyWdz+LulULQ81oS+SyGn5CfhpGfklyKmr/WFEt6MNOjGChNvH2Cydvf9HkwVoybmJhoo5eAvZX/0shKcSN16LZ7Jt42oXSMge8ms+DGqrC9ecJzTygiygkrV0DkNKlioFWoECSx9LLISSwRSJxYyqqlUHi4xOP1KYcIIfgEFECdePL227Iy3COipe7S3cA21Y6v1mfm5ek767kTWx5Q8X0QRJMOUyUFUzxOiOUZmSRXiMurPNL4gNNPcftVmO5XTb+FL5P/KUfGrXrFzZ75jLQo4KGrq5cSyFXheI2aBOKryVGafq/VS1RPTa1kdY/ePqPPWY9kGlEOWaSSRSR5sFSGZ4a6PgImufTUCLCP270NaKLKt9N7mviizC+Wv9V1sMFOzrdJJZtkGiUdVlURu1nkGrIJ+IUNtqkkNwGXSqYMrmSK2yXRBHAu2WR60RgEUC08jufr0LjRY9fa8H7COGeZkbdIpnRLmcRCILjXUiKF1gnDwvoUVy154XAIF3ihvsaIJUuttIVcApATP27Sq9Fr7s3zHzn07RHO/zfkNTlxIEYIJoDxELm9ZJGl1ObXESKKtILJrc8Jh+MT2RxaQ2Wuok5uDhz3vRbXHWn6TeMH2wB4CyzVanrPxmXcY6m8D8SHDGTk/UJ3gtXEewGEy4IppOZloVC5GC7Hw+HeLZlAyn+hIJVekB4orEQU5BAq/olak9E0sRMKphIXCF3XPotQskaZXrtQE5gD5/3RE1Vd11WlXQNbaQ18sofjVYUkFaiQUF7btFqJ0kixxMPhuDophtHFHpvUTJQHMiSOWXqvn1caecdjspC49b1QMnkqd76IjkMotcgmrjIHkPMdPk4rVu5d+ypfJU4beaewt7W/0m9zoXSAZjicpViySGHKAyMdGun8nND5XijcqEk3pXOFk0VM9ZBVW/FMY7C3+1h/YsX9JyUezCdkesADMozHWhKdo0UslUvmXrr+cnm2eh1IQss7Nk8Tn6XiAeUaKeOS/nrAy/fsY6lVvDbWyvQYs98CjzApH0Pf7zoa1qr7EUA5mYhp5e/GySQqK/tQOXDxnqhZpNLI5NGScnuhdmIgFfy2vQXcaxGAiQmAvnvDkdgarmqFrw0dt2N0X6vXMwjO9V+L7bIN2z67bwAsHzZY0GMHHi6nr9+cpOMG3nKiKSeutAeCVDXQhJWrlYCVsYglPpGNZUNB3PByMoQu/8nPVP7p9KOh23ym2skihJL6R5E5PGxHn4ma+OF/VrrXltqfbl9thS3KCox88uCGvKJPAMd06Z/ECeBa/+1VGfbmc9RsP/gDP4Jl5B37J42t2LjLKIsg+x/vz0U5l1yVx9Zt0X3Vyvfyeo7Tk16D6b92Yp99dEzl0tPjXPXSaGhREVrj+SoZdXICSC9/CyCJJa1YkhPfklCKr8cZei9MrQTATYIjrmw/rWTiPxcZf2s/Jv65Y1p5U+slmFr7eB5PdEyuHMrhftl7CSDGzm8x6LaVUY+hVGpJl/twO/8l8lviqiVNKnlG3txrCVciknstcYKJwuEu4SXVSQMWT7GkSaScN3btCo5yiV6t8Dhp4r0/POdRvJhu3UceoEtOPDDOVjCNQqiTmHrJUj8C2AomgrWSlMhXKiZZ9lrdtiAnrJaptzQIlvva9+H0HhrjMGTjMMjh0XystcAFlrDAC1wAw5JUSxd61LCad78k4+71dYljJKlOin/vljg0elmiYil5L0FWMCFk5VLyXMJMxNQmkuZKfmsS1RXEPcpW8OTvqahO7GumuxPr+0sSuPKnBVIDpffOvr1Lq9dWh7MgCC5HsQSQ20gm3q+B/JeiRTcAwAdJr5TVhmFdAEQbeeegOXqfjby1H5MmkagsT9PQthG9qHkzcXW5HoORaimWyw/7cCWWKJxVey2RaumyKhGJKE71MCIZQPfV/J7K8239Pn8OGzrcjUOHZLa8lnR6j1E336cHUR2/rY5nGoNNcmniprAIJ2EgrBUPamJc1AXOoAlKhZIus4QxcuaKV7k/pQMjWYy8POG9gPZb0u2zSKbY7tIX6Sh4RuIewZTyVXhcjRS654Q8EWNP7b/Ez+32QKz0LhsfqJhqJ0bexlaVT7TL8qjKYPEZauolPmFDwDRJ0MRSCxiWtGJTJJxY+CnzXcp98Ynu5GcjwCOLYCceBCPX+Z5+e4Z/UgstdZKnfpImwNKDJTiebj3G3d35B848tFo8vXc89rjXkpykopiYZgVSnrRyo28y7yZSSYfZvGAQ+2tSSaoPLDJJ3XeKySj/DbGYlFp3UT3meyb0eioJxZDzXtbrE3kc+fsdI9dsBZMsE027M+mrvZZiGUkK5wC47LukUVuhkRt5e2ULxRJci/HaVtDDQHpvqbQtk35+jaSwuLS9vhfKQ1CqRMjvRb0OYeSZeNfIYQ+SQC6Pr0PmWl5LVrqVVgtFNevAnWFtTzYGm+TSxOHovVB6YTraxFuvDLeop2g8Pb8vFUwAmVDaEhqzBOnfQitdtAYcmmDi+XRl5Kbf3BQcwCaZCEeSTQsuVYIppzWMuyv5tzLzPgO3I8f0sw3nXGV+SzUloPBNsohdZNMDplri9XDVEqXxcDiuWlpblIilMnxNbre/jVzuuioQLIIpl8nqJa4qPAJSsTgxMbEHRygJNTxCyVsld6sJuOW1xNP15xLKBhZiQ6qIor3WJLXDu2ULkpqV+V9yvyXmyiImp8gUEZjIJLmE+QWj11JULq2eS4tcFY4USwjxTyuW4nZYPZdimy/Ce8lWLmlQOekfxNQcyNPp90WVruqsH9Ksuwfac+koT6VaNdYxkkIJFPnGiCcrRK2nvVs/E98tK5fyb8uVVXm77rWkCaUAr3DFvEoc77N6ZbirJpXUdiqryvD3abx/wEI0es7Dx2gpXRPC3G9JEUiF2gizikmHw2nVEk/jdfD3PWFoFlkMIPuvRTQVBLFDMLWUSlS2pl7qVTvV69/3QOVRMMml9xTeQGsrLJVDzruURFKa8F7Evp6JNw+H48QS9zfySCVNKJUrYLUv5HTDuTCyJZNNXPWg98uhcRZdYJFM1spzBE1wbF2q1COlPBUTQCb/uEk3D4+7ApP0QhwpWsbe9yKWRhRM57Wvt14imFptXcR7a1U4ek19iRt1A/MQYyvE8f5FYRAiLdjEkhUKVyOVeid1fIU4AD7gte/anODMqsIyNA7XgNe66bdNKCEusAQw894inowLnrgTrIciNexVJwGME0QlId3ev+6l5IfFcdUSTVj9el6BVqCK5Uv1xFEPOfi9QYOPlSg8mv+9hBe4wDt4gRdxnechcRdEuCjCKKqP7LC4C0Y65d2SyaR3a9MuGOBlVSrlyWtgE9g+cgkgTuZ4GNyCwSSbLFWNJpqovhZa7aJHJnx7BKMkjfy8VntsdRCAHMFoYsnbxzvWVk8aeRybVAohwAdKuXRdS2cyiZl8E0lkGHnzUDjeRzXJxI28c/prSTRZiijI1hO0b827lI/b4n62X2aZJvsrEcJirMYJ4vSXV5FLxBJKAkobeHtkE7AyPC210SGSzO9BlaX+S3Va5JEOhaNyVMZKk8eEZO7t5XHiikDqJf74uEY+aTzTGGySSxObkCawHqG0xQ9ITYrzilV5+XN7v4rBt0Ms2XLR8k7HfVvidl7VLUAmVSisRofAJdKFHbE2GeXEy5kqiZEwu9pKbhM2jiGndjy96uiXksgt+xZ5LQFIEmphCiUAED5LueX2qFGrmPKxyvI8PKXm0zISHsdD43rwKP5KExMT/eglizTBBFAfB+htvUKcV/7R4D4IFF6X9muxD5BONYfExbpiPp9E0mS0NgGN4XAByLAbYFVRGMSSJpW67phiYkn7Y0qLZBOmyaFUF2Q1E0ErI7ZilFAiXDv2qxl218pKIkmumqdXj/Pqrn0ve74zTioB6HC9YKbXwu9kWGv/eNfzRPPSbjWekDYhl0JZ7kH0VWCqJsrnZdk+i+rvnFDK7SjVSryIRSq1zm69R1YnZpLJUzGNwiKMevJGCKS3gkkuvQkEqHfBHgVEX/lR0kiE1zAj4bidlRRLMZDxV1q7wLuUdoF3AABAiiVSVVAa1WVdVLHDc4lPuQNyVVEASPXHpxNaycTNvOM+sLZBvud5a4XxeA0VE8D+G5VnGq4VTLXwOK1eEmWUL5PMkwqmW5FYNQXTKCl0a+Ih3eKLtrNt9UTaCj8ViiZSDyYyN/clbeLNw+FeGFGbQyNsxVIRGqfIJHNCp5JCKCeM0TdJGnvH9LC25QqcIObqJVDnaySI829qnc+PhFsrAJ9pGdyJ++PWxKxHKGlj79g2dPdpEUOaWCrNvbPfUl6+PIh7G4Xa8DCbkb5shcx58My843apZo3blxQirRd1uIQXQLjAJVzgApd0rb/gAi+4pCXLk4n3+vqyoDLtjiqmd0ucEL5b4l2MPJdeyHsJs6ppwZDC4Sg8DjGYo1UiiYrvg/LTOQAAEJKiSauZrqEMi6uRTGcjK3P6yvGwNg9aqSTqUenW6nHa0NtSFh0Fz//pCpJU4mql1xBSONzr2l8o2O0DrlBCpldCrVa65jC4pEji/ZfMvbmaSaUxpZMG76fJOgJeQSuSrIeCCx/Pge+LKUJaYVUtETG89lUy8kbAgiiiULlECGNWAdYI49TnGAmV0/KPqLtQq09xlVH67lS9RBTLvKw84vWUZLKvXgJVl4Uq4QT9cQyEZxqDTXJpIiJcXbXDVtSIKHuVEhWuZqiWRCyxuICWoW5apZQmthuWJb/CNe0XSSa9GhXVtyJAUjLFi4gkX7S5t6VS0iomgFL1NBqCUEMvuXP0pPaeYXK9ZOmZkyTuIdQqZ6bX+hkjWCWp5Kv9anVqE3xN0BaKpAaxVH2CxiaAtJ9lttv6/s7wXno0THXhxCPirSn/3OXKOyfQpkEwD6NxviuavJ4BTT61VvLlr/E9ltd9zISMFzqTJ6MrcQSQQnGScfeqTuLEUvZ9yaomL4zGCpmhSR1igMC2eyeJWsm0VXE0ghHVQ4+SyQMnhyzFz9UoWxw/EU36u9/crAKaVIppUjnIfZaKNjpKRHu1RxXqRoRwyCRy2b7HuObxfsvnQda4Szx4Z9mk6kOk/pk9mXIZSRpZXko1YmmUVNLl+LlVEkmZZPb6Md+3RTD1EE4Tk1yaOAA9Bt6+H1OpqgDIxJLns6Q9lkix5JFKGOqDIw9WWByErFgCIE8Fyqc6IV3Frph9lyj3CtfUAk/FRP5EANBNMtXQM8jX4XLc5HsP+TRKII2Ul4bnYwTpowwChuAYeWsvJa34S+WMJ1ncyLvqtQTZa4mHw3HV0tqyRCxpUkkMYiofMw0CGMmU6hCDy7AeS8IOoVviwJmtGveqiN9Y06va77KqpMrzRefZxvj7Jtl3N8APUErJJiY6cBbB1FplSSsZ+XWHe07WwuF4XfLY5WSUfFva+9a/i6SKMAgly8+lBvshnq0OL0gm8t9jpt5ZxYrwsjoukWop+yxh9ldasnopeSlh6bdEiqUFAd4xxdILBkEqRQIqJELJUj/kz6DDszCpnvRYCwEgBJJYhFXVIKepNEEtJ5+liulIVMPKxDndnuzqbKu4F9JmrRxHqiVBSqXvq9z3COjek1Z8MxRL9MpVS57XUlYZRtWS9jsLgSsNX1PZmPfKfJeuogxXLdXu4bWHnTrPuu7pNMtjVqvJKZQ1E0e5j3IS+LIQiZtNvJGV1YQSJ5EpTW7L3qLJpOE4G7Y/J4UAqL9KFZOlYBpRK+kyI8RTbdU4fc0SeLIx2CSX3gwC1Kdqo6FxGtv3labCixisxJpzaE5M1zJQKtdHLGlSSRNKcnJb/1zUkhwqcymfeoRYTpNMyfybkUxSxQRCtaRVTFyV1Esy1WB91p5Bv0UwlSbdpbE3BBB51Ib6SnNjCgxdlzZFfDxsEcNuhwx/y/0vvYoVgS5F/8yEkgw3XVgP1OFwcV9pGBn3y0+POKzVMa5BDj7Cun/Nc8lOl8be1lNG65xr+Z29NUXGxMSZOFJhW0PNqLtGMFE+oebfpoklW+3AHzzJEDlZV/v7GAqX6/x+9X2Bpy/mPeDCrvDk30KT0+y1RCFwC4JYIe6FTViJUIqhcYGRSzw/rHXE7/YFS1KJqx56DID5ZDObdpPMBuGKIY7jVpKJ1DoLYtOL6Szo+ntD4ijfVO0ESUS1PkIw6ov7t4klS2G0B1q5LP2hQjqmRSzx/ipXiIs0Ehl5E7GbQuGAVoxb00MOj4vHK0NUi9dK37esLkbGr5okFgsdhTzn0fOf5JGG5Vgt1pX7rBUOZ4XA8f1swkkqlWpeaa1F0+hU4PtyosleES73YQCbILIw0ue9su+b0mmSSxOHwpNVF+WY35Lcv1wdLtULecBTI5Z4+BsnlvLktk+1xHEV+xRBcLFMAFjwykpdQa9GVYbJ5ZpaYXIW9pp+e5NkPeE21RiKYGoei6kv0r7qdQS1Y47eoEeOY7bzZFVJa2XHHl+Nev06rNTeB1ePDR4OVyOWcn2SWGott8rziWgiggkgErXkwZTNvPPglk8OtfcSQLw2AB4fZvJs4Wm9/S7A6af4xMTDoEUs1crnSazfYUg/keplqogWzlIwWrYEKY+NxXiITbrWq9WliHCiCSm9alUETVyzMikwEipAMvFmxNLFIJW4csEPVcvqBW36u2CIBBN99vUA5K/UQzAdGSJnTUJrv/reOWtBOAVY76f+8fWKcwEcE23ezoMkTB6pRNucWMpppFTKpJJGWJ2YxLFUWJwoz4mlnnGiUZaPVUesGjhqK8XxKA0+VuOrxMkwuLVfoxyH8XA4S5WkiSR6H4/bRyy1CCXxmVlZTjSlPsxIJotg4tiiQNLwyvJj78GzjcEmufSm0FIv6dLyyd2RqC1zq4mlZCi8huYAMAYe+ZOztmKJq5WEgom9tya9LcjBI02U5UQ2htzEpx8LEkEUkoppCauJJ5ZMPdeVjYTJxXLyxjJKNnEyQoaY2RNlN90w77aIp1upPh5fxdQHu48uxXuEBaDyRDr/kUFrfhLdMvJewgIXeAc8HC4benOJta1YoidkucX9/S6v5LMOItf9SSG8hNw/qadrxUI+bg5v1eqEBaLaji8VzhWG9B0TEdyCaYLvGNxrBeDExFvEPRR/1rWAtrXBdw3eynA5/2qm88kqmQTL/Lx9JjFdhL4Z77OK/AIUIh2v+/G+8BJe4BLiYg5k5s1D4pBeIYbSkGn3BSGFxcX3UbH0bn2PEMPhKBTuZYnE0rslMPIpK5bIiwlou/i0RCrwz09EUqlqoJA5mpxeAWBZjbyvEO89ewimvYoFSdBQGpr1apVRJo7K8iaJVZSJPTYEXle+F3NiKbeN2sD6jEmYbf9iJIElVUvUblIsEbFUhsMF+AA+MI28ueF+/KykapIhqzrcjYerlqFyDkm14WGo9s3Uc6SYxudEee4jxmy4bq99kxNLRAhfFhkOR8Qw9WeAUrHESaaLIoGp1YLUGvr0GVddjyI2OWEEQH1W9mEOj2BqbffAK/sWVU2TXJq4CVyD4I5LCpd5pvrYxdMilmIeprL8ospfY359YEmrUQHkgSp/1coI7uuyrJfkbORNE9jyRtMOGcv5NcXBXjWTPGaeIFvqpWfAkSqms9Br6j1qur/lKZg2yueDlaJ+la5Jo8XoXbqMflrFB42cAIqDe6li0pNFvq0Hrn6aTQTt6Ue9feXuXkrdwBguMjGxE2cTTNYKcC20HrT1KJZk+vbPlyembGLbIJxH/Qz5e64IJyzq4SAPi05l2AQ1b9P+pHCQiiahZAA5USXCaGGKJVIrWcRSUi2lz1L+Fgu/ZqUJZSaKUluUmmEB7boHxX63Qu8vew35wedQ/YOfhxNLNWgvpLT/QYSSrs82IJevtTGW7rMp7E2RR/X2HXdd26piInhzJn9hmEy+IuR+KcuUxBHtw5VL+X0QZQBKYmk0JE6fA9pognsaUZ7tqXS7MNdj1EvPNQab5NLEYfDCcUT8vlAmyXR6WgawTmoxD1/iE7R4ul7gXVIsXeBdTAtEMGUi6aKUFfFYPslUQ1ZG0IAm37Ri3iUOPtIkt1QxfbDWtQAkgknGC+fV5eI2Kw85bC7ubquYIO3jh0K1vGSo/pxWEkzae0keu/S2OVqRMTo5eVaCSQwEmJE3APUrSxm4mNuxn2WpNF9uOhl5K38zmlRwAncR75L2ad1v7XvpmFmxlPqgeFplPOVVkwQ5QVjLrE8lScFEA1keHidJYDmhXWCBV0b48vN1CUtB/qIx3YhKsdz/3BBTI3zU83+q7aPz9PuJiWfBUQSTd12veS9Z27GuvuG/nrCWK09lv6U8qX0VisgWrJWoLG+XXrRCpbOanHtfagVrHG+9rLolUi1FdcNq5L0AvFtIuYRMqZRfEbKa6QWzOonMu6OqKaa9W+LnfLcQ4RRWUoqtGlf73TAriTDwsdS6CMQ6oaRQOREyt5ZdkgfTuo0AAP0T0y0TVuvX5YolkW4c46pedXu4V5JOo5C4mBZDzILah8rH42fVElcscYNt3n7Zzm1Tbl2XVitRGlcsUTjcB3BN+eS19MGqSNJG3jJ87TX7La1RCKRgqhl55/3ZNs9DNqY3rmWBjft7ke1ELsUDd1KVI4BQLfFwt0QgYe7HPJ/KWMol7q9EZyr3bYrtWPdRw7+l43y4GsyTVitRkRC2EUx71Uut6wIRYJoYe0uY5NLEIRhh2PmFMg1qjJVLeDgcgUJ0SLEU0zglw1VNeVLrkUpYo8gZluJmRu3R6ZTymtqUVUxL2pcTTLye2oTTU1LUSCavnnisfsPilpeMFdbTmvhunRhvnZRsCZMbiaO/J/TT52oIhPP5OZlrqZVkyCkWfYmHwsXjQIrpj/XLujzoSaC3ugZ/GoSIRXgcJ5h43fQLYliS4W7c5wK1W/2RisAz4IerjvVD8/wIzxXvP/H4sB5kbEHvg4MegqmnDq8NI+AmwSN1HHn/0dYFcsGHC8gwm/zgDyCPqfg1fgFIaRQSF0PaYCWg8qSTTLvlSnFMrQTkuUST1EwsXZb8oM9SRgDICV0mhXBVLxFhtL7HeCfhBFOAcuIXJ4qZrLK8WzR6iaXWr+oZc/cgkk82BbeF2hGrwCliiauVTEWR1382EXB5J62m4sQStZPvQwQSWXjnz3Nl+auJd8UPrVjN0TDyLvqsta3mTyMPQ8nSIG3TvMhQGur3FBaHq8JQhMSph99aZWiplTSxxNVKHrFkEUpaMSWMsfnvrsaWRNjEvJLE8XyY9LEtgqkHp4a3PdkYbJJLExnGRW4v9Mpw3G9Jey9p3xeungAA4CE6pKS4BG4yKVet4h4wsUy5clVsm490ncA4Sb0ACiPhPI3VV5TLeqPKBNOSVo4BSFqPAOmJZiZ9YN2GtG2F0IFKHyVrOGlnklbQCtPrUy/dw2ejht4b95FtNn8bXIq7xRYPtEQcWf5mTI0k96G+Rf4axuCEEblFDD9wg/wyPIJPOvIggvW5jo8ZBwWxIKmZkoppHegjAOuLrLwilGIameWzc3M19qa0lqKIf0fUZ+LKiPbgc8R3qYWjVEo9/XH8LJyYeCz0kEf6utEqp7e1kbe9IlydQKKJrAffp2U/0a3HZymdPZzgetVLyF5LUfGASbXElyZPBNGSFQ6RYApAZt2ZYMrvX0Ra9l56wZDUShcaL6VbQTmbIzVFACKMJMl0hZAIJgqy1gRTMvnGWDY9lFjHfVsxcgWXxAwjRpNqSOZz9ZCnWtLfVlIssXotFVPMzyNdeieOaaiVBHnjKI5GcVUVcVIpHkeadsuV4q5FX+VG3tQXdb+7Br6S3FUQSfRH23r/9N67f69zrwBXgDD2sJ6AimQCoPGafCCYxmmJQIp7ZYLI8Fdi+UQaIWTSGABMYokTSZxgim0Lab8WrDLXkOvgJJMOiWuphLS5v3dGtsimnlXn3idMcunNoXbjy2THITAnrfnJl5XHXwEgTXB1aA4nmEiQfQkv6z7RUJIbd1MI3Eua/JakEvd/6TUXlitMxdeANKkOgmiKYXH8hkZ2wLGNH4QYGPeCNBD1FUxx/1Jtw0PkKF0TTADjTzg9NZM1EfX8ZFohPNb2vfDsZt+1wYf1mbgasFyhkYeqyhVGMpGbVUuWMpD62IUNXIhYGlUuEXh4HJFKgmRKT6HWPkh9KA1waUDB+jDE8LaWsXcZopoJYIvsFWTTwSvG9fSrYp8T+tkDdNuJB4Tuy6MTxiMePoyExwG026yvCVZZroIo2qNC4ISpd+Wz7vE0bBLGbGzGF3yQodJsHAa0iAM9ZMiP9hCkkXckhxBeKBRuQXhZiSUeEkfhcBQS94Ix5G2hV4ihcERCvcMr4Eo0ab8lucKVIv9oohiyknVh9wsEhICQBl5XCGmSXCOYwJhA9iobtqiT4n7qXFXEkuW1xM28qaxUHIEg3HQ7iUjSbebk05XdZ5NiySCV+CpuuZ6xa0StNCeU+DaFwtF7TSyF9LB3/WcYeRPxS2be8Tjte7smmuJGGSZ31vhTK8/5g0BM5BERxEQiYSKMKG1BjH12kURSViHmPzLtJjUiQEkq0WqQuZ0SHolkQZTlxvGIKYkTTAB5bJjHjtuJohbZ1HtdGMEzjcEmuTRxGmorxvUYeQOUE+WluGiWZt06BI4TS9r/Jeb7x/f8XqgOy+9FEkTZ7LvwdoEFXmmiyxRMRRs2hONsJZmqde6cND/TSlh7JzuHT+4dMskjmTyCV5ch41auYtMhdgRvsBLrYmQtC4XT0Om1wQRXIVmhcXwCWKOqqJx+rSH6Lo3/fiMT5V6V1BHYez7Gp9jbn9ZPvD+w1IMtPJq6tUUs1felSautZHokZEU5u7Z7Dx9USLRUQTA1g6FuiPlhDcHhaiZGGIFUPVxWYon21cQSJ5S0mXd+KEDjvcAmifnhIA/VudLqcKFfl1QLjROhec7+LY6lh1jidV2hJJZ4+6zDWXXpNhLZZB2zaFuFWPIUR6OQaqhQpHOPpXLfqyjvjWmtMbfwPWPqpZxm7GORz5DVTUcTTKjGaXqBI4CsWsrb8o+IJd2fQb3y9Hhs9p6RTPH4NrHUUi55IXKcvLFIoF5fox4SiMpsCZVrodU+wrONwSa59CZxhHqpr5ylhDDL0RLojByifUm1JNQVkFVLZOBNS6Fz824h0QYKlsOCUNLqCR6uw1FMPNcyIUTLbv4k9AoB4oMtcmsJsKxyXK5iusbnZGv9ZIh9XQ0/6akhJAWTpV4igokG4VxpVPOu4L9Nz+TSUjDxgT8RTNrYWx7zfiQSNzruKn/64L9x6zBC48wyoj7jvUPk6ifUURVYxuhztSClcSNva2JB6sAL0tPsUrHE+5sYWFQY3QvKASMw1VJNwZQGsijVSzXvpdgfYQ1ZXdby5bm7pDxODksVU40E3kLuPIrKb2LCQ02BOEoy7SWYauol3h7dpi4VpfoMrW2vfbXtlB6kqbCVL8o2rhGtMVrSIyGFSCv1eMhG3knXxFVLC1MvLdHQm9RJpFh6twR4hwDv1hC4d6saKabHkLd3S6RS3i1XeMEAlyXABa+MaCKCKo6tACoPBjEaUV8wEjQhYFKew1VORgPEcDLyYHpZsqJBq5dgJaBeG6oGDv7r1Mgkb6U3fQxLsVSGmxllleqI7yKIoQCFkfd1NegOUIbDkXl39DnKr7EdwfRD0ggtls2A1we1WgkA4HW9L3PCN/eyqzDyplF7bBdt295K8XhOWJyhWvKIJoQFTO8lZ8U4yx9NKM9DfrhINgbcviDNlxbplca9lriJNzfv5mGuL0upWELxul578zCN+TBtpGdYpxdeTJScFGxs/MnGhrR9BUkW8fA4TiTVCKWea0DL1PutYpJLE6fCV1ZILxjttaQvlgBaOVGaCnMVhTXZpXKxjD2oXBDSZJaDT2b1xJavXPUKPEwOgcJylvicrLghtlaq4pNaTTAV32ljcH6GmonX3Vtv9KhhoWkHTKKLJ0iDJNNt0fuswobbp4yJVbUeZdIKAInQzSSTfOVeS2b/MfJ0OU0s5afMskxSBNJNHmTf031J3/x5PwRBCpfeSxaoL5aLUrcRQ32hK8ylDB19QIVfAAjX8veeeH/RQ8pQua3eKqOoKQE8D6Ytxt78eLkenxDKZV7Fay+ZtvX+aIZIG6v30vbC80D67fH6eEhNTKexlpyQakWTDKNZTbtx9VQCgJclJAKJq5o0saSVSxaSaimE9NAuh7zF9sZJ41rf6sH0ysZ/i9rO30M29jaPzR5utOCRSrweAJsMkvVkwoeXr+0nVn0b6KJXdhxNLOX21ImlGqHUe72QZtxBpHFyKW+vJA/KvsrD32LZ16JvtkjfW2FknIeGqTf1RUu5hJCJoXw8SQzRNieMaD9Q+/PrA9/mxFLnmkrMSymTR5ZBdx4vhmrfqo3CLSKphtHym/BkY7BJLr3nCGnytR89q1OVfi+XzLyzp2U5un+Bl/AC3PclP0G7wMtaN1csXQC7FBTZ3Fsixd6zNK6ESAQ50EUV042UlmCHQDez6AN1FXqjtS6lmIgXu+wFFLcdbyXICiZPZeShR83UU6+lXqJyiJf16cDV3X8LzCc/lYH3zUimDgWSS6LV9nVVS6yISje9zQxFk1dP6bvEe6MkdOmVP/WK9UPel/U3fVQ+sLiAGuBiNlFNgxGlYuJqJiJ6ebgqtVETu9x7Kfsp4dq/L6IvSj8l6peMHG2Rukb/sMv19V19Dnnn1VQ+TTwKelVMNRVuL2p+ejWCqRfaa8kOveGT2vZnsdQRAKVCooaeh0v0MEHfG/iqvfwBH60S9wKXNN56gahaigbe8ZV7LdFKcdlfKWTfpVW59LKadb+sacuqXFpWNdMFo+/SZSWbtHIJIJNLPCSOh41g8l2KqqUAYX1osW6HALAsqyInm3xfISTiicZ4APHuG2DbYyHPmDulVU4/jxwiA28w2qRD4rhSKQCpsspjXCl/JY+ygiu/0upw3ONIK5Y+SEod1l+UJ1L+HOPT8nIBHUkqpXaxPprWhsMr8HA4Hf7Ox72RZHotHhJFtdLqxUSG3uvKcpSfXh3VElcl1dRLI+CEsH4gmCI6MI/jFsh+Sgtm/yVSIhLp9LJIUukl7RNcxZIOm9Nqw9FPqXmVhXcqlOe5Jpi4gukKWTW0xC9IkVM51NVSHW017Nbk11vHJJcmDoc9gMkhN3ylKr6Mpg6Hq4XmUDicFZrzsh6XBj7eBFez68XnEDdfTPsQ0fQBrKvHQSaZPkhkxmpuHK6JOCKSida4ArAJJghgrCCnDYZliNwowZR/F38C6oX5bF3yfPT4Pejd15MX3wbWM5J96qXWrVkvL533yhMJ6ntURoTFhUws0dMvQRKn/qCXo1bEE0oSVz+lKuLp2XuxrGyqI3tn0NPmZPydnkZngmlZB70IcqopPZjWCQb6aqbYF+oTN+tc5Ob3vAypk5J5+GErwfX5ohVkdcfx37KEe2IMW5U+t1QxefBMvUf2LdMZCcSMgq0JrDXJvAc4qZS2QT7gS48VgpqgAkqCCXLYDA+feVmkgXdaFW4NhyPz7kg05VA4IpYuS9SZXhZaLY6TS9RuTi7F12uIxwnrKm8XDPB6XdLVMd59ETCEfM9Auh/wcBi6j7EJJ/QqkmSbACSx5HocWXUZdXBiib/nIX0WiaS3E2lEr6zBmtgKjEBKaaEkdjJZFUyj7Vx/+1rQul5YZJUmfjWxlEPjaCsbead15kipxMihEF7b90nj7BArx6mwVj0upRXjAPtVSvRgXkM+IGQPAxESkURm9wjrmGolmSiNm3dfWLomluihPKkQYd2HlIbx2Kxto5df0QcyQRTrXek5RtzwMDne7xZrf0UwAUgyCMDP5zibOHqmMdgkl94s+DOX+0FfHD0j77zsbV4GXbLwqN6V8cM0yeVqJSKWiFQq5Zr+d3RBLrVd9wt5ovsC682YqSgSgZTmu8j2pwltXkUO1jrycuixtA6Pa8EimOIRx8NyjsZZBNJonfclmBro8V6ydlP9qTYYkeRQ3exbl9Hhp3ySoUNPeR/rIXOjI1ko8vjgnA/oeehqXibaN+q20mMIa1YrAUAk0dZ+KI32AawwOlI/yXrt1eTk592nXpqYmGijtSLoCMmkrx/P0Ee9z819+ACAjab49X59wGesEqfHVgtG9cNlVS/xiShNThfIxBKtLIUsFA6JQIKgFEuZUMqvkVDSJt7xs0VCKfr2ZbIIACDQCnCQw+QCKRzSpLA8F7zQOAsB0DS8bpFK3pzRIpVkvTy/1i5VV6hPggVhFUoKKBFRnChSxBQRSyXxJMv0olZWElZSrRTf28TSVRDBV7dfb1nIZlRlfxRIbZi30XwPwFRFRCgBPSjP/ViEzKXt/IicFEtJmcTrXYmlRR0vluv77WkOxUme/NBxLcNUSqbaiCmYjiBoNIm1h1B6/DvJNkxyaQKOCI3LqiQ7xp/H99N7MvLmy97qcLgLvEsG3i9ruRfIzjDv1idv73BJA57LOotNZnXp4ig9Aggeg84HGzQIgZVwIik1KZkoXI5TeilMLlzTRT1AJKA+AKFVAgj0xHNJwyGtVoppNNEt/ZcspVHvZNXzY9IhQaOD6luuiNWDW3oxDZNqg23SoadV01YKe8CSVOJPqyWNm9WCVUKXTTZ43wNggw9F5pZ9rhx8J3J37XsXoPCFPJDhy0TL5aKzeglgVTgBG5RASOcz9bArXBMRpRVAMoyOyK5X2T+4MgkWtf/YSoukbKI6rb7nhsPtXNXRwzOtVDLxuOgJkTuSZO0lmUbr46oIeg2VFSZHV3xNx9vpvyYXdfDU5HE8tsAFFnxJ94S4gMpL2qKQODLyfkHMIXGYDbzjazbvfrfQaySHsqH3Fd6tq8JFQ+8A7y7XFAb37vJaEEq0WlxsNyc3klRhJToQMCCbTF7XbQS4xolpfPhBavL4SubelPYa6MFlWEmXHjLSSFOKIS+PtVZsSwWUTCOyh+rmqiVNKgX1mtRHa5pl5E2qpdcrEU8hPUS9QoBX5a30GjjBk0klS71kbbdgXRusUFTpsRSA1ITSxPtV1RPVSRQSl44Z5PsUDqeUSPy167PseOhJYawE6Usr7QwuuKxkb+y31I+JAEaEtU9nJRI38k5EMVMs0X5EHgOsyqVELtHcK/823upy4jsxtjKZg0XBPM5rK5jEnG19T43J+2SlIm93jUSi+V9P2bU5w3imMdiDPsafOAbu85CbtoJDyLDZCnFa0rkEg6QyJrgxndfP2HW2jaysZuQXikMu/mzWPslI0zGI9acJdVZ04JqfP0Muk0KQVDdMqzwY3wF9DyMYLd9TV4/yZaLEdlLrnN/QklLLo9aUULwci2tnA4seYknfLpfGPtTnRB2YX3nfk58FRf+L9ZefbzRcxvsOW33EIvrOROl3t1TzJybuiSPvWwDHqI2eQbE0Ch0aJ/LYilME7teS0sjMW4+ZKA1CVjmtBNHCSCOagCYzbwS4LFeXWNLKpbxf3p+nxc8W94/vqU1rfUl1Qabh4/AMvguSiOcZCqK4lvAYscTr5j5LOS2HwHlt6Z3raiNurnCK7cmvMUQtuMSSNt1OIWmNP47SuFuSvUQseZChcYbvGfNScldwBCdcboRkOujaksZ3YWHjHBpH+WMbUivxMZsYdxVjMHofRL/nZfT+3BC8NsqyyuQxYf1M5SvU1cv5x+7FFqrnffBbApjKpQmNnYZyAPlJmX5ilgzmVsWSju9f4AIvq3rpAu/Wp2aXZOD9AuS3tC6FCwgvq2LpQj4ATK10IYM6yBcaUlYI9ty5QgR2k44qingDpcv1a3yB1xCSionfH+LgCgHCFQLGCuJNLgf5JMknlEuiZ/+lrJTg6FUvxbZsVzDVllivmXpbbQDMT4BGn057cetbcKaCqf9z9bo38KfN7fam/qWeVotQCIdokD5n+dzMSiUWEsfC4ZJyae1Y9BRLkLH8E1XuylK5FFuX+iCt9BMAANlTKFIVBhAKJh2eyt9nzyWaBoHyXuJ9sPQ2W+ACr0wV4f3m3HdpC7R66V6m3s+0UsnE46NHwXQ0CvVfJ41gTWjlts7P29xvqaXi3as4rBHG3AszPZ5L7y9iTPYC75JiiZt5X3BJqqXLAvCOXjH6K71bopE3vefKpRcMSbH0Qqql9e+CWbFEXkuXJcCymnwTobRgAFwyWcSxQB6zhSuuyqVVZRMQ4LpANNK8AlyXqGKASCQFpPtCDoGLZBe2FQhqW3og5TEklfNC3YDtp+uzylC6rBuL42iVErVZqJaAk0OlwonU+jwc7pWRSRQ6R4qlD9L4VpJKPWb4MX38nmX7noWUxxVLAACv8D1s37w6HBFNfojcoB0D1SvuwynIP+WNjkUL5Trkh/SlgkmqzBGz8f6C2Yyf+ypxv7SsSozfp1YsEWlMnyiTxdQ+AL26Y88YMG/ncWU6gwIjyxoKpkDHo3MWs6LR8l4CyOqlo+5OtXp4v6zW8URjsENmVoj4kxHxf0LEr0fEf8nI/yxE/A5E/KPr3y874rgTt4S6oDrhbxakWmmduIqY/xwah7AIM+Ec659j/olY4v5KnFiKF01JLC2rBJT8AZBdMGO8sL2Na/ksD40ycH4R5iomukAL3yemYNLqJq5eojAk2tYgmbr5HYP8PltljgT/Le+tfqjFzd8X3vfS/33l71btUw2Ha9dvDUhy3lKes+w8pnS5z/rKiCVgaXW1YKkY5ORwqlfdY9MghpdbB1TU99J3otquFYR6+V4AYNckWlVpEa+pbqXCRPXe+j18H7oOX6ypNpqY2AxPDaHzOVorwfWQZVY4zi1QDZ1W17Ri7JXGMaRyIMV2VjvQtfqyqn/Ic4VMu0m19LJk5RKlUSgcEUuIZOS9pl2usFyusCwBljV9uRDxRH+rWmmRKqhS2bQeH5iyiSkeLD+nHpST4jaxRGFoWp1Ef4QUrsbSZcgbsvfrPk4bRZt4edYOIoysFeJ4m1I5pUwKoneRiikHp2mzbf7PS6/9I5VSDoFjK8SpvhbYMcRDS93XVdhb/tzZ9NvKi2+sh6H6V5X7H+XTJI0M1vEbPVhXoxbq0/SITauLEHI4nBUKl5SJQPMm6ud8/CbVTUQ+WX8AshyAJKboLOd1cLU8QG6f3qf8ntrQ488WRso+4kzlKOxWLmEcAf8GAPj7AeBDAPCHEPHLQgh/UhX9PSGEn7r3eBOjWB/pPyCWdbKVWXcykFz9lQKtGXchSipdLoks4oqlzKCvq8YxFQXNLbOigk82FTDfeFHFkiMCvF5JAZVS4zMvjHf+K+Jq/B0VFIHqJBUS838hg2++LDr3feHqpaxOiqoKa6W4FrZ6Wdh+Tsd5u3ieTxbMG3rlJl0j1fYqmLZ8n4++RDxfxjanaUKGPwVbByzFRKMkeAm1K9IF89Oi+CQpMPUgrk+s4rfODfYpdj5A7HthfbLlrx4X9ytWjgPySOP+Slk55Bl7j5wLNQ+lI/1miuNuPPf05Gdi4ihQ37Mw0hcs0/4R9BynRixpvyVSSpyNnj4tSe6sKl8g+18C6Ad9F7FKHCnFX5jqgRQPWuFA5t2kZKIJZ/67wrtlXS2OKZW4Yom2AQCWSySeiDQSuLDfJCmX4ngMA8Lr67KO/67R0BsxKmDTtxHSZDQAwqtQLqxlGqbeNc+kQknESKVcVqKmYLK8m7RiyfJWClC2U3stcdUSPxblxXYERnQFlsZJJEkqxbZegRNK/DW1p+JZVoOnJEyrNdLxMJNJuQ2vguxNxBH3WyKS6hbjtsHokZqlSPlgMD+ciw/qMY3N0oN3yA/TScFEPktELNOKcIJIxqxW4oQSQCZuAXrIlyDO0zxuXM+d1QON1EhxFbesMuTxAAsEgDUdWXkAqVjiPkyxvb6KqJYX29f6fG1cjQvAs43BjgiL+7EA8PUhhG8AAEDE3wYAnwMAmlyaeCikoI/d4JP3QnqNzCgYL2kgg4xYSiuTJPooDmpeVkH2yzqdvSCZeC9pGdx3S5wGx4tiHOS8LKtJ3doskn7G9kGaBKc2q4uduOmvmXTDxRBgWdZvL5BkmgTV8QqF61VPX6wAVlX2avIdfwEagMhl0ReM+fH7zMMgHh6nB9494XHWfmaZyoDVD3uToXGRUNtHPnWRTY3P0jJ0PQxsxTc7hCnf9rz0Ep6qZVBCDaXShiYZVjkASBMLrhrMz8EYqQRSNQiQCd5F9T0AW2XEwZeTjuVJ3pxJpldaEQjDGvoQK45PVjFz6uurJJh0n8srOMY+ucBrInnXNqy5RCTl7+p1zS9D5ogAjp8hh8YJ4+/VuHvU+H4kNG4Ej058TrxN1AimHlj7evWNkk61umLetVnOVUbdoK9ZYdEifw2J4+rxlxQS95IXUGEP9EjBrYmldwsz8l6AhcCFNTxuDYFbiaWX5Qrvlle4LAFeLq+JUFpotbiX+P1cVnIJAFhYXP4MaZK4fp2vsF7+rwAAVwhXhIDxrhxIzQQAlyWshNNq9htICSFJJjL11tBqIQqJu64PQQTho0gl+uX1hFGfEQUhZBybK4z4tvUqyvP61rbEPFq0JrC8wMLoVuIoBHhlxBKFiVNYHKmV9CptAJJIsvvvtr7BSSFOKsU8RiKJfpuJpasglQwPJjWmFYbecBWvfSjnYgGuAAHSGLIFTgoDQHowH/NW1SHm9xfkD+OlaffLwtVKRAzzyI6QXhEjeWyRSlyFBMUnLNWB3Kx6QU6mUj0lyZTKWgTTSh5xgim1Zw2bK79HWMeLzvdcyRtBjSSyiKVnxBHk0icBwDez7Q8BwGcY5T4TEf8YAHwrAPySEMLXHnDsiScEgvRZyulZn2T5vKQwF+QTW87CA7vAcRUFijSAPDAxWXR2AdErCSy4TkgD5OVs11lsvMDFgUpUKWVqfAGEV87eM1IJAIC7vNANMasollW99P5O+s4OdduzYkcLfRP2GsE0dqwtZWhwkretGy+/+fsTNGsYTv0vHp/XKXFl+ZSXY+ZzP9M3eRIS4trnqOshklJQ9j3a1pPaRCKFJXkvvRpeZ7Gt48rBFh6X3MGnWqlkYj+eZYg7Skrpa8GW+h9pBdQ90Gbe+h5gKR8ohIb+SLWQQ2Sycin6L+VwuPiwYQ2BA2nQnY271wnq5SqIJE0q4cJ+l2y2wl/gFTBOYhdYVei4HmsfmcnRmmxqYomfOTX1kkcqxTwUaZaaqSCS2EMbIolyffJgfijfqkwK/iRYqJlAmmlrYqkVYlpDTTWvSaVYPhNHWrVE+VbdPWPPI+7ZR41BLb+lZOzN5kCevUB+KMi2018Q47gYHlsnlvKcq95R9MqPNCKm43GSKanXQ57baYKJ2ljjarRi6SjoFRqPwXONwY4gl6xPq7/OrwGATw0hfDcifjYAfCkA/HCzMsTPBYDPPaBdEwn0GL9WIpiTwi3QRnMxjUmtgVRK8f0FXuAC7+AlvKRwOG4i+QILIEbFEiJE5dKqlCD/o3dMrUShb8ljCdnEFuR7/0NIGXF68rOSRtcQjbwBoxrp9bp6y1xDoWCCa7yJ0jcA4Qqv6aKGwMPjFvo/AAC+isntEhZ4XY2FASApKdIkvNPcm36XPeqlUZw1ad5iCO4pmHpu7s3PwdRLNsZVSmej8A1iHkxctQQQyRsy8tYm+uR1BpDVgtTfUAwy8rE0SYVsJBBY+fRkGrKKKfJJJJGOBQLrc6RcumKAF1jiQJZIYTbgz+FxkuDFsADga/4+wtUkeMnYm9RKgHmwSd+tNRCu9UFfHdhpzM9VhBtUiBauT2QmObENfPz1UfixENIdahycuOmZyG9RL+0lCMaPdzW3rZA4v47jyWhPyWiVj3/Zv3HBuIBKUi3Bu7gdlnV8lo28aQnzdwuuKiWuWIrhMi/LauK9Kh7o/bvlCt9reV3HazHs7WW5wvd6+SCmvbwCYoCXl1dYLisZRZ5KS0iMkfVcAy+R8MDiGnVdw+IChGtIk9WAYSXLwvoQMr6+rg8Ho/ohDu68cDhJ6KCpWiJiiauVLEPuXI91HHl8k/RRZFBQr/Se1Fg8BO4aWJgbbfP9glQtkXIpwPoaAnyQqCRSMBGJw3yPGKGkw9Zi+r7xoXVvziFwmVTiadq8m/dNvghHCM5qcPxYjl2D9FuSZXMfrUeSeGNTvTDLwjxbuUcmQl70CDGPz4ShN/vL86awhrXmMFdt4k2kUjL0JtJJrbpYhLMaSOf6GrZ6AaZoYiSTpWKSZtwxywqPA5aWx4BQXJVvPdrpuRM90xjsiNnMhwDgU9j2J0NUJyWEEL4zhPDd6/uvAIB3iPgJVmUhhC8MIXx6COHTD2jbRBW3efpWW6UqmQkHKefkk1pkF0Xb20WqlUi+/cIulPHimqWfPJ5Y/y1qH87mYzoGQDIgBlUG8iQ4lWVP/vIqW+uEnT1ZyN8LX0b0tkuWn42jlmB/FONub/LVmpQdopRqhDy4u204pxbjPE31seTYDySxpMtR3ymOQX0KuZ8TpPe8ftnnUNUv283bFsvJp/K6HJeUi/YJP4OSRM+f0x4Ibu3LVSPeaeo9cRD4+Otl+ejN9ZT3M//a0cLp4cwb4U2Gj1Y17blf1kLi6IEfh1Q9LOJ3i9dgzOMjVOoGGlMJ815mnp0mpKtxN15jCBwCLMs1lcO0H1MsLXzb+UOIBNRaNrWZSKlFKqUs9EyAe5CIHkGw+sRSADm5vAZMfzzfVSGx+rRySb+/skl3AEk08QeqwNsbfCJWqo/06nDcoDubbMdjZ8JHr6645S9/Vn6k10KtxMuJ7WAomBxCyTPzHoWuY0+d2fpALjrCwU2y01iIpcv+HImjNA7DSMjkeVcmlsT+IImlhfo1QPWPlwWQiidZXzy2BZ1HY0erXA+Ouh7UIEni8493KxyhXPpDAPDDEfFvAoBvAYCfAQD/KC+AiD8YAP5cCCEg4o+F+Jt/5IBjT3SjrV7KRa/rpLXOpteg/Vz4tjbyvsA7WNjrCy17C8v6Go0k+ZMzrVh6tw4uiFTK7Ly8eNJ7qHwbRJQXMfMh5r2GyKgv1/UmvcRY/dcAAIaCCa5xony9ZoNv8nohRUVYv42onsg3YPJ94Z4v0tj7dgTLlhAgxMuqEjmmnYfc0CtP47eql1oKkL1Lxd+aQEBlCpmJTjCJXiJ4LqxvLawfAmTCCaB9c4/eStkMH9enq/Szkan+ggAfXMN6DEwKJtLwAZA5PkSvJcwD5hySSv0srKS29l7K4alcLaiVghpef0G4rO2gp5cX15usljcC6fMkz7ku9VKoy8snJgg1EqmlTtrrvXQ0eggkK8SnF2VfvJz20CQTTZJUIv9LUpNfwgtcwiWPw8TYiyscUKiWLhjg3Zr3bvVVuiTVUoB3eF09l6LP0svlCu8uV3i5vMKyRMUSIsDLyzUqlpYAuJp1LxciiNjnUSLhgFHlEK4A8HIFvK5jpwAAlwAhLABreFxSL9HCEBDgdYD8pHtHWN9nLyKU3kfrKymGiMShfQGkMkmfQdbqc7psWZ8kiV6DTAtiOyTSi7az6imfiSkUjmibQOFxpYE391gixZImlSwvJAt7VX6in1rqpFW1pImlayhXmKu1cwRNBRRcszcrla+cmjSX4kgr39Isiz3QRuArXufoDlO5BLk/LyIv9oCXJa/WdmGkEJFJAJKgsT6GJlUBYl003KM0WiCJ1IdawcRN7XV4XGyX7bOUv8d9YxxNzFrg4ajWtQCg0oYnG4PtJpdCCB8g4i8AgP8K4pz7i0IIX4uIP3fN/wIA+GkA8PMQ8QMA+KsA8DOCXtNy4u7wQuN6J9zWU3lakQRgHcRYRt6BvJYwhsVxYgkXk1gi4+7/P3t/Hm/LUZ0Hw09V997nnDtfzTPIQhISAmHEZBkMBmywYoEdE+N5eL8kNjKO8zlOXuxXfAmOh9ixnXjCxOGNwcF2EB6IFAMBgmVGWYjBTLIkQAOSrmbd8Zyz9+6u9f1RtapWVVf37n2Ge++5d6/767v3rq6uru7TVV311LOeVdrxgugsU1pnzChKgSU5yU1f3IUKL2E+lqMOEOAGKv5Kbap2L2+f11GvyQ2cmUYKFXyIoVAjDMo5h0l0X3KT2/XYLC4xbcduZMS4SBhxrSBSelzLc7sed4+pti7XuGNrOhKCDOw5AIFpJ4AlFooMmmc2jwSWOM2DTOJ8uVUlG+UtXt3VTuhDgkw8SOY2bF/uyg9m2HEODOj6wQn56+HoccE1jgEmOxhWpKGVnX7INmivo/DtkeEs/svGrqlcv27XON++k6hxswBMEYi0gW1zbnPrY33YSbKtte1P963lXbVZCy9d5cbi3smEdZ31Cf0B9w/t7btdvLu54BdUWXhclipeMpAUJqSFVsJdhieg8GASR4Vjd7iBsuLdpTbW1aZwrCVtUDptJV2QjRRXEFRp2U0MKmmeqejkufBeRWFFUBWAqRVIB7YDuQU+OY2TjAj7eiHPzMpNEpvAT/ysN6LDQUV/cckOksenrKLc9658KajE37OC3sTvJ2Td4cJx7Abn3qUkACYHQM0KLHWBSmYD3ePieybbYyzknY6fw/5UsLv9Hdp/nGpa87fNr/iuetf6KSATAN927fegU9tcCIznSfw7FfHWCExEbtP83X8iMJUYVOIxWA5gyt6dBFSSaf5YUn4Mx4XbZzHka3WPU2JcmQJOSm0KaEPJ943TXtoathHMJXZ1e2+S9lbx/fcA/N5GnGtuW9P8qpnv+KT2khvMUHCHi6MasJ9wCKXJABNPXiVbqQ+4lGMv5YAmBpLkJ+/n8sjvsNGqjGLtGfcSBjzazhNdcoUrd4wCC9glgyeh+9J3oth3IL6ZK6RTQyNvhgZTrryOsK6bCjA5k3+LfpHjMmVE9V874yrK78CQvuZdxwTApIRLaINq7QcyM4rpu0IMsb99KLRNUJ+J0MatSNtBiQCQ3F9A8+BEALsWYGJ2YJjYagZ4RRvhNqhJ28GK2LdeYe8+AFKD5XAUxb/tZGI6cDC3uR0PdrSApfWw8T86gQABAABJREFUlvpYl6ZSV961WCzmHcZhgfUQmA4KYbxlJ6Ykxl8kPt2m2TWOvDucjQxnGUpafFelgS4c+ONc3iJXN3d5EWtJxwujyg265F9FuZeGVgRSqokWyXvRMhkmSgAjBmYav8OEtel2loBQ6wCUZHoOWOJ070aXni97lQnDIsoftJbaNpuvG1jKaSGFa9u4tpu+k1O9JcCOndqApZxtinYocTTEjRmPRmL8XmKAFwLFPAhh/CYlRpTbp0T7TuU/OI0ZS0FzKQaYgI6xnjf33BBraAawKIzm3KhZUTQWybKUVGALtt6jFhD5aFjuCZrmErfVxmAbAi7NbStbi+vbNNe4jkm7pF9L0wJgYuFIdouzNOwQ9nagCiscqbR1fROMpYFWXrh7oJVjLsGxmZq6SqkPsa2LqBfixm7chJYHAvxyZrc4zYwJ96m07ci0K1gRcS8IhqQcruTd4xTsZNeymSAmuImwN5KQ6KQj/3KWIJ7VNWet1laeDLV+NKxxvV3n5n09B919mXqc16dJUE+wl9oBpu7y1mJdq2C+HhIl7WE5bSIZqTGEtWU2UyIY6fJJAEq2P1kVfr0yazC0w9BOC2XDRCu3gurpzNqCRg7+Aik7qjdKoQRQIbilaqUAMg7otUdw+wPgmYQsrq+VHf5admbc/mz++O+moG3dE5cXO6Bpfxb6uLrmwOONFt/PUsrmNrcOm1VTaRqDaa22UcDStHL6AEtdAQCmWVdfMO09EqUljHLPWFLMGA/BVUoqnTyB7ePZJS5sTptSoSnoze5vzh1uQRsnAmzd4UptMCxqFI6tVDhXuMHAusMVAwNVWOaSLuEBJQsuubpLtzj3SQZQBra/d+Mu5SmtdgJM7h1htAWZ2DXOMmRnf/4ilhAC+8cCL8oDSjzB9W5xYjwJ8ZkDmmQ6MvtzAJOsVy3TEoCrNsEdzrrNURD7ZoYSGChzIt3Uxx2uyViqMbH1UFIHqekO1wYE9TG5UNbHxU66wjUYTc4ljkiCYEdrbJufb/FiYNc9sXBwrLcUcxLDwrxSQCHmUbyVGhjoABrZts2i3rZtA7atKwEuSUCpoXvUg7UUpBM4jdPZTTMw0iMGk8tfc3NHcI+zIgkChHLTMQaV1vLWSY+TbblP/nRfKMP+SKNJbmWbg0snlc04q2xYC9A0xayPP0egSkKeZ6IbSConI+4SKAr0zpAuWUo8eQ0CkqGLKeWkVnz3LAnwgIOZEtw1uIEwCcaS20MI7CRFtl41+/XDfpemXddbI7jI9YF/0ont3Jwdl6HbN8aOtVhzTphXtpsUJEoZS0BoZxLYzfVCDcqyGGhwm+SwsQqBxQRyK2yu7UkGE7ukMljEbqldi0QM8JIAeG16U3tJxhgJLnBHzxWtLUrU5qyuzgGnuZ04tp4JYxodbi3WBTLZiWTGjfYosRVVMh4L4ykH3adjrfRTxeMwyy6g4IqmCIUT8Y5EuxOmEgNL/jUoX4fyNmj3TjGOxeReJpR90+Qtf8fdqVr6vrbyGbixx4Yy+gJLOeCoa188UY33ywmrnMjmyo71ohhICtdCLt1+D0wl6Q5nrz8wloCYrZSzFOCZ1fqU3ZX3eAkOA8C7vyly9UoesWmMe7kIqMRgjeUL7L7QfoFk7oSwGMhtWokn3bqPBje4NmApYi5l6ukXzB1DqXEdIp2/y8dVKbfajyaQ5POse87bz9I22Ta8TMedswJcW2kMNgeXTjrLNbb+oNE0Vke6L46oFPSWLFvJrpINaIABBiihMUABpRQG2q6YDbTG0Okp8adF1y2wNNS2A+QVNAX7XQufYRV9csfXrHugDit3rWGQoEAgN2H1jCW4vs31/7X7bQDnNuPKc/Uip9HEeQooWAHIoPmSCnsDiESFAQvI1YpDn7tw48jrMG0ka6mPbabOSy6ax2wFNBlM63WN6xRHbmEvBfOCEVF5M1kLg9CuvDk2FFi3Jx6o5O6jUQaGDIp0tduBRay3FFa92D01aJ7J0LapWyoQBi1AsyfiFSw5SHYLTihUENOvDYNMvBeAjhlMXA4UwKL6TNyS7nGF+Dt5/33XBsE6SwRA2e+1d40LbTDWThLtUmkPiPn9SrsBSGi7szKR1qOX1qf8uc2NbbPdh3MaS2sV9t7MCG45QCmOlMV9SP79J9/haftV4l2Qf6e0aCu54ABAO+u1ywVaOwYTB1Nh7UtWW7JjMPkZxl4+wq5jNAw1C3cHttJAGwx1jWFZo1CEYVlDKcJgwCLeBsXAAJpQDh24VFAAldwMRfFLJLr40O+7WwdUiIaziuBkBxBcpN2EmMTEWytC3TJx84LCjl3OrArPZic7ZqwpsJaazCUVAUHy/TYruNRb1NuPZ2PGEhCLfFcujbWWLJuJxLXFIt7pVqMOYFLGFa5WlatHDclnsvWN2UMybTNMtpG0DoTas4qz2kiZeq3vPerhlV65u86jk/Eat1+NwDoMi+0BPJKL89brI7i0Dryrq23XWgXGUuncXRWsqDdgoz/y1XA0xi53OEloCk3YJioPZzUBJu0mUQZx05fucfK0XncJwDRR79TaQGUgDwy1ubi2CXlH5QkQ+ESwObg0t8jaRL3Xa1pMgLVnMcl/QmfJfS+TSWqh4WiYIb10K1ZxtAMR2QC2Iy0bAnPNOvp9rtswgEWC3A7uwOBW8sjYTkJOiAsHIBmlAjPJ8TGV6xhZSLiGA5XcioKmAGxJNhPrLvE9S6PGrcWOp5WaadZZ102KHrce7Yq1Ro7bKJtdf8lCnX0tAEPKP9/sDseMJQksScpzCjLZcmRdgsl8PJBndzmlZI2VX1E1KmYwhb4sDHYsAypEoqsptEmDEHEO4EkuECS+CcwgjEHe1L2tn+vLZj8LGwn2dg20NtuUUosAPgJgAXbc8udE9G+PWYXmtqG2kQBTapvFUOp0h5vhnEppYKremu3t+uov+XL7nB/MHpeaSyoek+mYmSq1luRYS+ossRCw9rpLlqlUsMZS4aLCFQljiUEl9s7VKu/RrpVziRORRF09WcdSGdu3t/2lJPtBmgSUchaBP4j1XgzCBDKUA/9J4lPuawOU+jCXGmWJiWo4ZxjXhvqERRgW8fbHITCXUhFv3h+u2TvEufIskGS862geWMoxltb7PpTPfVtZTTZTnf1u827G+9kk32O9tLAQaFfD7L6i4WbfZewBIiUJ/D6hl8nzJr8IqMIni/azB4jUV7L5OVpcEPYG5NiuvY9kFqQdz1kdJSlRwmBRJ8DEx6nwTOeEvY+GZQGjXsdRxGjqYtUfqzHYWsZfc3Bpbr2s74SVyEQDoJpGIDKocAiGKjvxQwEFhQEtokCBJbUd2/UuLOqdMGonthU7UagShVIYaoXF0nY6heuxpJ9/6Tq+oWArDXzHyB1hAIx4cJQzDjjCK1HceRo3C1XgY50fsGrCcOzCwy5xvGpmJ+Cu02MWlC0KAINJ5L/nRIWZNbFe20rAUqetJ6LcBrqbdeolCfXRPuLem2VEtTtnDShYdpJgM+UYbjWNsWwOY0JHQLSKMR0BMLGuDCDHLiywVCxiR7HTbuUubC92YFEVjkHYZCfl2ExRXd2nhIU4v1yVSgfZSsEGE9KW2VR614gA+tYM4vLgiEJbS7XPAHank20wgE0S5GXtM8t1amcnzAr0NMromFie4GykEYCXEdFhpdQAwMeUUu8joluOdcXmdnxYbhLYVzdp9nNR8rubtdTXtNKoiVmPhVuE6tfe0/EZEYGoBqEGYeL6ETeOI0CrAkoVGKrtWNS7MVTbMVHbsaB3YRuWoFWJUissFSpa3GPCTyNKHDOXnNZS4b5zZLhB4b67jaPC6SJmLKkSUAUCqJTRW5IkZKqcxhJsXgKsBhO7x9VwoBWB6hlYC/JeQjKAlEtTIi1hLREDNq6sFlApBYXa2EvpvnR/G6gEwMsysL6Svx5mJyEs3tj6k/hun3V7feGM0iUuZi0xmGQaGkv8PQcq5RhFa7aekVUpabOstZTu72PpGLC5wDjLGI/BJgKoct4RBjWWgRqYVLZRjPQQWg1QqCGGageGejsqtRtLag92YjsGusBAa5Qq5x4XQCQpH1K4eVPhgCUGjiRoDARQWYHCPMsxmPgYaVLiwF+l+164uRLcXMtqKZHPIwGmo4gVtYK9ud+ptTKYxG8J+PK+49hmHn/NwaWT0ni6tsajM0ATUY2aJjBmBEMTGFoFUbXmc2zXu3Hq4ByctXA2zl86F2cOz8ZAbQcgBCQ1sFAwhTOOVCKjGQSf/+6rzg0EarIgkuYwrcqiQgYAtEPURa/A7nAMVEErv/pTcV1UYCopJ0xXg9kTwbtZviLlKm4f0d/NsqPtZsfWZ9LcNhjY7IhwbefM0qhbWU19Bh8t1+HAMu+rL/IR2UFfF5uKiFDTMlarRzGq92NUPYmV+nFUtDKlPm2mcOrgVJy7eDbOXTwH5y6cg7MWzsJALwKIIzp2gUt+wAu3Go0AMrFrKj+NhQJglBuIEdhFznhAykUJIrdQzfoXwj2O2YIaoQ1K2MiQBikTXONa2mHXvZZMovi7XXInypfbJ5rcNOsEpqYxIUmBzNrfGes1skIfh93PgduO5lhzbpts05hKs7J1c21zo8Ckaefpa1mXWOfq5ieqPgpcAeVEhtO2TEQgVCAztuMvM4ahEfpMWY601GyHPg2nD87BeUvn4IzhOThNn4lCDwHICWlwoQkucTYi3FDXHmCywFKNsqyhC0JRWmCpKAl6aN1v9BCWeVSoWGuJZ6bCB8bGmnF/kxK27zcAOKCDIIMp8WpVKoBjbdYF4hCCO5wHYBC+GwCVTwt5Jagjhbb5MwWZ0vNm65VMWmUeOXGV8g6SxeRd5dx3Wa9ausAJEe/KQUX2HAFIYne4VGPJoEYNOw/wwt6tkdriZ7V/dOT+rOu28tuC0XS9c7N6h5kFJdmWW+tCNezopnbfDeQMIFeLUUd5GgV2FWfglPIcnD48G6eUZ+PUwZkw7DUiGEsMKJVRWgCTWKCfXeF04zMAStMYS4Voe7F4N6dxNGAuiBoAk2Qvsa4mPFPJjhK73FxntS4AuM3FtfFdgL5d+4ia7TxkPHZjsLWMv+bg0tzarSNinH3WJjBUoaIRiCYbeuoj5gCOjA7gvtHtuPWgTTtzeDYuXLoUl26/FBcsnQ0F5anXpbbsJI5uAEjkXbrYhA5QmhRd5E7Ki1e6aa2yF47CMZZsp2fzEWxLY3aFVqHTsGyGeB9HN+Dw6G0BFThiVR8Xmz42y+D8aLIg+p6rFSDpuK6sZsgGs5eAzEryzO5xG8dgIjEJye8nrNaPYTw5gNXJI5iY/BRjjWfH45PH8PjkMXz+0BcA2NZzweIFuGT7pbhi56U4d+lUl54eGai/qaA3m/xNCC93z2xy4JNtc3ZQwuVa1lX4y7B7XABu4wluKrbPLqoNYCgZ/nFaYDbNHrXxBGcizWzK+gZ9GsDTAPw+Ef3dMa7S3DbZNso1bi3W57wbtcjDwQDSCbVSRZP1Kr7XZhlVfRi1WcHGBhIgHDaP4vDoUdw9+ntfx3MWnopLtj8dl++4FGcVu/1CXxGxHIyffEoRbwZ2tLIsIhbsjoS75XcGltJXmP+doUNE9w7IdM1Zs3pKzYGhX2QgFYnphsWHkMYAjs+PGDiSk9BIOBv5yWl6aam7jMnkCxPh4Goj65VbQI2uV7i9pRa7wZH/TNuAZCkFJlPtP7uApTZAKQV/pMxGVvi+A3BquL3N+I7dqPeynUMxiOTuwwZ1dQY19tf7sL/eh685FKpUQ5w9uAgXb78UT99xCZaK7ZbBhAA2lYqg4VzcEJpfmYh2twFLOTHvbP3IqioRlBvLUTTus2DmdCBFzk6zS7YqgKYbYbKoPmwmqbWU5pnFHe54sFnHX3NwaW7OAoAU6S6JSbjtUAlEYwATHO2F44fH+/DweB9uOXAzdpW7cMWOp+MVpz8HT106I+sXzBNQZjB5f+Ck3IAaK7dSwytU5IUYNeDdZjQRKlLBtc362diyXD3I3U5j4PVhaqG9VCgrs8nMJa0cpRrKQyHr1VVK7XgFlrrq0FpnuWrb47qmidJulGhtK8CUuMf5c84EMIk2mrAHZf29WypqgMJ9JCKMaAXjyeMY1wfWxSyc1QiEe1fvxb2r9+KDj38AZy6cim/cdRmu3vtcnDLYA8C2k5p4gOtezCqATQTn7uDy8eCH05jNpMmKq/KbPBL9hnLaTIl7nGvvUnspLJRbLlGIFqf8X0gKe9u8AA8Uvdh345koHBCWYT1lGEob3Q+Ec/UfJBM2ffBzmlLqNvH7D4noD6M62BvzbKXUHgB/pZS6goi+uKm1mhuA9fePadTJtgnsRrGX0glvG2NpI0XD1+LyKgFom2b13JQL98Eut54tQoTKHMak2o+qPoKNWozoYwY17h99FfePvooPP/HXOHvhLFy993K84rQrsTTchkIRFguDoTYoNVkXOEUYFAaD0rKWBsPajoeGBrq0rnDMWNIDO5NVZQCUVNEywSReMnCucXBQkwGIXel63Jp0AhtAGCWYR879DczqUYHVTrBjQfG7du8fziNBJsnGzYJLAhCK7n0KAjX2U+N4Ga2O87N4dxAaJ78IymLfXtAbJD6ZmZQKelvWUgXrflllxLuZscSfKagk3dJs2vR2VGcYRTGgNFu7IA/uxKysNmtKHIT6+PeqCBQij7QL8ZOZ67heq2iMr49vx9fHt+NvnlQ4f/F8fOOuZ+Kq3VdioIaCeejc3XTsDlc4oX4rURK0lryrnO4PLBWKgRVmITETKfz2DKYO9hLQxI9n1VqitO0lgHD2GPEpgeL0eJ+GtL1TtC937tw5j+UYbNbx1xxcOmnNv46n5ySCdeo6+h1imx2sDuIT+2/FJ/bfihe96EW47rrrUP3aF1Fo7RF1tuAe1wxWSQhgUwULAvEAl/MqxuPdgMY4xhQpBbgXs2QlcSfCC2fcUSr33VI2Z7teRRpaGZhNjMY2zY6VS9ym2RrZS5HbWaY9zLqytZkMJgAgqjGuDuKiS07Fl75054aVux57ePQ43v/ox/C/H/s4rthxMV5yyvPwjJ0XAUqjRiwvzhLbzCoM6YEByFpMWgBPrC2gEdKAwGyS7nHkCmRx77Y3PE/02Fku93daC0tpPXaCMJweI6Ln9slIRPuVUjcDeBWAObi0Ba0LRFoLW2ktDKKNPEffd3LoP/r1EazTRlRjNHkMq5NHN5wlvlbbN3oIf/HQQ3jPwzfj6r2X4dozvxFX7T7bTUqNZUA41pIWzCVVmki8mxlLga0Eq5XEllLNXWevtAK5QZcMw9DWfXd060nx7ePiPoK6cuKZm4RKsIkvJwcqdWssxTvT43OT1SiCKgI4F50T7cwlud/CSrGId6in1F6qo08GlnJ6R/I35+1jXu+owR7u5y63nvG0fPdm38MOYLJatCMA4zWfayONQLhv9T7ct3of3vfYB/HCPVfi5ac9FxcsnS68PcK8iedUvEgvgSUGk/hTTQGXwqIdg0NhQZ/Lqd1Yj+dJG+nmthbrcldtyyddZXPHpvtmAcQ2yXqNwfqOv+bg0tyExe5v9uUTKJuzmtYaZ511Fs4++2ycffbZOOecc3DqqadiMBigKArUdY3JZILHH38cDz74IPbt24cHH3wQDz30kAO0+tnHPvYxfOxjH8Pucjtefdbz8L1nPwdDPURFdvWJBSYlbTPQnd2VOzQd4JUpFvh1L2WjHTvCzmQNnDub02Ai2EEOB3ngBbdCA1UNgcyHSTCRG0g79pJBPLHlcOgcp6qv5QCPaSsxW2pyusa6bgQ7KT2+DWiKBh1ytT27mpWzfgBTw1WCwrmJalTmCdT1YQCEL33poR7nDVaWpW+3/Llnzx4MBgNorVHXNUajER599NGo/T766KO9z0FE+MKhO/GFQ3fizIU9+M4zXowrdz3bMoE889C9iBVB+5FyLKavFVw7dOxBd1e4FzMuoh0Mi5Mico9TcKxEP+AJoW7TdphGbwQBdQ8tl1wEuVRfpcs2W3dpmh3jaHGnA5i4gc0SgFcA+LVjVqGT3ELAiW7rysP7poE8s4JN01hL7W4/a32vzBZdSr4PmPFIynjxbq00jGOfVvUKjozuw+rkMfSDRnKmoVQJpUqUehGl3ubFvBUpDLAAmAqrdAgjcxCGrG5TX6vJ4KNPfAkffeJL+IZtp+MN3/BcfNsZFwGO/VNog6I0KEuDYsEKeOsBWeHusslYUuyjgwRkcubvgrGC3QQxSxOre2kQvrYhJRELcSvnzqYEe50jkaoIGKrJMpZqYrYtM5diVhMfU5lwrP8UgFDOrS2uY1zn9AmTYJK8Tz5CnDgvEDOWWMBbCn9XZFtJTQwSkeciEYLjG4t4E/Ki3fJTAks5Ee2+rKHU5DgrSkf/qLm93r8trEmlNBTZRd+gj2bHBYbGbvy1HkBYQaGE0iW0GkCp0ontL0KjQEUj1GYVRBNYvbXJTIDZ2IzxkSc+hY888Sk8Y8dT8N1nvRSX77zA6cNarSVmLJXaRKCSd3N17nT2frSfy0oixSNx7/RLbiGeeEExeHZkmrf7TTONSxjQ8mCvfwch+gTCeCfHMMzppKVAcnTeBORN3eHaWE2N+h+7aHEzj7/m4NJJbYQ8e4mF+WabyFx22WV4/vOfj6uuugrPfe5zceWVV2Lbtm0z1+rIkSP4+7//e3z605/Gpz/9adx66624/fbbpx53oDqC/37/zXjfI7fhx8//Jnzrqd+IQhWO7mncCprNG2jIoeOqyU1JDUAR7VIB2njk3EaJc641INSK10gIlfMhTtkUXgvG/VZO/0U79gRgtZtqJyzc5/Wa03qR1mdldK0TzfW66azlvGsBzXL51wowTTuuK7JXDmDqdo8D8gBTi2ucYGEZqmDMMmpjQaVe16YUnvOc5+C5z30urrrqKlx11VW44oorMBwOex0vbf/+/fjMZz7j2+8tt9yCe++9d+pxD4/24//9+k04e+GTePWZL8Mzd14Wopx4MNbdEe1WstztIcC6oZIFl2rYlxu5ialkFhbsKCfc4yyMTt6BLkSLc6tyYLHv4BoHhOiNVhkN7hjjgST+9IPOTXJxS20z2Ex9NBA20c4G8A7n968B3EBE/+tYVmhum2ebpbWUK3NWUKlr4jZLWUFnKTAfFFmmkjETHB7dg+XxPswCKik1wEK5FzsG54B0iVF9CEQ1Cj2E1gMMtY0Mp1WJRexAgQGWaBsGNISBwUiNsEALuGC4gDEexio9iCerB/APhx/Awerw1PN/bflR/OwX34dn7T4D//IbvhnP23uejdxbGhQDg2JAlrHkgCVVMKDkwCU3YFI5rSW+Rp4g8gALmMkXRrrBtB0Sg0nK/Z0E6ATW6lMepGEgSrrE8XcJSvH5q8yEMifSndbb70+ApJBO0X6KvlPEqGBgyTOS3Hd7bYHF1OYOxyLeHB1O6izZa8gDS5KplIJKuQWUtF3pzMNhwZ0iTZzJ5Lt5mpg3T59y71miClV9CESrs1UABQAH/KoBAA2tChR6EYVeQFEMUeollHoBS3ovtCrFkQMsYBv21KfgJaeXUOpefOTxR/GlQ/fiYL0PNU1nTX3p8L340lfegW/cdTF++LyX4OLtZ6B0USDZVU6BIhe4QnH/1c5e4rGDZysR+aBHGk2ACeJ77cd9rNHUn8U0CxtoGrCUKzNtYzJf6Bdk/gDqch6fH822m9oxHIPNPP6ag0tzS8wA6KfFMhgM8NKXvhSvfvWrce211+IpT3nKhtRg+/btuPrqq3H11Vf7tHvuuQc33XQTbrrpJtx8882YTNpXAh4bH8Z//OoH8T+Le/Fa8yy86owLsWPo/L5dj8bsJBH1Er7Ja+2BIXKpxv9iZoRC7cYznlmBJqhkJ6oAVN43mM31p0gFhDfTNkSUMKntRrjsrUfcuxG9Y4NEu/sCUrMCTGld1/M3IVPDYBXG9NPi2L59O175ylfi2muvxTXXXIMzzjhjzeeWtmfPHrzsZS/Dy172MlsvInz5y1/GjTfeiJtuugm33HJLJzNx3+gx/Jf7bsBTl87F685+JS7ecT40rM7Z2AQx/UI5tEisCjOwy+1WuQGKcq6xBOVXaKXwt/+NoL0EYvFv5ZkaucnptOiNbYASMxTWakcLqDoejIg+D+Abj3U9TmbbKF261PoASWsFmyRraS3A0ka8z6YGdoBGgYGdfJPBwdV7cGR0X89zKyi1AK0XUaglFMUQS8PTsFicigktY2KWAVVA6wG0KqP3oUYB7RbUtKuFpiUsYIDtxQ6cM9yFMxYvxjlLNR4bAR986EF8ZeXLeKL6KvbXD3fW6vMHHsH/9dm/wgv3PgW/fOVz8fyzlwBN0ANXazfzUFK4Owcs5VzivIpvDCjxfL/LpOB2KNKCRZK1JPPwBDGwmcRvMYEkkS/VWqpb8tvzxOLbsp58yY3rSH5HGi7JhNieK0xac8ASkbw3cekxyCRd3sQ5fXS44A4nhbv52Pga2oGlae0yt18j1T4qGufcGF3NAqnGUmAqVajqAzBmeYYSHT9aLXpwLB235saxxum1FRj4zyEtoVQlFO3GU7ZdgRfs0thulrFCIzxW34cnJl/FgeperJj9nTX67MG78Lkv34WXnvoM/IsLX4w9w8VmrYVQPwAU2kT7fD05opu7UvvbAUyC3MBzIA6gtFabBig1WEXJfko+c2ylrvNIVqIsM8dGnAZeHS+2lvGXmsX96GibUorQ0292bhthdn1mmj3zmc/Eddddh+///u/H7t27N79aiR04cAB/+qd/ire85S344henS258++mX4jef+1zsKrZjeTQAkcK4LlAb5QcQYdCgULvIIJX7btx3/j0x8hOYiO8jY7vGUW0HFBNjV6hqA4yMfYmPDTAx9sU+NjbE68gYEAETMqjJoILBBLVb56lRocoKJ9aY+BetF0xEEEzk39JmBTByDKhpPvNSjJvIUaZFmjGhrkRikwOOqAwh7p0ZrHRdU+7F7AcZ6UtcDD7kcWsZlLTVL72OrrzWcoymzNnMMvoAw9/yLd+C6667Dq95zWuwuNgcNGy2PfTQQ/ijP/ojvPWtb8V9993XmVcBuOaMF+AHzn0JFBZwuNK+zUlBVblSXJN1Q+BPA9veyLVHDr1c8acJbgEsYDohK4AuCf8Td28r1KhVFVZwXXvkdtfmHiCFTA2HZU7cAmy+MMBuG3w30+PPOE8CAGfyyLIAYFI9BmPGfoR3xe4z6C9f+L2df6v12KUf+P1P99VcmtvRsR3lmfSsHd8XubbJfjB1ecu5wPVxnZOWAkC5CFVAeFZD1CoJIrnnvgNYyk1O1woktU2EjWq2LcnsSN/LK9VjeHj5NkzqQ1PPWRa7sDA4DYVeatS70Aso1TCqW6HsBLTUCxiobZaxhF0oqcSQFrGABQxRYFENMFAapy2W2D7Q2F4CO0rblx6p7OjwzEUC0eP46JOfwc2PfxYHqu6J9FBrvOllz8a/+qbLUVT2tcexJFQJqKEFlNTAPVulaoJK/qaGGRkx9acm+90QzNjmMRN7DqoV6omCqYF6VNh3wKRAVdnx36QqUBvtx4MT990uZGg3ztN+jCfHfBUpVAaYuHHjxC1yTEzMXiLY8V8MQkm3tHBpQAw6pZeeWhNk4vQYbIqFvmNQSX4aItSgxruPx6EG1BiLGhj3PrQjVYDHpfa9VzsXS4OJf9/J91cKKLW9k9qsIVUQAaiZsV/KbsqYBI/Sesk6c5qhCpPqEEaTR9DP46OEUnYuojzbh7ke2l+DUqUFjvQQWg08c6lQJRaK3SgwwEAtYYAFLNASdtJuLKDEWQtL2DnQGNWEsXERtZXCQCucuQSM6CHcsv823Lr/81g13YymneUC/n+XfTOuPetSjOpQZw0LLBXOVU6ylVIPEXuvmA2kwC6oAPx8C4Cfk7XNxzh/YAkqn4fbVx3lg99nn3HhtipYh9YV1NUToYzKPX5BAD+0Od4nQeRUZylt70Dc5rnc1H0VAN7+0JujMdFWG4Nt/DLU3LagEWyH2A4sFUWB7/u+78NHP/pR/P3f/z1+8id/8pgASwCwe/duvP71r8fnP/95fOQjH8HrXvc6FEX7C+MDj96Bl3/6g/g/j9/l0XVG3AsdwudqBR8hgUUoOeymdYIRbm2ubBYNlmF2gdC55sZICk1cPjdQn3VgnrPNBJY20zbSpaezrK2kNZUxIgLRCMYcRBewtG3bNrz+9a/HF77wBfzt3/4tXve61x0TYAkAzjrrLPz8z/88vva1r+HGG2/Et3/7t7fmJQB//cjf4c1H3oOvHAlAVNoWuZ3JtqW5TYKp1i3t0e2TWgG5thcBj6QbeTaD1TG3uc1tc43cJLmvmeTfrJZOeIkMHl/5Iu4/dPMUYEljYXAGdm+/Anu2XYqlwalu0lm60YL2fRDXTbt/yk1YbRQ6nYCENoeCQqHsxv2lcZMuArBYwIFNhKdu34WfeMq34H8+/5/hP1z+SrzgzNNaaz02Bm/60GfwLW9/P7786P545sXmO+34WMVMpug2zDYukq/4VLOkwWASMgkpc4m/c9VTlxZCMpkWaV3AktRm4v1yspnup7TsKA9FLKWILYUYWPL1FBPcthlAp8h3Q9OsjhZU7L3IgbnrB5Z8OcninAd9Mm2UqO50eZvFOFLcaPwwRpN96AaWNJRaglI7ofV2q52k2cuoYwG0xcjdZ1tyAYXCj0nGNWG5soGDBlphqBW2lQpLpcKOgcIlO87EP7vgGrztyn+BHz3vO7C7aG+/h6oR/vUXPozXf+69eGQUu8ZqIehtf8fNU/6W4FMERCEFptqftb7Wpk3UhxXU5hJHUZ74e65YI9qVT+uoy/HIWFqPzd3iTnqbzlb6J//kn+CXfumXcMkllxydKvU0pRRe/OIX48UvfjHuuOMOXH/99fjzP//zbN5HHnkE/9cjj+DVZ9+PX7jkFVgqtEfbOSymZQrYwVVNGpWxK1PeN5gUYGyUKKUJBLuyRcoHxXU6lFZ7qXDuOQpW2JtFu4HYZc4wHxR50KntdRW9UHu8iPsANhsR5WrjtV6arKVZzxfpE22QpeU1XPKEO4SPaCJ1d4ReUjO0rSwrL+5tB1HL6BrQlGWJf/7P/zne9KY34ayzzprtAjfZiqLAtddei2uvvRaf/OQn8cY3vhEf+chHsnnvvPNO/FvciVed/iJcc8bLoJVCqVy0OE121Uk7lwYDQLvVKQWQAoyBd6NgcW8W3yciHzkuCEha1zh2m5NAUuoGp1BAk9WcsDoq7D7UodlwDKM+rskorDzObW6AnXBuxAKItNT9ra873DTXVLbGRDPTBtcq7N1l3L+nUeJG9QE8dOTvMK4PdB69ODgDiwtnYaHYCSDzzotc7B1cpAoPKlnmUoFSLWCARRQoMaAFlJb7gAEKLKgSi7rAQNuxC4P2hduGmlAqYFthNVgG2mB7qfEdZ12K7/+G8/HJA/fg52/7Au5eybvM3fb1x/CC//Ze/PvnPwfXXXkJ9ECh8LpLyjOW4khxgH1VMsMcjZkdMZPJITjk3gFEjiVFAIwT7TbKbgQYoz2DojaWLcEi3rVjRjBbXW7Mhqgd8FY7BhOzlZi5RAiMJbvP1k2yIOwlUNaVjS2FfLIMpnSi6tMD0GTTA0uJj5OMJVsv1lIiVIJlx6yl2gWzSEW8DaSuUl5niVlLDCxJUKlNc6kvK53bMjOTeKwFwOseStOZ+5gz7ltysgVVvYzl0X0g6mKMKxR6J5RaBI8J7PXzNXQdqb3bnQWH+TuDSXYrqETpwCXuM2siDywVGlgqFQbatmt+dncUi3jl6c/FhYvPxyef/AI+vv//4HBLX/Q3j96L2578E/zCxa/Ed5x1IZR28yfN7nHNG8pjBhm8gf8KJAIo+etVzWc5ZxZYVQ0QScYDZzdWWw/LVPLHJqwlOQuWIHGa1rbPny8Bkvnc9toDmBzKDO0z1/bTi95KY7D5UutJa4RpbKWXv/zl+NSnPoUbbrjhuAOWUrv00kvx7ne/G7feeqvXesnZjfvuwnWH/g573/5zHlgqtEFZ2IhyhTIoXCjdUpP7Tp4hUSgOz8ksCfLsJR8tAQGxT1kVEL9T63rJ5Oi9s1juBc0rTHI7GjbL4KG1jHVOAKLjp5w/t4KUdbVTupGerhJ3ljnD35ioxrnn7kYXgPH93//9+Id/+Af8/u///nEHLKX2Td/0Tbj55pvx3ve+F1deeWU2DwF436Mfw1vv/TOM6lWUiuwkyM1LfLjcZPMsQ/cp0wBmHYZBELdDHhCxgKx2CkyzWJub5dzmdqLbWoGntuPWWl4bOJWL8rZRwFLK5sjZ8uRh3H/obzqBpUJvx86lS7Br6SIsFDtRqIEFirzbTIFClck2iIAlOwkdoHCbDT5QWACKNErYrVAKhZuIFkqOcezvxQJYKghDbVAKVjeRwsHlJVwxvAy/c8WP4wfP+R7sKfdmr2dsDP7vW27D6z/8d1gd1fbV63WWBLAkyRx9us2WGRm/2klIIMhJqXGR4jjKW9BVUsJ9p8kg8kwgNCPB8SYZSxJY8m45RN4lmyD3WWDHu2lzurEb6yNxeTWF+lggy7q11SYc2xDs9hNh8owlouAO1xTwpqhteN6eCgyhlEHk/wYIYFTq+g20A0uSgZSrjcwT5RXMpFze9BrWauPJkziyencnsKTUEsriNJTFTstS8iJjufEAay/NPsbgtszgkgQxC83sJWCobZut/HNv2/fpiwovP/1K/NPz/gWu2v5KDNRS9lyHqhF+/vYb8V/uvhUKwR0ueHrEm0o2jkBnr58/m+yl5n3siQRmTP6Fc6XEbKIYnJKf0THU/IyEun0+8udImY6yrAigQmAfbmWbj3ZPSuPXY95OOeUU/Mmf/Ak++MEP4rnP3VoyGM973vPwoQ99CO985zuxd29+gPOZz3wGz3ve83DHka9j28IY2xYmWBpOMCwrDMsapQObSm0s2KQC2OTDcALue3DP0cl3Nh6g2fTElUbFn+s1qbfUBsCsFUhq0I/XCUZthHvdLMDURjGqpr38cyBT57EtQFWbEY1BdBj3339/dv9Tn/pUfPjDH8af/umf4qKLLuqs6/FkSil8x3d8B2677Tb82q/9GhYWFrL5vnT4LvzHr70Nh6pHsa0wWNCE0k2IGHDiTa6+awUU2olJKtkmbbkxnbu7QYbBXPPvtF4g+Hg1s4nb3I5fy2kdHS+2VsBJvrvaJplGmTVvOfOua6Sxf/UuPHD4ozCUD0xS6u3Ys+1y7N7+dCwNTrV6K459xJtWVqTbfoZNQft0BqM0CmhleUolBiioREEFmO9QKAsuDTQCyKSAUgMDDQw0YcFtA+3Ck8uFuMJgWFY4a2mEHzn/YvzZc34MP3bBc1r/Pu+866u45n99CI9Uq1CLhd1KFUClLte3NkVez1JiFpPTcpGsJbf6T8xWcowGBpRklLig4+L2A4LNxECQ8kCS1/hjIMiDPxRFjqsdqOTZTT6P2wSIVFNaTrwxiCS3iuzmtZIax9g2XZGxaQlsQ9H3INQdIsQ5JpIX8Q7agt4lTrCWDNlNgj/2zxXrcEodIw9CpWPODsApOpaMB5mI6mye8PhMB5m8e6nSICKsjPZhZfwA2hbnlVrAoDwdg3IPCh0i7vJik/9U/oGPj4cFoTxbKaM9zOCxHG/wQhjLAcixEI+ReJzEQ5xSE3YUBqcNa1y+S+OfXvhC/PtLfhrP3vXM1vvxB/d8Ev/my++D0St2YV6TlwaRmwSZ4vsTA0zTjBk7lOlP/DjCAz3KAbz5PkQCQVLvTLrDRRpKyWd2X1QOf48jwyE6hjxjMS6XojJar3UTto22E3MUPLcO636UXvOa1+BLX/oSfuAHfsCv5m81U0rhB3/wB/GlL30Jr371q7N5Hn74Yfzgrf8T7330dmzbNsbi0gQLgxqDssawrDDQBgNdu09jaeDKfhYqbAFsIr/CpxFW+9KJqwJ3usp3fbIR2shW8X2fNoBu82cHci/StQFCa51USOpzfn87WCV99vvXpbvLXC/ANMuqUioIHg8oElaTigcdOSMiGDMC0Uprnuuuuw5f+MIX8K3f+q2963m8WVmW+Df/5t/gs5/9LJ7//Odn8+wbPYZ/e+d/w70rd2PIkx7HYLJtNB5QadEuNRABTPBpDnjyjCWbxnokNl+7FhpHXmqkO52TvtZHcHRuczuRLXZDbX5fi75ZFkBK0qYBRGsxTdpvygAPLd+KR1Y+g/zEVOHSxRfhFTt/CucuPBd7yvOxVOxFqRagHetIQXvQqEiAJa0GKPWCAJUsW6lUC465VFpgCQMMMbBQkyowUBoDpb3o70BZUGnogKWhBha1wWJhsKgNFoo6LL5pwrCsMSxrnHvqAVx14T687Nsew9tufSP+9mO/h0tP25W9L3+37zF88x+9F1988iDUUmk761Ln0X7Aur9J8SOx5E8eUHLfa+XTTC1c4WqN2igvHFyTRm2sBEItgrYwsNRwf0uAJR84QoBAlRG/HYjEYNPEUAQWTYwFmtiVzoJONn3iwKKJMZgY40GjSuyfmBg4mjBg5LYq2V+RaYBKRORd4aSAd8passASRblSdzggLHCyO5xNiwEeCSwFECgBlQRQZEwFY6rW30QGhioYqkKNSe6PQSZZPts0kEmpAooIR1bvxrh6vK21Y8fihdiz/RkYlrutJpouY5c2DxyVTbc3uT8FnFQAkxr7HBPR5lOega0V66jx2EgsuvljCXuGFc5cnOAb9x7EP7rwQfzkN+3Dp9/ycvzlv/ku7C63Z6/0r/d9Df/klv+Jx6tDKLSJtsBWCiCTZC8BQVsp1ViyniDtoFObnpLdl2EFOQA5sPgEO0kcw9tagCWDoE3H4JEEsBgoDsBSWhZ5YInzb3Wbg0snlfHaS9MWFxfxjne8A3/1V3913LvQ9LWzzz4b73nPe/D2t789K148IYOfvu2j+MuXfxPqSnv/4eBDLDpGcd8C7VOK1cXf2ZgdAay9saWU5DabBgBtBFsppOeEvo+uhsx6gaKjsQo/E4OJ9yUgFMCU9RGAfGSP008/HR/60Ifw+7//+9ixY8faK3wc2WWXXYaPf/zj+MVf/MXs/iP1Kn75rj/DFw99FYBtdzxwYlPiM8XKtdNeUsIVzu/LAEhdIG+ewXQigUTKr/hvxja3rWMb0W8q8a+PbbS2U866AKU2t5xZjMjg68sfxZPju7L7FUqct/OlePrSSwBlwajYjS1sQcC7gFY62gK7yR7HE1avz4KBn6ByKTx+YZanD1QCXjAjty8sqHnZADehLAuDwcBgsFRDDRQwmeCFVz0Nt/7Ed+Ifn/Xs7DXff3AZL//PN+G2Lz8YgKOUtWTgdZX4t/ujBMDJzRIZYAIQ9JbAE7bATpL9TsgTGEypmxy7EHmXNMSTUUBMFiEmkQj5K0PRZDJmUDiXNH85gj0kz+uPyT2Rzbx+Hwn3N9h0uPPmGEvMWrK3OwBLWYFs8XvaWFFGDo7yRJHYJMspv8Aoj0vzZBckE9ZUbh9ben282FObEQ4s34mqRXS/0Nuwe/vlWBqeaQEebdmDoZwEYAI8iJQK8vtjpswauF2zRUB8ws7OeVcUyuqoDZRjIxYGZVlbRtFogtc866n4vWf+M5xePi17/i/ufwLf89G/xgPLR6wGU08hq2ma/G2soziPIC1SfIzsFsL+YJK1lIJRyPyOup9MWnxMnrGUrX+m3HbbWmOwObh00lg7sHTuuefiYx/7GH7kR35ky7KV2kwphR/90R/FRz7yEZxzzjmN/USEn/iJn8Af3nEXisJgYXHi2Es1BkWNga5RaDuQKrWxVHDhGldI1ziQp6NqgdAD8YRXJ7/XY8YPALqBHbk/PyzJbzmLXAoc5XmabYhLWmcZbYy8zQWQGqtOOd2lhMHUKCNhL6VmB55jAHkXiiuvvBKf+tSn8PKXv3xtF3EcW1mWeNOb3oT3vOc9WdBsQhV+++7/gS8fugsDxS4bgf4tXeJYM7bQKrCYHMDkB10CaNIqHvZJk2DSLG5wJxbgNLeTxUzL2EGmt+VJLQWU2kCmaYAS95uzAk/8/oo0ZFQ8Qe73Hpyej9mMRAb3Lf8tDkzuzpY1KHbjtJ1XYak8DY+YQ3iSbFSmARYwxDYbblwtWQaTKi0TSVlGUonFaGOmkt+w4GS7FzCgoRXxpgGGjstUKGVZS9qyloIrnNuUZYYOtXVBXixqLBQGw8KOkxYGFRaXJljcNsHCzgqD3QSqCepvbkVx0wexMNb43RdehTdf9q0oM++4J1ZG+LY/fD9uu+OheIebHQYAyVKEyBCoMi4doAqgygErFWBqwFSOsVRpmFqhrjXqWsM41lJtLINpUmsXvEWjIuUZTDUpTIx2bCXrCjchhYljKU2MwsQg2iwzKTCWKmNZTIFhhIipVHn2kQlMJDKYkEHl8lUiTW6W3WQaGzOTonxkXDxEy1DibUI1KgRntgrMXrL/DKyANzvCSXe4WvGRsVtczD6qvTscs4e4LQT2UJ38XvuWMpuYzdQsezqLqdnWCQeW70BlDmf3D4rd2Ll0MQq94K9TqxJalyj0Agq9YF1WlXVZ9Z+OpZRuDEIB6RhTAknye3CP0wiLZjyuCe5xdu7CYBK3621lhZ2DCQplMJmUOPzkAg58+BD2//WTOGdxAW+8+AfwmjNflL32u48cxGs//r/w4MoRaAcwMRspjQLXxw0u1iYSIDCCyyqzlyQwwq5tDDQxgGQgXVfZNTawlljAX7KJmGUkAWRmHPr9bqtkuokZS8xYZLBZusPmGEvS/XWr2xxcOimsHVh64QtfiNtuuw1XXXXV0a3SUbbnPe95uO222/CCF7wgu//Nt38E77/2arsSVxjPYgJsB6kQOkwvdJmE4AQswAQIdxsVo/RtYTo3yiJ6MvUDnk582xyAqZN91ANg6uNiZ4GlVbQxlr7ne74HH//4x/GUpzylR423rr3mNa/BJz/5SVx44YWNfRXV+N17bsCdR+4WbqdBhF8K07JtBIaeA5XW4q5zNG2tIC8P6DZrm9vJYV1Mpb4spvVYNjrcBrrApSCTUcYxlj6Gg5N7s8dsG56DM3Y8D0vFKQCAFbWCkRoBAAoqHTdh4BlL8nvWrUYwlSLxbsd0Yq04xSkCYJcu+4XsRz1Az4tq1iVOawPtGEx6YKBKgh64id9jh2Ee3A8ywNLOMX7iGU/FO553LfYOmmLBBycTXPP2D+AL+56M72cXZcCI7/ybj5OTSP9d6iopBK0lHiErz4YI7CPBVBKTTzkRlflsOomJq3SBkRNP8gwlyTDKMpOoudWChZRuDQ0lCptMt89r+C7T7W/LWIp0luSz3TKuyo03JQsq/I3qTsZRKpnQtWWPoXgcnI6LcyymnBHVOLB8B2qznN0/LE/F0sJ52fFcDiTidJ+WMJb6BAFpS/duw2KAk/Ok8G2ZwSa3gM7R2iaTAvufXML+/UsYKIMLthn8zDdcjd/5xpdhQTcXyL6+cgjf+7H34pHRET8vSt3dQn1mB06yy8YMKqGb6dRgI4nycqylts9p9TICEEqxIRkRksuU+kp9sKStNgY7vkfCc1uDqWTjV07T/vE//se4+eabTxg3uGl29tln4+abb8Z3fdd3Zff/03/6T3HzgXswGISXTqHJUcIdLVwHoCloT7ogtolbXNpcN2JCm/q7A2h8Anlgaa10fnnuNtc371sf0ZtzFOSW49fFbOpzbDdtuo9FAFEPYChlMXUBTO3aSxO0AUs/93M/hxtuuAHbt+d94k80u+KKK3DrrbdmgwxMqMLv3vNneGj1Ic9KksCSnDxJxlLoKYVrSMZNrs02w12n76C3u4yjxCac29xarC+TSVoKMM3intrFIGxoK2XeGQ1gKBNNtW3rKuvB1U/hwORr2XqdsfQcXLD9JdiuT8Wi2oUhAvDCbAQW4R6AdZMGjonkWEpJevq7QIkBLaB04crt/4WLEOeixAltllT81+u1+Oi6disLF/ikrFEMDIqSoAeAKt09GFvxIb1NYek0g93nj/HdV+/Ax7//2/HUHTsb9+KJlTG+4/ffiweeOAxarkCrNTA2dquYpWQAAqgmy1Zi1lLtWEsTBTNWMDUCa6nSMLVGVWsYYzWWalKoaqu1ZBlK4ftEspd4M8qxCnhf0Ffi7xNisW5Oj7WUJj7N6iel+kgT02QcSdYRs5IqwT5KmUgTqhvpFcKWPrlyH8GgRo0KdcJYCjpLqYh3UGSqozGpZy2JxU5uc+nYkJlDQOzmloJHncwlkdfQpCOfSc4XR5XzzCe+eiIcXLmrxRVOYfviU7F98QKUxWIkrq2hrQaaHngGk2UrOW00XXrmktdSSjWY0ASl7O88eynUSnxXmTEQAoPJu7cqG8BIK/JAA7u8nrZtBU/dfgTn7TqEH7riXNz08ldiR9GUGbn7yEH8wMc+iMOj2jEDddbdKk2TwEYqsJ26tvkojgggUSA2BiFvqbXkwWDJZiIW2A8aapKxxL+9QL/MYwJjKYDNATiWESF5XwOIFmylcFzsGrvVbQ4unRAmwSRp3ASb9v3f//1417ve1RqR6US1xcVF3HDDDXjd617X2EdE+P/8zcfxlSNh9UxqLykIYEkFmmcUPde71LjjEf/uY7QJlMjYL757FWja6hBbH3e4tjp05ktXsGDALnHp6tNWsGmgVBvARFShTbz7TW96E379138dWp9cXfhpp52GD33oQ7j66qsb+0Zmgt+99104Uh/xaemgSn6XOmk508lU1+uTHOPXZroSuyFl9ihrK/n7z20jLNb66wMWrQVQSq2NwbQZQG6OtdQGGBnxr+8xT4zuxBOj27PnPnfpm3Dh8GrsNqdiB+3BEm1HSaXfz9pJJTkRbioxwIKN9uZgohhESrfS5RUbBWBJOUBJQ6HwYJLybjTsUiwnohw51wp5GxSFgS4IekDQQ7LAklZQWgHOfU0vFShPHWBw7iIWnrEbl37r+fjoL38vLj17b+OePHRwGd/z/34Qy4fHoJGx7m9iA1kwyYNNBgFYqhEEvBN3OHaDq6VbHGkPFkl3OP6diniz+4sElKRYtxfvJnj3lzgKnBXjTqO3SYHtHGgkXdi6tj4wKOe1Lm8s0B1AJRkVrlbhdwosSTkGDzSJ95KheJwmXeLYZKS4xr5koTQLPrWk8/Ek3fQa+5vuetI43/L4foyr/ZnWq7F32xXYPjwHA73kBfSVKjz4EzSWChe90QFMurRtO4oGF+sxxSCTKy9lOCXjxobrfuIloWDnKKUiPxYK7Zm8EHdUhibs2raKs/ccwil7l7G41+Dqi/bivz3nu7G7bDIQv3TgCfzLz34ExrmH9TUj3N9yLBrJriGRJ7CLBIhEDDzFIt4SyKHcMQmwlAp9M7AkmY0psBSzGwldEeG8ax4Ek5GaDEJpW2kMdnLNTE44ywFKbAS0sEy+93u/F3/8x3+Msiyz+090GwwGeOc734nXvva1jX0HxxP8yJ1fwp53/iomtW0eIQpCYCwpR8TkBhR15BswwGaLacrNcj3YgvilafPX0T77fWNc5LqApXWxo2aeOG8syLSeussw0Y19GYCpMzIcDHbuzO//hV/4BfziL/7iCaeP1td2796N973vfdlIco+O9+O/3vdu1FRHrnGSxZRaS3CiTbG5i+rcTgTbSGBzmuWixW000NR2PW2AUhfQxLZcPYJ9y7dm952z9EKcvnCF/21B6yC2Lf9F6aR9tDdtOUmO3VT6LRzp3OIolBQ+xaZYn4VdagQQj1gjUjJAbd4QapwX4aLXmnY0qKG29CetAK1x7um78H/e9L24cGeTwXTb1x/DP/vzT6A6VDdI96y/RIYZSxSApUpZYIkswFQbBWPsxKn2nw5UMgqswcKaKxwhjtkMrMMST0hjYImXb+tockmOBWEnnbWYNIa04N7GoJJ0Wwv6R8apH4V/bcBR5EqXlJNutWAe8f/8XLN4NxBAGgnCSmApbTdrGWs2QKKEqZR+bzs+l7fBqE9YTKGMZl1Xx49hZfxQIx1QOHX7lVganpYHiBhQgkbh2UgCTBKgEesw5dzl7O8i+r0eS93UvLA32N2VF85tWw7gsUE5rKEL2+6UBq4+ezv+6KrXYGeGwfTefXfjt+/6HAwpyKhx0jzTyLmshvQAMLHeEn8HQndg2xqnBaAp0lry7VNFQA6fm4/hcrlsCQTJPPIzuLy2A0uhTgFU6hLyt9cVXGO3us3BpS1pXaAS0MVYetWrXoV3vvOdJy2wxFaWJf7kT/4E3/7t397Y95WvfAWve93rcGSsUWiDQRGQ/cKzlULrV65bapu8dv2lmtEJmmASv/D5u/0Mq0cpwMT7433t7KNZGEhp/pS23Nc2AoBq25eLIGKtwzVuSt272Ec5QCkHNHUBTHFkOIO6PogDBw406vFTP/VT+KVf+qXOup4MtmvXLrz//e/H5Zdf3tj3leV78J6H3w8gdvFoREsRx4RIjyyCGVoth/Y9Xq1vu1sv20+u8G30NretaxvBVkotFflua385gL6vwD5PmCl6pwax71xUrJx4dy7vyBzE1w//LXLjsFOXnolzh8/BAgXWuCKNAQ1QkBXb5u/828JJQ+8aV1KJAQ0tm4kWMKDgCse/BzS0n1hwZQl3OFh3OOXYStL9jftKye5kbRbJ3i60YHU7LWLPWnIdryoV1GIBtVRCLZQBmRqWOOfcU/Dhf/9PcPaubY17dMOd9+DX/ubLlqXkZn7k6ENmDNCYYCYAjeFd4eqJgplo1KMCVaVRVxpVVWBSFahqjXFVWLe3WmNiNMa1+2105P7mxbsNvIi3FfBmce9YyJvFuIN4t/2s/e8g0i3d3SrhyjZBfhtntgoGE1S9tlr8k7+raLMQVK0q1CowmGpMYGBQqSCKXWEStQHJWpIucX5MiMAM8m5pQmupT5S3iG00bcswlQxNkGMxhfrF7CoAmNSHsTy6r1EfANi97elYGOwBAM9Y0mJjFzf+XTjWklYDJ+xt3eSyrnJJegReRUBWPN5sdxVuusn5CNhezkO0YwEslcMag0GN4YLd9MACudDAqRev4pqXlnjLs1+DgYiIx/af7/oU3r/vHg9Whb+nCoBO5A4XQKSamlpoEgiuHCjlmYXOZZUQ0gyEu1sGELbgbwwWG2qmpexE7o4kcMz7jQCN4zICqMTl5NhKzGTsYi5tpTHYHFzactZnkiNx2GCXXnop/sf/+B8YDJqdwclow+EQ73rXu3DJJZc09n3wgx/EH3/90ygLK1pZaNNgJKUd56y21ga9XgFSBogkSCTTcoDTrCCUP24dIFKf0qWtZfK83hX4HEupK8+0FSgFDWMOI8c6fMUrXoH//J//80nLWEpt7969uPHGG7F3b9O94hNPfgpfPnS7mxBZ85/i9h2tWznrc7a57WZ2Y0HcrULJntvGWduzeDTZS9Nss8Hf3LW2aRgSEfYd+TvUNGrsG5anYu/CpQ0ATDKV0jTAgk8ynRcuoihRpH10Os4TacCAZbxjnkVbH9g2tokW1mT48eTVpgQVVOWilxjCU847FX/5c6/GQtF8L/77z30On9r3mAWqnJGjHpBbPyXeKDCWiGAZS0Z5NkFtNNj1hiGywFJihkTKVgrHM/tAus/4fZzfu8AENoNkIhi4iSdicW1CO1zStqcHzNLYgBgIlS5wkq0EBMZPzFiqs9+ltYlrt2mctR2flUboYW1udmndcvtDeo3l1XuRm0NtXzgfS4MzGulaab/5hUUv5O0E9cXvrBC/WJCcZcy4kaZVLLgd2IhxpDc9BPSixrN3n4HvOvO7smW98Qt/g4dGh0P/IEy6wFn3tZjBFOcJTCPOkvvLyflUYAKpRl6v5SSAJi47BVpCOTKNGmlR3aj55HA/Ea6NPKjEfUTYl2cubbUx2Bxc2jI2ja3E5t66ie3Zswc33ngjdu/evdEV29LWdV/ees8t2Kf2Yc/eFSwMKo/4z2rcaaVpbEyp9GJ2YjCQrpCmlop58wqSJED7gcIaWUptx+QGEkETKT/IiPJmVq/SfDHNupux1C99nWBSJMrdP6x8brCQE240ZgTKTEqe9rSn4V3vetdJzzhM7aKLLsK73/1uFEXzb/EXD/0vVLSMBU1+fpJ3i9u4F2uOPZgX/G0OdKcNoKcJfWdXftsmAVPYf9nRzdxOemtbVd0M9hKQ119KXeNUAsis1yLh4QyAlLbnMOG3+Z4c3Ynl6uFGuYNiJ07b/ixoVWCiJqhV5eusoYVjW7wNMbDqSTT0rCbJZiqc2LfcrLB3zHxi1lIq5B0FOxCsJVs3jqGWN3IgjrsxyT53nBS3qwwwqUAHlkFPHIK55wk8Z6XEbzznm5t/ByL8s7/+JCZ7BkChQGOyjKURYFaBeqRQjxSqsUI9soylyURjMilQVQXGfis9c2lcFxjVGiNmLznW0sgo+93Y7yOjUBlgZGCZTMbqikeMJQpC3cxYqkj+tmwlZipFbKWEndRkHdl/FWqMMWlsVc9/EzWONstOqtzzV3umUuW4TbzlGEsykEyOteQZgDMu8qUs87YobzJvt7h3B5Mpp8OEcH6lNFbG+2CoGURlUO7F0vAc/06VQJDGABoD68Lq2EyB0eRYS2qAUg0dc4nTywZjyQt8J79TkCpqK5l+OTB/5L3Ov9rlQrlWFjAuHHCsSgMOEEe1ghkpjB4BVu4zqEnjO864DC879VsaZR6sxnjj5z+KsqygnFA4AxnGu6oKYNizkJzbKoCaNFgbKeifpRuzlQApth8J7ydpDABJppIU7/YsJ0rZTIGxRCT01oi8zhrP94LWGoPLiLTXUuC5D3NpK9kcXDqhLA8saa1bGTpzs4yud73rXQ1x5LEx+JmHH4TaNrEMJkcZ7dJmSbuEtGMHuuGNGHSixncj3OMknd+W315y7oU/TbC7y/rkj8LOtlz1NFr0Rth6yp1VvFkOBpplta9GKWgQGdTmYOO4nTt34sYbb8Qpp5wyU11OFnv5y1+O//Sf/lMj/UB1BJ/7xq9HLnFsGrOxllppyjMMAraSCH3O7Crg5mxzm9s0m8ZOirWZdMT2mWbSHQ5ovq/SyHBtkeLG9SE8vPLZRvlKlTh1+7Mx1DugoRsLRRwooG2T37yiEpVQpFFQ0TiioAKKJF8psJaUUt7lDQh6SzIgiU1vuVdTVrkpXf4PB9qtMsBqBToyRv3kGKsPAa8+8zK88rRvahxy+8P78eb//VknEA5QDauvVCsXCc6Kd9eV01hyAt6V2zgyHIt3p8LdXmspmqjavo5dYFjAmyejgeEQRLuZsWQnkuQniylbyUZls7+loLb9bd3RYje1yjOLGAyaZWtnMomIaKyrxP9UKt4dXNwkiJQb06VC3kB7m5rVcmymHACcur3JY6WmU5oXACbVIYwmjzbOrdUCti9cgHT0LkW2WeNMtEIr8s3i3UKLybvN6UHInzCZgFgUPALRhc5T4z613L8+4eaZnaQcwCTd5QDAVHYbHymwcsh6wOwa1PhHZ7wUp5YXNcr70L4H8K57v2Lr5RlDQrzbsZa8xhI4PTCMiL9HZcj9sc6SocBYipmHMWMp/c4sJv+buB6c1iXczfcYvi+IykDMVgKXIZhLfo7nXOuyf8MtNAabg0vHvfVlLPGfsvlQ/ut//a+z2kJzC/bKV74S/+pf/atG+m233Yb/+Ik7sTIa2JC1RomOJEQwsL/dJ0Ke1GQ6oZ0gQBGw1E4RTl/08cu/bjCPusCktUaOazKT2oGnzZhg9ymzzZ8fWP+gh60BGGVApi6x77o+iBz0+Du/8zu47LLLNqSOJ6q94Q1vwLXXXttI/7M/+zPctv92v/q0FkujN4a21uO5y+SZdYV3s92Pjif3prkdnzaLa9ysq64pMJJaTntpVje4NkZTH2bwNBF+zlPRGA8sfwKEqpHnrO0vwJ7iPGzHXizSDpSQ4I9KACS7McuIJb3lv9K5vJUuRyEiyhVU+n0pYymIeLv7mGF08nfyn8ElxbuURcwDwNTKgT6CLsHUidrYSG8CXCInUqIWNIanAKc99Qj++OVPw7P2nNq4d7/x3s/gE3+/D5P9wOSQQrWiMVm1bCUz0ZhMNKpKoxoXHlSym2UqVXXQV6pYY0lqLTmdpYqsxpIFoSzLgXWWmK1Uu+8hGlzY7P5MRDhYwW6O6Baiu0n9o3ZGUY5ZtN6NRHk5UCkASwxAmagd5JnyGUZfRyS2PpaCQ77clvdqzi0uX0YdAUuGKtRmjMOrd2dqobF72yUYFttR6AXBWLKi+ZpBJKUtW8mlcUvOsZiYgaSgLYvJgUxRVDkvBi7Z7fmAMWwBuBAABsm5SQB0KJq7NNNyxsNZXRAGA4PTdh7B5XsP4FvPPIi3Xvmd2DvY3jjm//nsp3DPwVWMqwJVXYTIjRSiOBIs8GtdWAPYK8X2iQEmrj+CGyuzmshdXy4yXMpYYqBYdk1Sp8lAgMomAEs5faUAPJMAmQOoJIElL+iPjMusCwawxqHqcWVzH4vj2voOoDTc493Yc9lll+Hf/bt/t4F1OnHtzW9+M2688UbccccdUfpv3P45vGjns3HacBGVCbRONhacS62BjiMAShKZlv73qUucATl/eF5hMmJfLNotX/7NF333S36tft3pS787bwfo1JM5Fc53bCfEM+kouf2eeo0ChDpKJxrD0Erj2GuuuQY/+qM/ulHVPmFNKYW3vvWt+OhHP4r9+/dH+/7y4ffhDRdcjFIP1vXSTrUrQnoYnKf7phkPcv3vFnfSNJRzbkU2d1z2nGsEeOeecie3GZgNcTubZhqqAVApqGjBpSvvrJZzc0vT+wCwB8f3YqVqsh7OGV6Jy4qrMTEWTOCpeg5YAjIhxf1qPonv9g1kQCjcu0jWUYYnD+pLyrvDaSiUSvkABkCeyWlXtMlPPoNYrRsH1Rq1AkxdQ1fKRnCrHPuhsqwcBQ1ocsATu9DZgZHeVkJvK6H2LmLxm56JP/6Rp+F53/lmTCI9SMJPf/A2vP/l16LUtp5EQF1rB2yFSSqzlaraRoVj8e6aFMamgCE49zftQCM7cR05UWDrFmfHaWM3iUyBpZpIAEpWzNu6yARAqSL7VE6odiO3oJNUS9BGxdHavIQBP4Pr1NecZjk3bnn+3KKldIfLlzkdUOrSW+L8XQszISH5rXSch7uGFDF1aQoFjKmglMZ48jiIJo1z7l26DLuGF6CikR23CWApF/k3TbMAnIZStgUbGAsekWOk8TlF18rve6VCtDjuJWzZ0yUZCOyKFjNy+DYwUJMCSoYUFFl3V1U0+1alAT2wJe7ZvYJTt6+iPH2AZ7/oUgw+/lp81//9jij/oWqMX7n97/BrV7xKXJ9qBZHS71LAm0EoFvCuXfVCREblXdaC+LaKwCOS+SncFz5uFrYS+by2IrV79BhUArheQVcpx1Tiu8wMx9a/6RYag82ZSyeMNTt0rTXe/va3Y3GxGS5ybk1bWlrC29/+9ox7XI2/eAZ3Iu2An++UqB/yzAt7+bLaS8hquEQRNYLGkk1r0oBzOkjtUdbyNguwNIttPpPi2ABT7XpNCpO6GRlu9+7d+MM//MO5gHdPO+ecc/A7v/M7jfSD1UHcesCGBO97J9c7YV3PM9zHnbT1vMnqbC49yn+MQdq5Hb9mJyD556Ov7tK0dtQe5ai9paYgDAM0Yb/oZ0nPzHJaixEZ7F/9h0a6Vgv4hsVv8ZOPAPro5HcTWFLiH+/TyXeZJlPS/L4+nFfx7+kmXUYkwyF8B2CUE9sGqIIDmQxQkXWT84ImJiz9p4/WZIJnXngm/r9P/8ZGHT6//3H8z3vus1HgjEJdaxh2g2NGueHv2uu2SNc3doljllKYwDpCFSkx+VR+wikFvKXmSmVi1xepl2LLYLe3kN4GLHW5pqVbk4XU7vw2bQNidp4U/JZucTmQSf4O0eFmk1foY63j0Vx6D+3N3DvSUIVJvb9xXKm3Y+fCUwBw+wrAEptkMMlNuruF30UQ/WbmEgJwFDGUVBGlsWkV3PByZlkwSRoJ9hLFaQyckMgzzRRHm9OAYorK6hivvuoiPG/3sxr53//Inbj94GOgtO9A+KQkjdlJMWOJ+yLhQQKOLJdnLKXi3akwv2zfgEyfDiwBAViS7LAcsNTmAif/bieSzZlLx63Nylpqdqo/+7M/i+c///kbWakT3l74whfiX/7Lf4nf+q3fitL/6I/+CC9/9o/i/KVA2+a7zqATuQ7Opqmo8wobRR090yWZzUREobMC+8aTGHiET+8Dn3HvSoGlrsll1m97DdRle1yiXdG2AjVlEBDtb5TRxdJIf8+An5MJvN9NMqV0o87GrIAyApK/+Zu/iXPPPXdT63Oi2Q/90A/hXe96F/76r/86Sv/Ykx/Fc3c/BxpL0CqsUgEZFqFcYUL4nrN08p1jO8hV3i6XuC4R/CgfMm2kw2Zqy639RMzWnNvc2HLvEMmyWatJxg7Qzl5isxM109pWZ7GUFSzTcnZodA8q02Se7lp6Gg7rVZSYYEBDAKk2VCpOnncNlONBZizZ47qvVSo5sdYSM5eUspHiFGKtJQkkMUtHO1BGAda1rLY6MMOqAJFCOXasXG1sZKnafqeaoAwBZSJ8x52sVlBagY6Mob/0NQDAGy55Jm64537csxKLov+H2z+Nbz3tIuxYsIyMqtaW0SAApokpQASM6gIE69bGzKWRsflHDmSaGOXc4BAxl5ilNBZsJe/yZgJjicV6+fuEDIxwg2MXuBRUslpIgc/EIBIQnrFZdIrqjBtm/Ay0j2nybq3Nd5hsD96VLGkPZobFRgXdyMOM7q484QQd5ct6eLdPN+5S4jvCgt9k8gRyS8JLi+ejwgoUFb4cyVgqMPDpQAz4eOYSDIyqoVHCUAVggFpNIFlMRMazlIhq//f3ILQDmjRrOGXOB9h+gVN4/lGR7TOCoDVFoKsmB8YS2aiKRgHQIKotWFMrsHwdi/srHYbKNCZUj05Qf/BOmBXCa896FT538C5MEib+73zt4/i9Z303WLw7x1KaGFtoJfYxY2nCbnOJeHecBs9mmjiWpNdRE/OxyEXOPS6V3z8bW0kCzG26SvI7jzcJcp9kxef79K02Bpszl45LmwVYApB5uZxyyim4/vrrN6xGJ5O96U1vaoQ3N8bgv9z7sZnKSRFz2WXY3+0Dw+wqcAdF2oiVo2nAUrpylf6exbqO2Wy2xKyR4NbiDjR1kJQT7u4Q9Y7yoQARZVfMnvnMZ+LHfuzHZqnq3GDd437913+9wT5cNSv4+JMfbxXj71qxS9uiHxCoZrvqsq7J6UYziDZjBXluc4vdQTPvqJ5pazXJ4umytbrvtbXDrrZrqMKTq3c00gu9DQuDvZiokRdrlpayltLIeDlp73Rf+o/L4X+BqRRrLfUhwwZg3WkueU0TXkxTkXuLcSLblrlkNw7TRBXZ75WJRU5MYDbRk8swjx/BoNB4/VNf2qjPvcsH8K777vQTYMPaLZGGSxDvnojvtZio+sksOJJUEPImxDpKkolOPi0sEEYRnigwlqQbHC8RdgFLQSDeiCNl+tq3acwl+zeOBepTZhOnNZ8Rc9y8a7Jj2IwbebwYalDTKqpMIJWy2I1CL8BQ/hqDi1oe6JEMJv9dRAjOsZgi0e8EWErL9t8zgQs8Q0YwaOx9CEwfmx4LZEvJD0MhEmTG+1DcQ8CMCCv7FA7vG2DHYBuevvjiRp0+8cS9+NSTX+9kLNn24/oThL4mzKUCsBSYV6mgt0quKwaW0t/w5xHXI8rLAUsQZaXAUnRf0NRVCn8HRyZIgCX+t9VtDi5teZPNItjP//zPY/fu3Ue/OieA7dmzB2984xsb6X/7+F34ypGH/G+TDFrkIIUHKnGHFkcXkQMUZknEr/74H4DGwIM/gXhCmQJLfQGkrgFILp//TXWDtRTl7xB27Byc9AaE2vJt7KS9y7IC3i1pbMasZv38f+VXfgVFMd2vfm5Nu/zyy7M6VbfsvwWrZjlKkz7sYbASBmZyYswtwn6PqfUS+JVtMuvCKtprG7MvruMU9uEGMJP6lLOVIpXMbeOsyc7LTzI3y/q4yOX3pROy2Ya70959vB0cfQ250OV7tl2GJW0XqWpMUKsKDB2k9U9d3wKzKN6sZpLdpOh3EP7WUZrP784Qg1XNyLepsK0Uq544ZsHEaIycSPa4KjCpCoxHJSbjAtWqRrWqUa8o1CuEeoVglg1opYbJbUcqmAMT1I+PUd1/BNV9y6grjZecdi6etfOpjXv6e1+9DYdGwGhSYnVSYmUywGpVYqUaYLUqsFKVWK4KrNa8aazWBVZqW+fVWmNkFFZqhdXaspjGBhgbhVGtMKotY4nZSmMDjAxhXJNLI5duQ4971pIxqMhgQrVnLFUwmGCCMSaYKLvVmFiwUVWYqBFqTFBhghoVJhihcluNCSZY9a5vldjXtrWJd8ty2gW+Y7c7BpqifU4yIXWVs89NF5s8tq7xUC5t2iJdYyyajltbACau56TanylVY3F4JhQ0DE2CLlJaTwEseQFvlMk28FuJBfupFuyGRRRqgFItOsFvK/pd6IXotxX4HoQocV3R4gTzJnbpDJEPmaUXgFcGai1oW9XaRmM0DjB2gv0MIHPUuGpFYXJAYXRAY+XQAMvLQ1ywNMYPPuX52FPubdTtD+6+xbuoWnF9hQmxwH6oDwvtyy0GhyUTy12P+M3sw0r0YZUJ6TU5D11/nNNMMxTts2xFKd4fdNVIppmMkD8FF7iKjP0NeGZjqrVbg6HoeNwpbSuNwebg0nFns7KWmh35eeedhze84Q0bVqOT0X76p38665L0Vw99LoTlRIxecyeeQ8wZvebJLKHpe2uSjoX98nnymg5229xtZCSMiKHkAKCuLWd9AadplptIdwkRd+Vdqx0rQfAUZOLvVUZr6UUvehH+0T/6R0etbieivfnNb8bCwkKUNqEJ/v7gZ/1v/yRQaI8549UkuQod0hPXADngFgBvDgDOnyvvWrDWiIhd+zcTEJjbiWWzaC917VvrimyqRSTTUt2hmOGTsoOmA/ZpVKwcm4ONiHBo9d5GGUuDM3H64BJsw+7wbgZ5gKntGiWolGMuyY2BoxR4kr+9SoxSKJX2ocUBobuk+FrCOEaCTBXrFBkVAUwT46Kw1RZgmkwKTMYF6pFGNVYwI4V6BTHItErRZpYJ9RGD6oDB6kPA8kOWibRjOMEbL31B4x49Oj6C9++7D+OqwKiy4NZqVTjgqMDIaIzqAmOj7XejHYCkMTbKbxM3gbVAknWFqygASxwhTk7IWby7cpNQ6Q5Xg6JocLWDdWpV2ehvDBKpSoA6HAcuD/gYqvxmGTaT1o3IRPmjY9HUaeoLNKU6nCmLqS9rqW/Qk0b6OqaoUXslAymv4K/HTGCSBScAWByegbJYsi5rfB8EoJbqLEntpKb+kgWc+BgJNmklwCcVNstqGng3uMIBSxqDiA3Fxv2b7F+JwQxDDaCpckwhDy6ZGGQyRsM4gMnUjsFkXERIE0CmeqwxWSkwOjLA8soClkdDnLW0gheeMsK1Z35r475+7uAD+IdDj4G1z2rSXgut5r6FJOgltwAeVR6EkkzDeHE/txEE2ORBdPL3KHafI38MjxF5rsegEpEFlfyCJOLvElQK+7pBpS5waSvZHFza0mYf2dTe9KY3zUW812lLS0tZt8IPHvgqnnHTL4CjpfjQvEzdRGAsRawlxJNZQFAv3SuB9Za4q7F54k5GUqVlmi23i5XQNxpbN9DUlp9Nai3Juh1bOx7q0DRjRjA0aqT/8i//8lzEe512/vnn4yd/8icb6Z868CnUxkRtkdspgGhgwG0yZ9IlLg3V3BZlKv7e4SLXEj1OlrFevaW1ALcSIN/obW4njh2rgXEbi0ll3EZmtbb32MrkEdS02kjfs3ipn/ytZ4Jsj2/fgLz7nHYQnMwT5Z3yeuFJmIw2ZYEWORFUmDgGU1XrADBNNOpRgWqkUI80zEjBrAJmZN1nGtsqLBBVKZiJhlKEQVHjqlNOxbedcWGjbn/69S9iXBcORCoccGR/T4z2wNLEKIxqHdgPghHBLAapsSQ31liaONYCsxcoYS9UTrRbaizVDjIy4s0Qu8AZ1AKCikAdB+TUFLOHpgl3e0Aq5xaXBGvJBW/p2gc0QVb72R44Jv8c68bvBotJ6BltlHUxEGtzpJGuUGBhcNpM5wggdtFoiYUDhEoMIpDJA1SOmVRg4NICyKSVDq5zwrVOnjfHyEz7YMlGZG0h76kqgJ7IzdQBTLUAmWAsi4k8m8mBT2RFvgttsFhW2DmY4JWnX449xemNuv3lvr8PHh+iP2GhfZP0MwwCVRGwlLIrMwL8yXVboC0QACSAZBDiDDBbqeFdQjxfs+NCey9jtzf+Xjn9tRRUSoGlHKjUBS5tpTHYXND7uLL1s5b27t2LH/qhH9qwGp3M9sM//MN44xvfiAMHArtkZWUF73jHO3CpQ9h5cMK08S4EneRvA9/R1I0Ox4l4q+ASRzCo3OBBrirZ3zErgqIVmibw02XyRdUXYErLb4ZL7xGadl2spD7HGuSwdCukePQwdinoXZlDjf1XXnklXvzipr/63Ga3N7zhDfjt3/7tKG1/9SS+tvJVXLB4saM+y9UosfpEzQEAQU4W4kmDVNkAmiyHnAtB2k77RonLsf16uZjObW7rMBtQWze+sxHywSE2yqTAN4t7a6jsQFw7J7DcO085SWxNGlZSJOe62jIhTd5Th0b3NPIMy1OwozwTBYXh9awueQwO+d9rXGyQ0eEsK8oylXjxgs9iCCiUfUsqnlAhuI0YozBQCoUCVp3obk32r11qA60GKGvjWA8KWhMGlUZRGBQlQZXGsqaS20AGfpI6GRd+krMwqFAWBj91+SX44CN3R8d85sD9+Nz+g7hg6XQYPymVwsAWNLIiwGEyOnFAGbvPVMYylQiBpcSubxQBTAwoARNjXBnGpRlMHPdgggoGhAqV11aqMYFR7GoWgCAA/jOM4/Kgjb9XWd2fdiYeRxUz7jy5vAoa6DHOa7LmW1juPcZxQbjasYCUHHPGaUSuT1HhO8HYB2nGoDP2Wo0X+SZDqDOspcFgb1bnqPV6BItIQXsNJNlX8tjTgkgQi8RhYYpU8hyQAZxgOB8rganCOr426hO8Ifi5VVDuk93KJsbONq2AtsHEaGhFKJRGaTQMKRQVodYKQ8CBR0BRGM94JAc+W4DJgsJlYbAwqKA1odCEf3zO8/Dfvv7eqH4fePTL+LHzvhULxZJlUAnR7spI3aUAKlkwTPk5FANkKagkmUYpqCTZW7VbTUyZSqlgdwooARZQ8tePwHjncSMADyrlhLp5PBn9rfy+jQlIcTzYnLm0ZY2QGxT9+I//OLZt23b0q3MC2vbt27Oiym95y1sQ6SY55pLvbAXizR0VwGk8WQ3udACiTgiAn8AC8JPXnPVhLXF5fUzqO81i047ZCJe249lmBaiIalR1E1z6qZ/6qTlraYPsaU97Gl71qlc10ifP3x+9vqe56sxKU04H4pGbzZQocbOUO4sb3KzRH9Ortf2Y2rRtblvX+rSNWQfMqYD1RuRdb/S61Cb1EaxWjzXSdy48ZUNBNgksdbnJ5fIAAVjifaHc+DxyTJITra2cyG6DbeCix1VGo6oL1KzZYhSqSntGkt1UsmnUE8eMMHaSSqI/uPr0s3DxjqZ2y3v2fQ4To1F5N73ApgrMKslyUH5SysAST0S9Do0R1w+x8OAZCWHxIV0QDJvxi4JSzkCCCCmjKAWWDJmIDURiATE1uT/Nx+V0ldXFhpJbek55jjSty2ZtF7NoL0nLve+a788xcnOoYbGn93mkyWvTaLKLtAOeNAWQSCMGjCLmk4o3eZ44Kl0TYJJMFDnPABj4sJ92Ey5x5CIvunmMFey3bZLnN16biay7nKl19A5nEGqhrPDqM5+OJT2M6rZqJvjAo1/KAkuSXVW7uVUEFom65+ZanLch4g35m3w5fD+AOL8Eluz9DIAd3994vkaeqSSBJbmf/0lASRIKpgFLW20MNmcubTnjTib/EOZcQea2dnv961/fYD/cdddduOPyh3Hm8HyMjBWFrIxdEZMU64mBZ0cEMTju7IXPLQWGhBWClFFDWLRbDl9qPygB7AuedZYAN2BIxLX7Ti6VkqstsaWrr3nh7j7uNR2sDJiI0SHT+KxxGZmyyDSXSJPz2+sMK0py1X0jV+AlU0mmTeqDSNvwrl278AM/8AMbct65Wbvuuuvw/ve/P0p73/vehx854xkALfpJhXVxCG2xRpPC3HfyAMC3UWmpkLc0I55xyWbq416aHUj31DI70UHfua3PSJnIrayNvWRgWUTcd/Jv/myzdH+aV7KVZJpkLzXzhhDmvn5kr0U7NhN/2jwF2hZvANke3UKOy3tk8mAjb6m3YffgqQCAiRr5ySIIUO59o6IazA6Mta09FC33jo9hdzir59R2rQys2C9aWbFr0oTCTf5sPo2Bm5AUyt6hgSGrwWQ0NAiTqkChCVobFJqgFEGr+J3HEaqIgHFV+MmsIWWZFKtDvO7cZ+KX7vhIdNzNT9yO7zvnO0BwE2EEAAwILCXPvHJgEyGM0Qw55pLPQ85dLri8WBed8G6YGPskTojZSjVqZi6psXsrWG0lZpv7MRssa0kCSml037b+ftoCBLOBrNno0fKvTMlfXOXGdzOAN9MWM2W9NNm+Qo6FfH35cZCPrkjz+UWbTtlLcp80+W7zTCgY8CNoMu6shd4OKG3vt5oOhjWiuJFGkNbPCJVznyPG53HEwDD2zfVJvj8BrLsdn490ox+xgEeI8Dhxt2NigNL1BxNjAZqhVkBte/BCaRRGoXDt1Y5DHGhUJ+MWcqAwKVQOGK5qDYxLaEW4dO8I15z5DPzFvs9Gx3348dvxklNfKMCcwEACYrYSe32kbCUGoYCYudTGVvIaShSn+fwCQErd31KGkmS4A01ASS5I8jtKpjGgxN/5WZCfW93mzKUta80H8OUvfzkuvvjiY1CXE9cuvfRSvPSlL22k3/rkXd4djlfEDHeEEPRMwPu0ylXA8Jn3s/VC3uLvLKN0yMGJtPUAS5y3LX8uel16rKyHTUtWyTpcejbEuCwn4NjrkE2YYMvVptyKW103ff1/+Id/GNu3b9/wupzMds011+C8886L0uq6xj0rd7k2GrMI/QqUAHzZpJMqJQNBaemgULbTxqpxm4h+a3oXMLt+l7hOEAtq07a5bR2bdfCbcwuY1WZlHaXC3uu1FFgCrN5SarsWLsRQLbq87YzjtZoElqYJfrN4t2Qu2eOaRgir9DkWQCyoK6M4aS+iPXIR2UZV6SPJrU5KjCYlRpMCY/d97IS4xxWnFS7d7autWPfKpMTh0RDfceZlWEoipx6qVvDFQw9guWbBbrvIZ0W6lYvyBpsmBLu9hIEJ7IiKrJuMjKTFiw4SWKrJ8X4o8I+sG1yNyrnESRkDOVbzukkZYMl+TvyiGr8XeLP6S93/rKh3EqBFjCxZFDwEemmynSTTadoWPzs5d718pEZ27co/2xmWjhxHoanR1Ha+1NKxqWWhNfUuy2KXz8+LO3483fHuZXc4BpbYmu0y5GEASpNGQdbFTeoysVZTq3C4AP3b3G55jpHOQaR0RyTs7RlMlpFYO121yumqVbVjNrnNsDaTYzcZUpjUBVYry1vZvWMFP3D+5Y163XXkfjw6OuK10KSukndjNaGOleh7ZDv1rnMm/l0bnpOFaG6SnWhZiRSVI4MYtIl1cz8gmUrc0nJ6SsxJqnyvEJhKAANO8T9SJtL0jP6eW2gMNmcuHTc26x+3OUB77WtfuzFVmVtkr33ta3HzzTdHaR9/8i686JRXeESdadhRRIJ0sOIms3UyWJFC3nUqBJn6YQuARg5OQnjVPLDUNWlki1a6Mqs+XdYFLG30hLiVtTQVJApMpfbCu1lPazW5akdksr7+8/a78VYUBb77u78bv/u7vxulf23lDpwzvMK7O/gXP8UijHIwIFlL0lLAFwhtIOcSlzLzZHl92imXIT+n5Zu1/GZBgRI+t5PLUvaSNMleau7rZi3NalJfSbKX7O/4fDn3AkUaUDU0NOrkvWPZSz3bHgxqM3Ls09iG5V6s4rCfGNo3joFRlq1gYN3cbF+gndMHIu5F4a4tZSKl98JfV0u2nAuc11pSsd4S7zdErn72t9c3MUKTySgY/g7t2UjsolZTjUJpp+MCFEowl8TfRSk4dpH27jZWJ8lOaiuyUd6ARVy58xtwy/67ouv75JN34oyFp7prjVkKPAklwDOW5G/vfuOiRFUGIuQ4ay7Fwt01CBOqwQxzFu62EQDJ6yrVqvKMJS+yTZZNZIW5w7gNwNSxG1uu75ZjthrMCnJpFLP3CHWkdxQzm/Lak32iK7ZZG6PI1zthK1Gj/j6zr7Pf7/aRQnbcl2OMS31NwlicQNRKLcKYCqqw5+BJfniv15A6SG3GEBIQBxTgu8mursb1ZIBlPTHDS2fGD7Zcoe3kGVIMpcdKbRIslsGGJGAzIQUYwsQoQAOF0RjVhFJZ5pJxHQORQqENpMsql82gUlVrGNjPmjRWJiUeX15CSQtY0nuxYp4MdQNw24Gv4FtO/cbgaobAPJRspZpZTCYA3tKl1edHzFZiJpJkK8k0ZPLZa43ZSilrSY4RfX6EBZSc65u9viZTKRr7qXh/w7bYGGwOLm1J43Wl2L7zO7/z6FflJLBrr70Wb3jDG6K0B1Yfxn3LB3D6wp6IoskDmdqwm5yMNkKuwwwDFu6YeLBiBye1B5YCrl03Vr4AtAJLs9Cr/YAjyevdxGbUa+mT3scnHskkvPvELfk2CSxai/HAxgJLcfvdu3cvvvmbv/kY1OrEt2uvvbYBLj04/gpGdYVCFb49khug8ICAV6a5XVpgKbCWpJB3g1HYskLdFgkuJ8LfdJPLf9o8fYDc7ja4ZuBpbie8dbnHhbTYNa6zPAEMzWI5gKltX40g7B3qzKBUYVMJqMUqsa339AWPHGtJqRK1qrBqDmJB7/Ahxg3qxt3gSUWBwvc3zM8goqzunmQgpQym1FI9JS5PczmqmU+yN2vnVjbhfQ6MKrVzL9HBXUUpyygoFGGgCWOj3XfjwSV7XrJueeJvxu4w5BgLBBvhrSbLRDpUFViuNbbrywDE4NLnD92Jbz31lShUwCmCW03MRGBQKYgcwwNI0gXOLgq6MZn7tOLdtu9n8e7asZVIGUww9qASQ06pG1wKKuWCOcwaCEUpjdziXAoI+SdLiGBbx8XapecBJ1fYTJaXAbDla56gC3HuFGDKnk+mC8DJC3wzcOpBigBCtQWOMWacqfsAhAqAjoAoAwNNACnboxjU7j7lgTeGfRSFSG6NvtK7+xkUKNzYwkJHEnjMAd5cVuFALst6Cu61sj9gQIlBJW2AWgeW0MStt46dsLd2YHGtCKouUBjb1geFgXLtGoAHlDmaJINKhhRWXRTHQ5MSD49KPDHWOK28CF8f3xZdx2cP3onn73lOXFcHgnGkysjNTbTnNC0+jsAusRBp08S6U0AJCP0hA0q2nk2h7rW6vqWAkk/fYMbrsbDjY9Y1txmt2eFcddVVDfePuW2MXXDBBXj2s5/dSL/w557mO9s46gAPbijQUiE7sthVIO6QBGgkJ6vpxFD46ktrA5aYKp2ztn2zTjbT87XmO6Y6L8d2Ak1kUFVNIe9rrrkGg8H0FbG5zW4veclLsHPnzihtQiM8Xn09SvMsJYoHC/F+NxgQwG9qs7AFZXvtKmMt7L/OY2YElmy/tnXEJOd29GwWN7nWVdkZrC8bapZoT3H50yNFrU6aQt6F3uGYPO0sL3LgBFva7uJ9s5tWMWCklIqApWnmxyd+oi5dRdj9JERfmzTc5Ng1TWNsnJtcXWBCGmNjXed4H+8fmwIj8XvigKWxF+oGLly6tFHXJyaP4Ynx48E1Rm5GpBmphRncY3jhL2KZp2wl4SLNiw0E44GlatpCg19kaC4w8LirC1iKXNkyQElufzqek++Q4N4Z3l0yfzrW7JJJaLNUfLorj9wvXeayLKqMy9xazB5XZdIXot85t/WmS2C6INsEnGJx79g9zrvJkY72FRgEt7k0r3epC/ll+TljbSBm9Ug2U0Wsd6Qi97Noc+5v8W/hRme0d6ezrMGg6lUo4Lzh0xt1uuPwVzExla0TJFMp9DGy75GR4EhchzzOz7mi65wdWPJuhAJYkuPD1P2tOY/rBpbY9S0cx/4qXeL9W2sMNmcuHRe2fpe4a6+9dmOqMresXXvttfjc5z4Xpd1yyy14gb7Id3yRBpPh0LUhlO3ErYQFt7jgty/ZEUyvloOVlBkhByqG7PritEFKm4Wwr3WSXrROOqX4dWpdzIu2evQbwKwRGMqwl+TKlE9DLOoNkvcmTxvvXQVxfbVpCknO2+/m2XA4xKte9Sq8+93vjtL31w/gzOGFNiSxaJPMJExXqDmFxVobbVJ8AgH06VqtZpPpfUChWUS8+7AG5za3adZH3DtlL/HvLhe5tbjPpWXaFfqmW5wCu5gEYW+tbMuzE0EjytRRm8yft7Dv8oxL3MLgFJR6AVq4zQSWQ3DnUTDe9UwKewPCvY8AKMnxsZOd9DaxSDdbynjSPl2kZVlL1h2OyDJLarLcMuNuHbNCtAqTP/6uAZRaoVSEwliBbw1goB1vTDCWGhHqyLKXAPgw5AwoMchUE3Dh9h04d+E8PDC6Pzr+4fH9OGV4KlZrwVIiIf7rxmGAHYsBAWQK+ZtjM/s9wIGsqDTGxINK/C7w7nBCvNtQ5cZtE3dOoamUAZSmsVX7WgTWZKQNlCp8mQoaNcK4RlNUUFTmrDIJ0biJ68TPnTuPkWykjKC31mVUVyKTZTDxd8lgarjYQYzhCMiNJbXTSovGqY4hZd1ajR8T27Tas4eicnxbDnBQCrIV/jN4DQQASLJbBu7axP2nwIYKcFOBks+V9AGG7G2qnf8rg65w8xVSwEh55zwLUHP9FDnwOLi4pmxHBiYqY3vaUV2gInvFO0uDQgHP3fsN+MyRJYxoxR87pgn2jR7GuYvnRqL7QAwkSZDJ76MmU4kBqrUylfq4vqUsJZ+f8wlAqYullGMoyYXLE8HmzKUtZ4zzxvbiF7/46FflJLJv+ZZvaaTddtttftBGiGmaEjmnpAOTKHfKWvIotgq//MaDE4Fup6tMMq0PsMT785PV7gg6XcBSH9sw6ucWmiwbU8NkhCTn7XdzLdd+HxfRnkxm8EDJoEAK7BvE4JB0h5PHTrM2N7no/D3c4dZj/eq6eUKSc0HvrWNtQqNdthFspZylgJR0s5NuIvljY3eVWaKDEk38go48+7DcEzEXusS8DSiZbFBjvx8XUP7+Na5fyevvBpa6XBJ51d6eOzAF5CRvYpgRpDAh+50j5zJ7iYW2LSNJCSZT2Hif3a98GVwOn3OxIFy8/YJGXR9YfSAwl9xkeeIW9yQzaeIX+9x3w+kmEuw2boGBiLxot9RXSl2jmXMQ+AfNRUBDYuwmFhXCuK72Y7BorCf6+z5bI68Yo4X0mKUk93WxmeLno38fkGMxeTc5Abp6yWtVtAp6t6XltaLyzCd7PU3WElBky2kyfPu9b9s06lrF96FRODZS6RhLpYOLmNnEW8pj6hu8gK9Esn8CWylmLMUMJh3YSmS11Cpj2UlS/LuSYuAOcBpowqI2OGWhwNkL5zfqdN/qgw4kioMhNbVq430pU0myD7uAJc9EzABLvsUIYIkoZiql7m8hndt/+Gbz5VlK6bPUD1jaWmOwOXNpS5lGjrUEAM95znOy6XPbGMvd33/4h3/A/ktGqMwiRjV8GFuiIBBZkWMuCc0lyVriFbEKFWpldZXY5cavguXo1YICLQcrnGY/29kL0nLaSjk2UxzuNrbGxLjF1715XAxsSXbHhlqGvWQtrGq3HooeGiJTmE3s/09IJyXAWWedhXPOOaez/Lmtz6666qpG2mOTfZgYYzU1kGMSUiMKkBHMQoL9DvDqc6yHloaYlivU7e6r+ZXrvEZZ3Tiu8X3KxCDb1sjyQOY2t5xJBtMs2kspiymnu7QWFhMQC3wz+yekB/aSgfHC3v5Y0n5Qrx2bo80MaoyqJxvpi8VenDa4CBPErFQ5nWBhb9AElpGgUaHyk8QKQAkh8k0Eo4LAd5Otlb9XawWVAGZ2uYmoIVuGsSwlo4BaWTeXQgUWE6Aw0HDMBsLYnbhQ9m9htaIoqoc8nwHrtgTWEYv4cn12lIRLdpyNm5+Ij797ZR8OToBxHYAkwI69AvMhMJY4AlTQlnKAkptIVmKqOHEgRJto9yz6SpJdzuLekqUaLUy09OXTzLN8ErY1QYxNCMm+IPLN+5hRpKHDuM4/P7MzudfCYrIMqzpiK9kxVMxgihhNksHkzpV/vzUBIq2G0CpMh+X1MYudFH9aUW8en2vOk/SDOfCnC/S2fZZlexbut2Q2Rfc0KbMQrCUZKdJfD5+DyIJEyt57jhY34cYCZWvsDi4VUJNBoWzPUbq2xH0Ua6YZB0QRYMEn124HijAoCVfsnuCqw2fhnofujK7ja0f24Zk7lIjsZtMjXSV36cxGlEwl3ld3AErTmEqVb4MBUOK/R2AkpUSAZsQ3+73JUorSEy0to0L7D8/B1tdbAubg0ha05qD/oosuwp49e45+VU4iO+WUU3DhhRfi7rvv9mlEhLuXH8YZg6dgbMLqmSERaUQAS3JlLPbfr73bDdOrpe9+uhKWspZy7IdZGBQyT1+gqbO8KaAWiWtoLyQdYKXXun4Aqs8AKc2zHvc4pTRMxiUuB3zMbWPtyiuvhNYaxoTnZtkcwHJ9BAqL3gWCN9bSYHF9Qh3pLEngF2hnE6XucEATWJrFJSLk2UxgKW9bKVLJ3I6eBZe4ANBspKVuHjz4t+eKgRYJKnG6NK4nC33zFECTBqkCwY0t/uT2DgCj+kCjjqcU5+MUcyae1I9G7lG29NoBXizsbSf1Bsi6x8mIakQEUsqyl1R7JDml4uUPvmU5UClyoxPHyEhxGnCuQLDAi5tESpBJAagEyGRd3xQKV2gpcIQUVArntDsIzchP3N8MNLCkDZ6x48zG8Q+P9uHQuPa6MV2TygAyBXaC7PdlFDgA0TtAgkp2XxwNjmCs65t7V9QMJlEF6QaX9vcpqNTFSm0DmhrjEfHIexCpA2gKBYXjleJ2EsZ+7BLWBTC1RZezIJaWCdE5I5BJ7FOqgDETX3d5vK1PHcoT9W8T+QaQYR0ChV5syiSQY51Q3dhnUHNIgJCmDDTVyAl9SyBIie+hvNCmZfsP/Vc7E0o1WFCxkbs5xO0Ktm1VBpg4oHjCjdTYftSK5GvUimCgvatrRU2Oi22rFlxiFlJlFAbaYKCtsP8FS6v4trN34C8eio+9b/VBjEwcCc5/MoDEgJOL7MiacAw0SVCKQBHgBCALKqUMJQARQ4nLkmBSSO8GlfoCSnFZTRZTzrbSGGwOLm05az5d88np0bGrrroqApcA4N7lh7B7x1MQxCDd6gADS5EPP09cg64LD2DYhz/teIyYnKbucA2KdQew1LUCFoEn7pgoTO0MgEpuctvFvmg7dnMtXWUyIJquJZC7D7OCTYaaUUrm7Xfzbdu2bbj88svxxS9+MUp/YrIPe8qnMHwEBnyZzmyiPU23ByAeIEjWUnNykNdZylnXKvaJEElkblvbUv2l1FL2Usq8SdlLszCWGGySIFObNaPLNdlJMTBWuEl1gdwKMsFgUjcDMuhiJw7p/agwyh4HhEkD6774+EzKOJYj37HmveKJp31Phc/8/XF1yuxvA5bia0QTYCJC4fRaonrATuCNOCeDSxWFc+iWyvIkEZCsIzlZBFZrYB8KDPXpKNUCKuFWPqEJHlp9HLvKUxtgEteTJ5nMUGCWUgoqycW+0P8HtpIU7U71lWxd3bsiwyyXwFIbWykHLPUZE6ULgT4KHEQUOAkwSaAJMj0ASPxHkSym9ZgEnSKgKQMySRZTAwyTbJx0AZTi8Wv7+zXXPovOsZwfXyv7blfKePDJLn02wSa2LmBJfprkZkTtPjPvk2Uxa8liRAFokvmMa7Pc5tLN6qdZFhFAqMj91YzrB1Q+Ph4JUMkurLNrXYHVmqBVgUNViaJ+WuPYR0aPYLmqoR17TrKUwPUSWmkpqDQrU4nvsQeeEJhKlR/PxaCSz4cmcMT9RJx3dlCp77hwK9kcXNoyxh1Xs5O54oorjm5VTlK74oor8Od//udR2sOrB3BwwXVO3sffhbEluDC2FliaEIexNZg4AnZEt3YuN7VfP8vQrMUgpWvQArQzGtgkXbmRJjq4VNCxj7V1kH1ZFt0mV7BSNkbcPmYNd00wdrVrGtCEunWVDmgHncg0/f3n7ffo2BVXXNEAlw6a/VjCua4N1g3GknRTrcSEIp1YBPe42cNNbzRjSZY1bV9I7MNw3Hi//LltXZvVPa4vgNQ3n1LKTwxiMAYuTTKa7GTTC5CTBXUAjRq1A5hCHgafUpCJUKM2K0jtoHoMo7rCkCPGOQ0XXsaoYVBg4EqdAGpg2RdgUCluf4F5pVCSRu0AJShAk2ogQ5SgTSljqQtUyoFQnjkkWCCGJ3mQABZPYIVQOKKqZMv30egYxECToRAW54B7DxMmxmBB70FVPxyV9cD4URjaFZfvwaUwUeS/qWSo8oSxci5wEVMVTTfo1AUusMubbCUAqN37gdkykq2ULiDISHIy3f9uGSOlC4EAIJk+HjgSAEqDySSGTZKhFLmHZdhLoQ7xWKgtYqLb613G2SWPr93qL4X7YVwLtvV0rnJgRpEBkfb3n+8F/3Xls8si38bUyLHeDQigCtpNiUnV9njxDrfMJHi3OGYuM6gkGS1ameie5sCkEMXRuZHm6iRMgumxvloMKrFLnBTmDmUwYANAB8BGwbq2Gjv4xURxf2rdWzkqdtHRVzBziTXXKgOsGoVRDdx/hHBgvBsDtYgJBfa+gcGjo8PYWe7y9bPpyDKU+oJJQAwg9RXo3ggwidO6XN7awKRpLnFbaQw2B5dOAJvrtRwdy93nI/UhVIbpkiwYx50tf487MtkpSWolMyYkA4ItZUJEnVNL2NmwvxvoSd2+GmmZwUSX5Sa2a2ElyZW9DTEyU0GjXsX0ZCvl8jEYIW3efo+O5e7zqjkcTTZSxhLA7TJmKkUsJZ+vbrRTIABLqU1zM13rs3+irHzNbWtaDmg6Ghav/uf2WZgnNYWi0WY5wHdOf6nOsE+J2C2Ky3FRuZT97vM5MIlgHCsodo/L3TfJYJBpmhSMWptGVZuxa5ytq60+A0FcM3Zd0rBjnBDUhAExt9+l15k/iQeX3Dk5nxw7GbJuOLUBVqoaI6pR6MXGn3DFHEKd9JXxJDGePMqJI4+4guBuAJbYBS7LWpXsI9fvA3GfLcd1vK9tTNPlAjetP08XAvn4pvZSHmDiMuQiYgoizdKmu4GlOI8R1+nrJFhHGto/bzFYloyt3MPaYHFRem9yYt4AyArs9x3rEkIUyBgcMK1LjioBlgKzKG+Ndt3C/kuBpWnBDKSxq6tnLinH6ycHPIH9FDk6ZLMxs8vshMIni26PamBsgCOVweGqwkBtj8AlADhUHcKOYpe/i9wHwJ25EswlmzadpQSIz0Sgm/c152MxsOTv0QzAUh8tpRywFC9gnBjjtzm4tOWs2bjnk9OjY7n7PKbD0AoYuwgkHNK2EqFtmbE0ATOXQnhz6ctfYeKYS86fn+RnLAw5jbHUWPXq8NfP6yvFIFPa4eVewGmeNmApZV9QprPtZVNYS5wWsZc6AKZowEIGpBANINJrTtlLbW5zgLyvTX//efs9Opa7zxM64tomt8ONYSwBYbW6jbFkP03Ubtlyq9rpvvS7LH/avpDYr715JsPcTiILA2+2dNKSspdsnlivJbXAJlq7axxb6iIX65gIQMSfiyd42k2sbC47oXKAD+IJgEYBYtYCGVBmgWCh3BMJAlt9JTuRNyqwKuRnOI+7b4r88I7ERBTQ/r2l3OSphIZRFnSSIty5Ox5YTPn01Nqi0/lV89Z+gLLnSbP7kOsU9yt+MQ7MXgrjqFVjOaVLajcOJuVN6AhWwH0tL/RJllKYHAJoAEm8L2jqtbtBp2yllKXapq8URLxjxlLq/jarpEHD5M3P/Z1U974UYOLz92EvAQE0yrG6c2BM4ZlLcR9iJSC4rAD4UWMMZkUlrJ6lA8VUiL6nVWm/e6adzoCdGkoX+TGtc32Da/sWELaApFLh6eJ6F1Om1JHotr9nTQ2mWcyzCAW4VGh7NYVmLbRghghGKSgKzCXPSHJIngL8X7hWMRNS9huyDU/I6jpNHItpYqxLa03ArqHGUA8xOLwNMI9H9T9cH8LYBHYSEMpkIAkQ4NJxxFJqA5NyGkptDKW+zKWtNgbbEHBJKfUqAL8Nu0TzNiL6D8l+5fZfA2AZwI8R0Wc24twnj/HQofl0nX322Ue9Niej5e7zsjkErVQs2g1CRbY7kuLd3IkxsMQuOEaFCazfeHCC5iSUS5MmV8T6sJbS/a2gUobJxOfrU25bWme9pjCtsvvaR7wt1jYUn91yq4S5PESEdIUSmLffo2W5+zwyh8Hr1wz2AugElroYSylYmrNcNMd4fx6Ubcvnf691QpKWO6X+czt5LQcAdekvBVCnW3tpvSZd5KJ0MWU0IM+KCO5xQBo5rlYhvlyq3ZIDlgCNQg/9hJpZDR5gSiYXAe4I79WYwWTfTT5qHCxzgMW9I/zAMTaiCeIUawOVusxQO+jk69JxbMgjgCXBPAAsSwkQOpVkx1FyYW5R7WyUPzZHfGQ3ZiIB6JwYykkh9+ucpw1UAsJiArvATQOW0jFPBC6tEVjqWujLusUhp7cUFsZyDCabXnvAie/NrIzEHGDTxQziZ9Mwbc5WClBAgcLffwleedBWaDMREnYW5aByf9ZGCrMO+zL2mZFohH5al0lgyTOYBEiUM1n7NA8fW3qgql2TDUDQVHPAtATcNLk+xpADrRU0OVc7kM9rXB3498RicNYtzsBHb6wJGGqFwVChVNsadVmuD2NiJOAsQCaCf9pZe0kylNoivtl6hfafYy/a/LODSmvVUOpiJ82ZSxlTFt7+fQDfBuB+AJ9SSt1IRF8W2b4DwMVuewGAP3Cfc9sAO+uss451FU4Ky01OD9eHsVwZHx1uQiYaFNUwXiyyzui5cEjbsGJWi9UxMWlNBi8A/OAlNxiJadV5NDxl3QCzg0w568vAOFqWC3k90/EtgNHs1rz23bt3Y3FxcQPKnts0y4JLdMSFmq79xCTV2fATCjGx4DaXm2QAQCS2n6Rzmj2uGxRuYyylNovrhE1oAbY6yuHITnM7ua0vwMST0RRgytl6+2ggAExt7nGczlHgZLqdNoV4bXI/y+NCAcY0XeK0GqBUcR8eT9KN01+yYFOIHgcAEwQRcdj/VWU1oaBQ+/rZmgXXmuAWpxAmmwZ50d213tkYGGqmy0WdKK+fgPJvivKkE0TJOJAR3Cbu71A7cKnQzXflYTqAFbXi6pOXDmhjFsSSBGEcxmmSqQS0g0p2nxD2pvR90GSTc3r0iea7QKbnTO5Lo/3mhbsDwASK2eu5RbKudmvPaZ84rbT/LvPrDm3KYCFSI8GgUAUkm4nvd6EG4bodAKTdd61Lfx0aAxBqaJQ+n31Um/dRqTxrKTWCYzApHpPrULarp7xS4wCntquXrmy2zqoBCMl+NnWNDeXIa1EeWOLojayHplUMOBkENozVXXJlGC5TeaBHe1fY1D03sJcmRjlX1hA5m11dXSA6LOomOHyoOuTBpRRwTsX5ZX9h9x/fLKW+DKW+C4NbaQy2Ecyl5wP4ChF9DQCUUv8DwGsASHDpNQD+mOwTc4tSao9S6mwi2rcB5z8BTML0XZZ/6LZv376htZlb3rZta6LuNRkcqerGShuzlViam13f7L4JKlVBMiM4pK2hKrAniKnXIZxtoFfLwU1zAJMDcVKQpKkzUfQGmfrYLMyLdbnHrcOmAUfRJMENLnIrgL3YS5kJz7ztHj3Ltl9UGKkRpKD+rC4RAERbjEElIEw20rTo9wzA0ma5wp0oK2Zz23zjAXhulX0aw6GLrdSX0dSc5Nj6SIAp7IvFvQGAIRmAV+/t1FDbnSDvrsOfxk3G8pPTUi2AKADR8hh2j4NKhb2tMLAtxAFLBJumalSkoaFRwUBDoYRGTcaBTrYXKh2vyShy7ALlJ2jTosXlIrhJdpJ0UYl/N5kFa5kM5iK22btShx5YBaaYAaFWzfs/whEsq9RZrh87QAJJts4JuMQTS8FM9fumBGnILRy0ucK19eG9++9pgVgy7nApwOTPLdzjcq5xOcvpLDGskh7XJqnghbE944QZSbblSjdGe4wQ/FYO0HMggR0LaxhMnMucc53L9inK17EhfcBjaqmsQLWvj1G1i3BXO78SHv0Hk0C3F/FONJL40+6L8+YsvYNphEh2XwvAUkt/mzCXuKYhAqTywJT9FedjYMqCS+GT3e0mJtRLK2ABC406jEyNcS3YRJk+xJ6L2UZx/wGI/AmQxGBS+B3AJADeRTZK6wkmzcJOaktPx2vTBL23km0EuHQugK+L3/ejyUrK5TkXwBxc2gAry7l01tGw3H0mqjExxnd4levOUraSEVPW3OQ1FfEmx1wKL1oTnTM3IOnDdpC/m65uMVVa5lkPe2c9LjrW1j/pza+M87Qj/j5tpa7X+XL3K8PJnrfdo2e5e+2hYBVaZ19gia3LFa5zxbknsJQ7ZlrZs1qfsvIuBXObm7Vc9Lg29pIEp8K+9bOXukwympR3fNPRu9W+/wxY0Dt1Qc+7X3fXmRlL8e/gcif5DZafFO4d19syO8i7yhW+LAeTEcedo25/GL4XPfLkTIrp2vM7tkAHqMSAEhBcVWTY7zZQib9HbCTVvP9yQa5Z3+kAUxhjJUCT6Oe7mKl8TE5HL6pLB3Mp97sv2zTaN8MYLV0QAzJjQqexlLO28SBHS0zzdLOftPwBwIpKA2H0x+wXm8UCPppBELk+T24MpzQUcT14fNx8fvr2OewmmN0HA2ZfsUmQ3aApyu/PHwG+MajUBiKllosOKYEl1XGsr6+/twFwkvc8l5eZT5ZxCCfGb6PRGQQtpBDlrPkM1FRHmknAdFCJ8/YFlexn3mV2K4FKW2kMthEzm9wjm96DPnlsRqX+OYB/vt5KzW1uG205TQdAYYUmvkOrXSfBekqsrdQW2lYylnyYWyfg7UWDaRIxI+SqWG5FjH/HdY9/p0LePg0sPtoEmXKDozYB69zvaOUv4xbUZSFPZoA2a5dLJhqE9WEdpXXJRSzJ/Y7rOWeGHEvLtV+CwYo64r+nLnB92Er2e383uOh3DmDKtONpz9JaGUt9n0kbwWXrULLntjaT46+h2jE1f8ow6gMwdR0v0zzoRIQ09HZqwS0s5NWiuZskn02ztWJx71Kx24RlEFlx76C9pNHm5NL+/glgWh3qo7g+3M5rVzdtGVMEWwfl2ifx5JRZVMrqoigFkAPNnHscyLEgHKOocJNDqcfUBSxZzaccgBMDSymoxJNDZnDbyWYAknjy1xwnVZ49wH0us7ot55u1lGz+1YacN2BQYYWeRCoineplSUvBewki+TwZ5mlfVmpb/942BmrWb41jBQEycRltDCY/plPN8R6zl2Yxhdi9TCntf8t2M61cP2EXQvi2XgMYZd/FWmn7LlY1FFWWFUgTMItJkTtGrB2SqqFM3mm0Ue+OMSADwCxXYWCfT3afZRdXUgUMGdFuqbUvYxFu+z24tcka+mMyzVcmSaaSEvm13y/6a9eW0yIZWGIsNxXxtteTYS6RE/Q29q9Y+cfYHlRlovVVRFg1EpRjgCkGnLqAJJses5C6tNdy7rN9XGfDMe0syDTvNCCpMZZrXVjcWmOwjQCX7gdwvvh9HoAH15AHAEBEfwjgDwFAqcwyxdwaNplMsLS0dKyrccJbVeXFPJmlxJ2bZyclwFIutG2DIZEwlnK++/Iz/T5tX5reBo70iYTWVX6jHmuge66f8bR2S9lLXaBTmzhm05ovhskkv+I6t423fPtF1P786rVYze5iK+UmHV3AUpalNAVYytU3+r1GYGluc0tNjr+2l6f3Gn91AUzZc6DJDM2BTGuxaXpLuf3MLmBnFmYvyf2EwqasgfETAUzCRU6CH2H9HF6AmLlIzGQiN60F3P0igJS7Lhva1Ken9ZTEjmnWBjBF5YmJH3nAyQJLdTLxS5ncQDeo1BVEocpEWyWQ00KaQOr/tAFI8bEtrsfR5DDv6sz7cunxvWoCVzPbrP13soB2NE2jiMZAnsWEZlrOAhAsfgs2k9/vgFPlUjR0g8UUiX2TKKjFZmHnE4NbaV/mosvZuvN4oMOlUAJHiIElyUTydUyPbwGOJbCkks/Gtbj8DBilZacR9iSo1GAuGfLfKxMv/dbZNqA8EO3LnwIo8WdfdhLvS9lJwPoZSl1i3LJPWSuotFVtI8ClTwG4WCl1IYAHAHwfgB9I8twI4A1Oj+kFAA7M9ZZSm+X1H9uRI0ewa9euja3O3Bp25MiRRppSGitYBYDIf5fZSW3hbWuODke8b9KIOBXEI2PGEhBPTNuijkiTHVkuughfS8RUamEx8f4u6wMs9ZsEtwyqNmWynAwC3ACtj5tcH4ApR7/OPVNz2xzL3mulMMFq1K7kZEaCSiZpj0B/UCn6nQOY2iY5HcDRtHZuE/oBVNG+lmPm8NTJZqoVrEmtDWDqco+zKWnkONtPTmMvdZkX7hYMplBePM0LceG0FdFW9juzl1h7idkIJYaN8xHVqGhkv4t2HC3OtABMHlACi4gPAEwaDCZQAMHCfVMOhNKOuQF/jcxeIr8+2+KSk16LvI9tLjH8KUElASyxFsrEA0l53cmUyS1Zozw2st8DY7Qy+fflxKxA6ny1uXLljPvrcH35CWIKOOX2dTGWZrEG60rpNY952sYv6WIiKD+us65xed0khcILeUfucIKxlLKXYpApN06K9aPkb6ttVDqmv4ZSgcVky4MdS/vexJ8IRAaFXkDV+FNQy3itaKRb17gyuicxJy+ASQZktdxce+jUkFMxsCQ1k3i//YzBo7QMvy9hKylxvEryhruAIN6NEOlNkN28MdjE7m8MJBlYtlLlAKaxsf1BRRaEXsGhzHm1jwYprQkwNcEi+TlLhLccC6mLoTSrq1vOza0PmJQDwKP9nXuPL1s3uERElVLqDQD+N6wr+H8joi8ppX7S7X8rgPcCuAbAVwAsA/jx9Z53bsH27ds3D2d+FGzfviYeWqpFjNWq/80dVGApxaCSB5rY5S0ZPBGZMIkV7AjpCsdG4hj+7fd1TR6TfWlUG1lWDmRKz9XX+oJfm+U+tiZND7ECGK04U941zh+WTW/mO3jwII4cOTIX9j4Klmu/Sg28SyogJglJm4z2rVG0O9qXAV/7gkp99tvE2YClY8kUnNvWt7YJVAowTTtmWj/dh+WUgmKx3lI81eaIbOweJ8W9WVSYIaiBbvbTxrmxp9Zg//rJkKuTWE+sXdQ4C7AMbP+i3PldPoKBJluTClbgm7nOlLjHWS0aBSUmi4GVQH6SmRqzF/qwlzwzieBd4Yhi3UkAmDB4pOoAJLkouQwqEX8mgJJxkTlZGmBiljN1LlCbEWoEUKmLOTfN8uyjPgyn9vFN7tjj3fosquWMxz26FXAKaTkL+mN1dBzXhxCPwxhkiuoAsejqWjHBoNAZcFgCwiqAZo18YszHi46GDLRyi1KOxWRggSdDRlxLgJ482N0Clqdi3ACi9pqykcJ9S8pJAKm2HlMGAGAGUpqfe4JUyL/mtk9S0Jtc9GxgXBsfRbsmgxE13VpLvYSxWNCTJvvwHJiUAkm2rrNpJ20GmJTtQ3owKXP5tqptiJosEb0XFkCSaW8V3wnAT23EuebGr/9gDz74IJ7znOccm+qcRPbgg01PzlIvoRIRTWQHJkElIOi4SH2ldBLLTnWyrGmMpdS6qNn5KGZx2GSZr7G6hfyLN1+Pdu2Y3MR7LStzeb0lWU7L4GgdtPHWlcAproRKKSgUjb/bvn378LSnPW1NdZlbf8u130INfbtMIwMBadsLg5K+7hHT3FjbojpGvzcIWFoLWynOs3X8/ed2bEwCP23ucTlwqG/aLCYZTDKCXLpCzhNW6R7n+Uxk/OQEAArVjHYEGEzqFWhdRqHSp70npQ6TjWQVIk75/bD9DXOueHTAougKBE0E413irOS3zW1hOpu/yVZo48o3R5hxRCmfBuVd4OJygwuL7wcVO6zY+ymBJQ8uOSCJUHswyZBjOLmIuXW9kq2xoSpe9IkAg/4sJiAGkkJae587TXogqmlO61KwlCL2eI69BKxpnLTZFrmfoen2phykJPdNA64K3y4L97zwaK7w98ao2j2shQNgbSQ3frgVmDHo6iHaJxv/vVNgqcHWmsbWjwCOwKKxUPX0ZzCHNeW0k1JWUu7YNoZTqr8kj5WsJXsNId2nUWAqWbDagkhErLdmP2vnHmdBJcIyjTFBhco0269WCw13uchtTfQhIa3JTpK/j5YY91pc3aa553bZVhqDzUMVbTlrvvpzK/Jz23jL3WethxgjdJgp8i1dbCI3twyoJEPb5hhLvNky2oUhZ105U4n4o8yXusrxuf2xuRWetMOdMhjqAsPyB3SVN+1c6aq4G4YnrK1mJL0moJRjL+UAJmnKUaqlzcGlo2PZflIpVBSYh22gURegxMfNylRqyxvydU9gjhaoNLe5zWI5gCnvHsfvyOAeBzQFu/u4xuVSCXkXOVtmmKJW7hdzmEAloCqwe5wm7Sc2pDS0WoBxbnBsq9UTGJQ7oXRwE2qzeAITKmsBptgCg8mgpBJQjmVFrMHkNIZIujB6Z5jIPc6Q8pNHQzFzIucCZ/eTn0hyPiJkp0LMzJDXWaFGrSr7iYlnLE0wArOVaslOcqxuHgt5UMmMYUyFyowa5yUyqOuxvWIVgxzp942ybH/c0ZfnrA1IStN9mfx0yOvJnecoaS15EIafQeECJ13hCjfNjFzkKLCYZBlsqeBygdJLTABAhTCWrtXEn9OOxQqQsuPrWNdMQ6ucxmUNyxdqusFNE/e2zytgVO3BsNgdi7V+ggx4uC7LMpRR5LR3iwufAFC4KrDrnM3bZCTl3N1ytW/zME6BJFvPsI8BJc9cMgFUqvjTWDe4yhDGxsLHj6vHsawOojarSI10gZFqtmtfpwRAkml93Nzk/s1iJq2XlXQijsPm4NIJYA888MCxrsJJYbn7rPUwApDYZCfWmJT2AJaAvmyCZufayCP2Tfe9n40KfXQpnGvpgMN61+bkt9YFMElTqgSSicm8/R4dy91npQZZNwcJHKUaHHJ/V/ubBVhqHDsVJO0HLG2UMRtibnPrY10AU79jMbsLc4vlXOT4POl+r1nk9JeMY5pytLgaFUq9gHGdTIaUQqEGEXNpVpM6TMzWsMwlO3FNGUy2tgSWtU2ZXgbt4c9zFod6T5cw7d8jxxRWmcxNoIknfEL/RI5/EAKZRGMhXmDjvi3DKrIgYM0n6m2zijevZV+fOkwDmLoLmH4Na3Ft63uc7ji/BJNkeda1s939LE33JRCsYDek/phgTcFqjzFb0rp5WRYTi30rVSL3dGtVZIHJtO5sOTYSt99cHmYZikvpbZJtZDWZukGltr/ILLEIUo/YHLBEPk18Ejx7KWWIEhFqGjfOVejF7BjLH5cBi9aqndQn/XgFlbbaGGwOLp0A9oUvfOFYV+GksOx9VgVGdDibX4JJQOh4UlAJAGqnwdSXsZSb1M4KNPlLQCrkbfLpoiPsMzBrdwXqD551lj/TKzpXgHGDsyagxAMFBY1Ud4nvkaThN+uWdyHMDaa+8IUv4Pu+7/vWdy1zm2q59qtU4TXOTKYtAU3AqetZnub+1mAnZcpq29+WZ+PZSgazDX/ndiJbm6h3OiHoo6cUH6ORintLY9BkrcLeUojWA0o+MSfwXcCAUAKowG4ijglEgUU00DswrmPtkN10KnYXT8MqDntGjtWDaS485SYaNS/qkBP8VgYFBuAIdgYGpRoAxAwMBeMm0dYhTDmXOB9fyrIfDIGUvfBCW/aS1G5JXeMCs4nZE4G9ZMEnBaXsWTSsG54E5gjKa1ixeRcW5xrn7w/4/rC+kmMpURUW3Ny4SOsSxtSgTChzKAVjqiwDGwAUtS30HB2GDxDe+wQhBJ0wwl0GeVBsmS65q59PAZG1Xm/qVtgoF1ZDSamgpRT0lnT47kClwHSK23zOhdYyBgsHlIYxtAeXVACsGZDl50CymGrS0GRQlAO7IJww4IbFNpTFNkzMSjSOjp4jJQGvJrMd7vzkejmjDDTVIFU4/SUVAcFK6KSBlAV0PCvJtr0csCTbb1Owu3ELe1kbY6kNVGKtpVq4w1XGfrIrnCFCoTQUFM6hM7FsFvE1ituvgobWQZrA10e1j3sk4HO0dJPW6962Fu+NrW5zcGnLWbP3+PSnP30M6nHy2W233dZI03oRBu3h5CWgBCBhJuXYSnnxbi6jc2Lbc+KZrnbJl2gbiykFUTo1nDaYkdEfhGrL14+NNM0dbiqglD0+ftkoPWhUc95+N98OHTqEO+64o5Gu9NADu9LiAUg7S2kWTaW+LnB99tvEtlWy9QJLLXvmeNPcOqyLmdRHf6nNLS5/rv56TFkNIXFsjTgynQVHQp9vz2cFvkEllopTcWQS67fV1SHsMntA2qDCJAKVGto5wuQiRPq+rdWEYSNoWFcgDqleoUap7PjC6pUU/v4R3x8KE9dCBbBsDWEtGppLlsXlJrykoJVCPUUAvHHtbpwTWNxBpzJlLCm/CNTkU8HduzY8XLKB4vO3M4xz+TfCpOZiCjJxWuoSl9Y/yr9GVpIsr+33tGPbWEs58AmIARkGlmSfkO07HOOxgO1DtH/OB+AId1ADsDtaIe4Z6zEZx2hiIGJQ7MQoAZfITFAOtqGmKoznhR5aeu3RsbBRHg2CoDfnYDi18L+p8y9mCCiSxqlUDCylgBNE2qztuq3FMrBk6xQDS8YBS4ZZSsbu44hwVnOJfH0KKCwUJQ7VjzfOs1jsde7A7XOYHJiU5t0IQCk79+jBTOqjmxnnXzuQtJXGYHNw6QSwe++9F48//jhOPfXUY12VE9YeeeQR3H///VFaURQo9BCVGbW+mNsYEG2gEueL2EnShS51scsBS9MmkLxfgkU9ASYAWZCp83S5Djmtd3bivTlo/tqG17lymmBTG/DEplUzWsmnP/3pmVbk5za7ffaznwUlkx+thtFqN9u0yECtQNIxBpVa82fKbdqJt3I2t6NvKcAUsVo63OPkeyZmwgT20nqMASbJYCI/AZJcH0DIeXt2kFZcD2B7cQYeS8p/0jyAvfoJTDCKJiyeTdEBMAFxf8G5OJocr+pbQGcCUkWYFSrWr6k9c0iTsrkVQA5gqslO8gyCnovUXUrFfCWDiSPH8XHsnqGgXFS6wGBSSkGR/Us67lQA7Ej3nv2mC2xEBlXdZIgrNfDvzXgMNP0cqfC3T2eWUabP7AvANIEsCQjJCIJ1YzzVOEcOT8tYWt8u967UBWya+HzIn2diK6U9EMrnYdYS6ytx3pKPEe5xMfCUsh1dv+BBN+Oe2wIVamg3npbvct+fePY5wBHlFoq9GE3iFjyq92OBTstfI0cgnBHIswCXrbdxvZ4HgIlAyrYZbqP8hw2swfayA5PJ1ZHTZ+gm+TyEvOYaED96zFgCmLkUgCT+HsAlDxODQDhUj3Df5J5G+YvFqQLAbxf1XquLm6335rOTNgpMygUT2Ko2B5eOK0tJyjnL7//0pz+Nb//2b9/wGs3NWo5d8oxnPAP3311BU1g14xdR2knkQpdzvlRnKQcqhd/9QaW2Ts2/JGX+Lnc4kS7PzfvbrNdEWdSjm7W03slxP/ZSa17hGhcltwBMbE0grjmIe+yxx/D1r38dF1xwQc/6zW1Wy7XfQi9GoK60tsFJ+lu6q07Lkys7tz+Xxya2sR86BjYbBirZievcTk5rc43LGb/rckwECTDJ0nPucW2sJgbi29hLaYhvI1bRgQAyGQUv8G3TA8jEAFOJEjxNgoNMdhRnNs65Wj+JJ83XsaB3QYsJ97T2l05eLHhjGTUGAKhGoQbejczeCxPTsdQYipjhpCxYRnxfHSjkDiigvLg3QzLMiEgBJrbUPc6GSrcTSVIAnKuc/dsI3SoP0jGwYEQKPAsLQDzGobqxwGZo0gouyePZCBkWMcVuTjkgJwc45QJ0zMpqas1Pab5mNNlpx4SD25K7mTfy+ljAOoBQTVew9Pg0MpxG4YGlOEpcYCuFf6wf1A4u2SeHUDBDDYVlzvDYS1k2EzPgeMxqGUSxqxwALJWnIHZqBSb1QRiaRM9kFpxT4XrazLvFgaM/Bte4EOXMajApB84y8KvFFNC6lcX3gl3hGFiSIFSbBhNbU7A/DzBxS+LswQ0uMJYCoNRkLE3IingbkI0QhwpP6IfwaP21Rp2WylMhddjWAyLZuvbM1wNI2gwQaX3g0dYagx09p+O5baA1H7Cbb7756FfjJLK//du/baRdddVVIL8qYf/VZKOfmORfyjqyk9q6dRLKwFJuX9YShkX3Kun0/dk6tYA/ucl314S6v5vb8Wc59kpnfor/9kop5MLhztvv5lqu/RZ6qfF8y7aRPscN4DcDLOWOkbY1gaW5nayWc2Xra3E46f58/lQMOt03q1ntEqHtIvYppcQEN4BLFqQJk2I7Ibb7B3o7BmpbchbC8uQRP6mVrkxp6PVpLBFbWh33Q67coOlSu+hZdhJHivOwwHfYrEsLJRNHN8mdcjtzzIg0JLrPmzDA/H0VYELIm9yTDjFlXmBLdXJs/kFrPzdtHJLLs9Fjk2nRxjyYI6PbofBbrozcMfY4nd3S8+W+t9WNy23sE/XjPBZUSoAmwVqSoJF8FhgU7bMFN1GF0oFYijQKct8dU8rrQIl68bHDcnfjemqzispFMpP3Vz6X8b2T194eHZiNW6f8LZnUM3qUNizXPlPL7ZvGdDJJxVJtJiLZv8T9To0aEzXGRE2wag5iXO1vlL9Y7PXgvezjooBIHlTPp9u6CCC6K5/TeAvXY/zWlictP0pPxow5C3O9E4eV1MfmzKUtaU0VgZtuugm/8iu/cmyqcxLYjTfe2Ei7+uqr8Zc3fAqgJpVWWs7NpsFASthKzbQWxlIH+DON1h0xkjjvFHe4lMXUda5cvbKMq6x1s5zWa941zjOS7Mp0WM00IArXLIW9U7aS/A1MH7RptYCaYp2um266CT/yIz+yIdc2t9hWVlbwgQ98oJGu9IIXjGXrYikB3QylfP41gknAcQUoWVHPNR06txPEZmEvsUkXOC/KrZiNAsdkYVYQoJFzj+OyAmCxFjfi4AIm2TxIGEwKcRuxbAkN7Zg9trZL5emYTO6Nyl8eP4Ttw7OgYaPGsSucUtq6j/Vwj5OTHGYxEYwDaArr6uYnWwak7MSowAAKE3+vSzfZg7tORdreTeN+K6uZlLrH5e9bcI/j+1c4JlOhbFnG2FhYNp6dQknaiZEXKB3cZWNnDQBILakCWumob1GqgErGPLUZISvm3XE/25jWMn92jJO8x7uiv8pyu/b10abMalqK+skxZqrblCtvWj0leCXrmY3wBm3/LilYhTzIJVlLSoBAkrGUgkr22ISp4/ocvnIPirp6FCic5hhQOUZkqQpUZAGCaHwGKyRvUKDU21GZI9G5RpPHsX3hXHcvhAdCBlTqcpELUR5DO2VXvppqEBRKaAfAEDRZ+lDtqIPkRqesaaTtCRuWJnUBS9l6UsxYmqa/RAjjAKmzxJHhKsfMmqDGBBUmaoxldRgjLGP/6tcaYyeNEiiGESuT7x9b16L0LMyk9bq3TZuvrBU46oqS16zD1hqDzZlLW9KaPcgXv/hFfO1rTdrh3NZvd911F26//fZG+r/6mf/kv0t0urk1mUv2mG5gyW9TgKUuFD+1qZPbKUwlua8XDXSNk9njxXozlDpegqlpvdRIe//734/RqLkyO7f124c//GGsrKwkqRpaLQBossvS30BzNauL1RSOWQdL6RgCS1uZWTi348+6GEy5wfVmvzNyobxTBlM84W0yb3YOzmuUW1WHUJvUpSpM3DXybAe2rgmRZES1MZhIRGNjBhNRwl5yd1cSEkzLd2l5dzkLLAV9JcH6Usk9jPR1iujTl6eK6B7H92I1k1p0L+rlnq0pffRarM19ahbW0jR2UuN3wm5qK6+1/PWAZS3HpkwpZi2lf9OYFSgZhfEzlNuKiL/EaQHIKlFCkUbpgExNGgWVHsZiWxw09Wkn1UF37fKeFtHG18n3qA8LkSOfyb4vZWdyeyQhlC3NR3DLuLbl9JlUZpPHyGNb602sDxX/DnWiRl7JQTIgVA5qGk+eaJS/ODgjAcvzjKN0bLUWZlK6PzeWy/UNXfOcWRlJqTfLLMDSVrQ5c+m4s7XrLt100034mZ/5mQ2v0cluN910UyNN60XLemj4zOdfym0Mh9S1poutZPM1gaW2c7RZupIny5EMHU7vFPSeBXnP1a8FcJvN+h4TVsgbdRDspZzJ+xClU17Au43FZHUfBkjZh4cPH8bNN9+MV77ylT2vZW59Lcc6LPQ2NzAIabOEke0zSdlsllLbOWJbZ/uM6rJ1/P3ntnGmSHu2kbTAOppubQwmqb+UEwIP58prLxkV9nc9nSnrKhKpzjCY+E3ADAPOaUhDK8Le8hvwAD4B2YcTKixiCdvV6X5SJZ1hLAPKainZ90nhWAPx5Ce6b45uxJG5apo0GEwA7N+HgEINMCaAw0ZY0W2FiYMiAEAbAilAOTZCoRQqQ9DKfu/SXrL3LugzEd8rFXIYWzkHBFitHHdxXsOKdaS0KqFpAKiJFU9X9nmzYFwJaOeamZnAKbc4MKu1vbP7WJdbWQzerL98wD0nqmP8RU0dqVnPEwFYgonkwRSlo+8AoFXT9YxNAjnSHS5wlmLGUgPMVbFbpYy0xr8pATMIhEqAU4YIFSqAnxGyII9217djeD4Oj+6L7kltljHQOywTLxmXd1lb1Dxu+4Urx4DBdO36QCt8XcCiPDbCmtUtIxfVkdkqhcprMOWiy7UZZ5NspTbjfR70EumEWMS7IvuXqdxfgq2gAtuwCwVKVKapl7Y0OCMCiaSlYJJP72AorUczaaOYSZsNGG2lMdgcXNqyxpPhYDfccMMcXNoEe/e7391I02oBtRkhpRb3ebmnjAiZ1spumglUmlaHZHCSezkKN7nUFa6v+1db/TZitVC+xGazACC1RY3rHHwmrnFxneL7xGWlppSCVoswFLNpbrjhhjm4tME2Ho/xnve8p5Fe6MVG28vZrIORjQCUOo/pqFNsG89S2kqU7Lltjq3FNY6tC2Di/Tn3uJA/sBtyYt5ty3KpBpA/Xrh5+WvLAEz2exD4BgGLeju2F2fgSP1wdK7V8SM4Y+EiLOvDrk4JAAQAFLvHWbewtn6mdnUMgE8NCyRJwI+jZfFNqDxrxIrAFrD77DUSQAocXpyZD3wOlZzP38fIPY4icW92kzOAjVangJpsAaW71uAiBZQY+PsTBNAnAMWMEL5POeaS1out7+BZrG3hiC3HTmkDmSKXspYxRF8JBS6v6abXfo19ROQbdc5oK7ELXO7acmBK0DYKEeIk2y+4xDWZSAC7akq2YDDPNJQLQZ59aN3KjBvL8bhQuf6BXeWMGkBT7QveWZyDR9UCagpscYJBXR3C0vBMDwwT2ttm271IjXk8BQoPPjAophyPxoJfFjowUFDE7dD2U7ZdAaQQfc/1dxIElsbv71RUZRpcwccxsOR/w4n683cP9IXFgu20DSv14yBKXVoVlganty4qt7rGTXF36wsoTdNI6mPHgnm0lcZgc7e4LWvNLuETn/gEPv/5zx+Dupy49rnPfQ633HJLI12pBe/GRqhhaBK7snVtgpqZ7gPWAywZ9JtUxvlSZlRfN7lZgbRGGa2spaPfaeet399hLWwrrRcbaX/2Z3+G/fv3r6Gec2uzv/qrv8IjjzwSpQ2Hw9B+M65ts9Ck++RvWIvb23Qadru7a7C+fcDantu5nTxmuTphcsiWgjqzWNuAvD09cR9JfmeP6aGO23YNqUuXZFUExoXVj9kzeGrj+MdHd2AMO2EtMfBHA2Jy3kfQuzEmqH00LMBOvohiFzmCQaUqGBjUqkKFGvZXCA1ekfFRnTh0OE8Yyd27PvMXK5LOYFRgnLCeU/M+stsSu3MJqEExA6YAR+Oy6TZfVR0EGrXS0GqY1ftpE7P2eTLHTMszLS36O0fubEVza0AsYsvk13oQubZpVfr8WpW93OG63O/kPZAsJXGnxb0q/Kf2f68pLnYCWJLucNINzj87sOw5FuEvVQCkSqXtb6Ws1hdgnxqlUagAXZZuK1CgRIESpXeTK6lEgQEGagE7Buc26npwdA8KoZmmnCZY26bE8zzNcq6rYZ9lCUmRbG6Xxv0G8n1bqsUjWUYbZd7tzdWRPwEGmeToheE0g5Ea4eFxc066UJ6CQlt+ZR+Xt77ubv73jGOyvi5uJ4tL20bYnLl0gtkf/MEf4A/+4A+OdTVOGMvdy2c961n48pce8m5x4cU8W4eTc3dbmwtcrrPM1yUeIHGe/OqYf2EmbnJAk8XUx9pAq9b8Kdh0VCbDdr06sJfk+nW7SbaTvM5WdpMaIl1DWllZwTve8Y45+3AD7S1veUsj7bu+67vwnr/66JrcSBv7pg0y1nHsRjKU+pfXduzWWjWb28Zbzj0u5xqXWz2W7A9mMHkXt8Q9TpbcFPdO3ON4gqNmB718fvfRxmCCOKfx3zVOHzwdD6zeCtmHV7SMR6p/wCnDizCgoXdf47eIccVpSluudZPjBSdp/rcCaqphxYEd88kxlbgvKVC618oCjCJoCgwpQwSoAtoBSMq3aYVCEwzxdN+xJdxlSQZEKv7LrKdCO2aJVl7cewBtYS8iDAFUUDDE4sqWReIn2qpGgQEI4RkzMIBSGFdPNv52hd4OLVy1pi18ZYGhFpaR1DVqpKWf0Jnjm6LPufO36kvl+nRVxmNDlV5vu+tQmtYQ5U7d4MQ1SSHvWO8pBqmke1ws5B0UyxicLT3MZIEhwIJEWoCTtsx8e2b3TqOCJpAV/bbPnSblQQ5mWnJa5STADQz2Dp+GA+OvRWWvVo9B1RXKYsE/Vwzipvcz0pdKPBgAC5Ro98msQsuYNM4l1zrLaXLsQmXdSRU518Aw7PZtsQBQM+OQQnssBPNQmhF5Qt3bLZIJcOdh8MqDVgigf0UGRIQKxrnFhedsoiY4RI817jEA7Bie587Bbb3pHjeLy9ss7KQ+ANLxaFttDDZnLm1Zs+uKqf33//7fcfDgwaNfnRPQDhw4gHe+852N9Ouuuw5KqSzTqA+7IGUpbSSwNO38mwkGnYw2FSBI1nPYlNJZYe+3vOUtoB4r73Obbl/84hfxkY98pJH+l3/xodZjprGXfL6WFTC707Syk+TxXXY8AUtzO7mtbRK8HmsAUi0LM+kKP7tftFlYte/fh3q3OaFnkrrpyHw8SV7Su7GnfGqjvCdHd7S271ibRnzv414jWExsUtjb/uZ3TS3W2IMujRUMdr8JvhdjlxfJgph2B3PC6Pa6AkAgNa3sPqHFQwF0sGkxe0ZDozKHQUlkVQAoy50xQygDmHSJas+iidQXWGoVfY5AmKY4fGo68y8tK2VmRefOMZQEOyp3be3X3NRaivJNuY72faFt5UCkoL/UvnlWHH9nNpNgO+VYh/y5ozgbQ72rce4nR3dl6lMgFuRff59Iom0CiNqlHAMS8m1Rgg0pW0nmnwZIpLvbIsdJtlKUnvTP3LfXmOCJcbMvVKrE9uE54piMK1tPYGkt7KQ2mzOSNtbmzKUtbc1O+ciRI3jb296Gn/3Znz0G9Tmx7G1vexuWl5ejtJ07d+IHf/AH8Yaf+n8A4d+eDjTWwoqY5o7WBirNOnFsaibNwGACIHWY2Lpeto2OvsPVrlf9pw57p1mGjSTYWdlzOmaSvx+Z/LNqUWm1BIP4+brzzjvxvve9D9dcc02vMubWbr/927+dSS1gdRRyYa1nsD7Mu57P9kYDSf3L7DpPjn6/dcQk57YRprLMJGB27SU5IWBGiGQwsf5SPBHSTaaSeAZzbKZp7CWV2U0Us5hSBlNhqUEwIC/wbRlMNc4dXon91d1ReavVY3iyvhe7i/P8vWMhbwAoMIBRFhRid0NC7bSXbB0artjhRgKwEzdmMIFs+RO1GibACiioxMRNtG39g7C28pNuAMYAWtuJo3Y6hE7gWzKYovvoqsKsCNZeAgBS9r/CgXPsbgfYOti0wE6yz0HhRcntPaugVIHx+LHGuQu9DaXe5iUGWGdI6hP1sXbdpBhQ6QMq5dIDKNQNSnQFBGHTEM+C4jwSZOR93QynnOUYVpKxZPPE18AMJf4dwTYkNLMyWkv+2VNBZL5UGsGdkq9ZeSaOShouEbm2atunUQQi/mRhekINDSJCAetwVaBATQVYc+2MhWfi/pWPR2XvH30VOxcvgtI5hlbZ+V7ne5OaZecxUKJRobKR7cBi5Ma2OwJqkNeXYtF9ZRBoSYbsvXJMp9SYrZQT5Zd5JIiUutYBjrXEbnmw427j7r134QM8lD3BBAYGE2WDGRzGEziw+pXGuXcMz/dtVt4f+9kfVIr3nVgspTbbSmOwOXNpS5tCDmD61V/9VRw6dOjoV+cEsoMHD+JXf/VXG+mHDo2we/d5tjMT7ATPTskwH7o2eaz90SwTkJ2pQT9gySRb05rH5svtM0lO2Tmt+jFtTJDEBW5j9JemT35mAaq6tJfamWX5cixYVTr3uNiuv/56GLO1XnrHm9155534oz/6o0a6Vot2utNnEiIZSOnWdkjbc5/m68lynEVDSZY7u812nrmdXJbTXtoIkwK3uX0GFLUlycKRaethezITAggMCGZBSHZFToNpT/lULOo9jTKfXL4dNaqo7sx+iN2HgoZNXKf8fY7GGV6HyYjIdDVqTGy0OlW577XnSHj3FQr6S0RAbfIMpjCxbLes9pIACvg+Fgi6Oww6lCJMfDoxn1SHMK73N843KPcEdg6abJ0uxpLMm7vXawGWgl6S9q5kHpwRwJPME/STBgi6PWHTamD3JVpLsd7SwJ9Dspza9JnatvQ+cN0b6eJ++799wujRFMqQkFNgDsVsQFuu1OkKbU0r+yxZBiGirXDphbb5SqfDxJtvx7Cud6WrKWsxFSgwoCFOHzwdOuFYGFTYvxrYSwUGKDCI2m/j3iW/+d6kxoxCe56gvcSsQlZPIwIq1zYZBKqM02BCwlpKQCJ/HS2NtgEiid8GDDRRNi+nST5+ONagVrb/qVWFJ0d3wdC4cfzOhQvEMXnwZ5qekrQ5S+n4tDm4dNzZrMhk80/42GOP4Td/8zc3pjonqf3Gb/wGHn/88Ua6UvZFRCQmkWLSmbpBxT7EHfs7QKUc0JKfRHaBSfl9fV3oGqyqtbj8tLwU1uey03Zs7nXblpPf0hsHcLVN8hsrkqrpGvfZz34WN9xww8znnFuw66+/HnWdDi4UoAbhZxd4NMUdrrMtp8f0dLWzNh0U7ip/NpvtPLzauRnb3I5/SwGmALzMNoxMJwtsBgRSxovexsfE7nE2jRppZqblgthSrRcJMOVEvktYIeGzh1c2ylqtHsPj47swxjIGWIi2wgl9S0FkKR7c1xhgqmniPw1ZQIkBpsoBTLWqMMYENWrHMqjtX0GIe9eGgaYwoWWASYJMXWCTBZUYFAhgXeqqVKJEQRZIKTBAiQEGWESpFiyDy1Q4tHp3pvwBBsXuAJ7oMgZoUvBGTxe8BtA43j4Pwh2tAQ4Jce4MqKSdILQHhASQVKiB31gYWqZ1pafAE5fPaVqW4f4VqkTRIfzN+yNQTFyvve8BXMsJeWsBDLb1BxJUUgkAFAFLCig0g0RWT4gB4EI7fS9l0+3mQCWtPMhUaoWB0hgo7fZrDFTREPzepnbglOEljboeGH0VE3MEBQZYwDYsYBtK13Yl0JT+DmBxF5M/CHunIwh2W/WgLxFq90lwvw18GusvcZoh3me/V6b9ncvt239SaO/MTAKSY1wiM5pytqqO4EnzAA5mWEuL5ekYFDsgdaxm8V7oCyy12fEMKuVcYVPbSmOwuVvcljdmL8VPx2/+5m/iuuuuwxlnnHFMarWV7eGHH8Zv/dZvZfaUsPeawQebShCh66k9RH2XpXn6u8CtlaUAMDAZu3M196VC1Tk3uU7LgSytAFj/MjoyZ36noK3BrELdcYlN97jG/cEU8A7GgR0lgNhN6/rrr8f3fM/3YDAYZI+dW7vddtttePe7391ItywxmmkwM83W7352tM639nPO7eQ17eCVaQPyNve5LiPUUCI8t3SRAyDKYzDLOlDFdQusJ03BfYZX320Y77y7XJpmQAFgIiEaxAUqJViPYRxw7vBKPDD6NMZ0OCpv/8odWCj3YI86EyzWzWWyMomCBoTAN98TzqvAosLJhCmqlxX65nLl605Dg1SBCY1RqAHG7tVYoICiGqW/n05g3WjLGCEuRt4jd59zvoWwwFJNTg+H2K0wiCkrpVCQhnZXWbKLES2ABb4LlBjhMEbVk6jNcuMci8OzURRDy0wQgL50jQPifjKNfpZaK4tJ6htlXOBy7m+R1hKDLQLA8mVPZbmE975kd2glx04D/5zItkd+0p7qI3W3zxyLiQFPfy0MwEHcG/FdCnkroanFbS1m/gl2mwCWmKmkhGuXjyznfhfBQ8w9986VTCmnJaZAZNOIfCuy56DQJxhonL/wfDw+viMBvA32r9yBc7e/CIu0HQAwUisI7MCq8bfpsiDuLVyBlY14ZuFe7erjoug59zlFoS3ZCAN2rkdQ7toI0Kp1NMttslEfP3cRwJL7zd+NALUIgUVVUxPUD9dpsExP4vHlL8JktNL2LF3SOobxzzI1n2WgY7Hb7+8GlY5H2ww9w+PFTtwrO6ms+Wc8fPgwrr/++mNQl61v119/PY4cORKlDYdD8As/sATCqn/a8fXWW8nknRYJrt++o2hTmExb047O9SiloPX2RvpXv/pV/O7v/u5RqcOJZMaYFr05BWABwOxMn2lurTPUDrLPmMXW7u4mz7t2I8S13+htbse39WEjsKWuM12WYzABiLRi2iYGqXtcNs8ahL2BwGLyvzP5/ERZlXjK4tXNc5sVrE4exSJtwxItOcZSYIVIN5twnrybXGo8kWIXOZ/uQnnzuKJGBeNccWpMHGOCHG/Jar0E1oS9p1G4cQTGEk9ImcnU997mon95QIICiDGgIQa0ABBheXR/o5xCL2JYnuLKDCBHlok0xTVO5mn7nrJ3soweZvr0BJbSv71/BjqYVY28EHVzjCvJdsqxuOS5+7rHpUy6FBCTv3MuYI377RlKghmYtrMWYElHv8MmXTL9d8GeS8ErdqeTDMRtejfOXHhmo75Hxg9itXoSC7SAAQ1QUtkA1VLGEt+LLgaTZM/Ivo0BG3KATtQmkTJNSIBAwY1VaiFRcow/TwIs2XOHctlI5Gd3PAkqEQKTqYDGTmzDLtoJY8YYT5paadsGZ2Gh3NNIPxltmqh/zrbaGGzOXDqubK1iXXn20n/9r/8V3/u934tXvOIV663YSWMf+MAH8La3va2R/vrXvx6/8zt/CMnsCYwfm0IUrx9EjKYWy08Yu8Cm5n6bqWf3ENWnnaWUv852hk7fOnQDae1pecvlaxvw5thLuWwGeSaW/dvKexGxl4AGgwnIDy7Se6D1EGQGIMQrPddffz2uvfZaXHzxxdPrPTcANtreRz/60Ua6UgtQiodc/Zhl021jX8kbE9FtDtXMbWPNrqhTNBg2hF5iwdLkREpH78nAYMoJfAdWFH+L2UuSi6gJMMxuWMN4SgIgRrnw5uLVoQigBoMJOGtwOe4f3YYV80RU3oGVu3Da8JUo1RIeMwojNUJNFgRg5pKGvZfMXtL+PcIMYXuadGXe/1ZJ3+GGgpYZ69gVygEArixFglHiGBCF0oDRtp90DKZCOfaRm8B3vUVT1wqtAJBCDccgIyuIXsG4v5utQYkCijSWsBMA8PXVj8PQqFH+9oXzUeqBf44I2rpRUuxeI5/LNuaxNNUCoKSgkkxrCF4ngJJKwAUGkNJz9AFl0hsu2TKxtMAABrUHYSKRZM/06ddmc6CYZC1JAIXbMgt5a+iskHfukjhdw+knIQBLDBgxiGTr1Xz6DBEKBRjHNiQVgFHt5kY1kWfdMKNOkWU3GRCeuvBNeHT8ZdSRRhDh4eVP4ek7rgRBWbaSawAa7Nal3d/k/8/enwZLs5zloeiT1b2+aW8NoGFrCwHCYCSDGQRikLHBCDC+cGELMA7siONjMMEN8I2wI8BG4SGO49gO+4fD0wmwEYcDvhHXhkvoSMhGYAxIYpABIaEB0ABC897S1ta49/6m1V15f2S9mW9mvpmVVV29Vvda7/NFf6u7KiszKyuzuvLp533SWdWPoTe996Ui9dLGbtH5uvZU9JB3P6goe1hjYA1gO8A413x0w7YVmel3TuPV9+Eph5osVTAROUX7iLAKIXUsFM86X7Y4XK/39+orZoWnXbsCWIvf/ejb6QQYDJ58/TkLPeMcF1pJpDGF5bFBlUsXBvKl/N7v/V41927EJz/5SXzv936vuO/f/bv/kGyJH2Ck7bRvmvJhj8RSMW3pXEayOvqJ7BzlyTRkZFrh+nXdjWzzrVu38D3f8z1q7t2Id77znfjhH/5hYY9B/DvKYfzWs5sKiuNsNEDWmr29FMeHKebeqfoo91SKw3v8r/iJ/xIZfNP+UniGy5OXF6eTFFcpvELJ5OnTCfPKrPDsa38+y6O3d/GWm/8d686IPzQATFHi/ZfGJxlc/eDJleEeQibfPVMx9f5zj83g+eLCcSzIu0pSMPUIKiaXd1BFEMb0S2lbBeVX+PWeiIjHNx/Ex4Wl4E9WT8CV9aeCm1cH5dLKK5l4ewKxgqnuuSQdkyuSuC8RgfsSpcQSVyal27i6JX2Rl4+0T1Qxef8kyXiaG4V30Su6Tsn2VGUXrl8e3lfzGEr7gVP7hT7BVUquHuFviViK1UtDfiY+xsB4fyYymY9C8EAr1nW4Yq7jWVe/LKvzne3H8K47/zPuvza+Du7cpqpQYmNv7r8UjUfLxiQLV7M0Pj1plquY6InAq5mSV6yGstG2VK0YeS2x+rn6O5Lr2srg/XffgpunH8rO954rz8LJ6t5JbbQkzjr8bMw7iYMb/4/hmJ7BVLl0YeAimNMJxnve8x78vb/39/Af/+N/PJdaHRN+6Id+CO973/uEPbSEL/91MPYnkn2L4PeXIU8IR0mlXSajoldSUF3lCibJm2nICgUVU1rkHNJM2DbfrrWOIYpd3lf59dOrl4BCu7aRcG7luKuwyS+2v/Ebv4F//+//Pf7u3/27o3lcZvR9j+/5nu/BzZu5T4cLh3NmmWO/Yu+K/f4yt8e8L+Evioo63OTNKTRJvSSBK5t6/33APIYK4F5LQFnBJKdNFUzs25iqacwwQWLeS9aFyfC8CxZCsJb5Og3eQZRPPyh9nIIJMLB4xvpP4+H1n8JHNn8S5fPeu3+A09tPxBOufIY/hzBBP/FTtd41HAsVI+UJfe+uMvWSbxevbuq9z0pnOmzsQAYYt+pVUDU5NUtv3RRgjRDm1sF4BVPfO5Nkg8HDxpB4I280mvC2RMtRn9lgg1PcxR1zGx/Dh/CuW78opv6UG5+P9eo6etujHxS+LodhJbzhO5pUS9Zuo2eS0n05/T6ISKOEVOL7PaHDQseIjHE1jr2JuoRwSssIZxp/XrEpmmRyvxqsGrg5cm+CX1d6/j3S883bRVJWpT5L/C8nWGKyMKjjSmQujT0eDudXHQSFvYXexkkoY+K+xn2ZSM20tQYrA3TWorcGxhp0vR2US50f42vb4XOvfCUeuft2PN7HIV1/dPs3sT15Mq4PIZmd7Qb1UYfeOMWSu0euhjbO73v8mpN6yZLX0qDQdKGq7AQtAEN1HO4SvQE6tw2dU1/1xjry2jrVljHWt2VnjK+NYdn6ujBSKfJUiv6y7XDqpVPrqOk7OMUdcwcfsT3e+eijePujP5+d+8pcxade/zOuv6Qqy5mg76Vom3B/5IiUtws8S80hrEb9386YBNsnLs6ZKBC4/Bg/9mM/hp/5mZ85++ocEX76p38aP/7jP55tf+ELX4iBwx9+UyAqv2cTsqAakJUIbeqH+rE8YYGQqvyTDygTPLU6iKFs0e8ZbatojZe7NBqJqei6FpLUzAVbzyHxqurMPZBuyS9+8YvxO7/zO215XlL803/6T/Frv/Zr2fbv//7vj77Qx5SEu76WwX6UUhGo7zX6pR1bvL9iOYRJpEH6i+yuK8cB8YM+rSTHFUx8BTn6hT8+fvhVXfhFXUKrDROpHAAg9W7hK8nRUudXzBpfcP3/gRNzLcvrocd/Gx85/WPctp/EKe4Mea4GqmHtSYfoL/cAGmlXR7C45bd7u0FvT72CiVaPO8VtbLHBqbmDjdlggy1OzSlOcYoN3Apyp5ZevV9FbjOsJNdjWImqh9/H/6VLmgc/l7DDCEzexmxwC4/hvY+/Bqd9rrJ/+vUvxI3109CBVlI7Yaux0epow4pnyepppArouhPxFVRPbPU3dH6FN1pFje+n/LnZtWHXztUxXFO6nrSqWFAnubzXw2p560GtVHqtk9cKa/YqHxfqvGYrycWrnfGX6AWVEUlMQYbOh3rRWJFASiGDMJ7S9KQ+Ci/DSKYwJlfGPSmFFePCSnLRCnIm/3zSGZx0nd92petwrVvjxuoavuzebxWIU4v3PP4ruNV/wj/r+Wti11jbNVaDH5PkpyWFPsaqJSuuHrdFj611rw0bj6d9j9PesnEInPbWbbNgq8lhSGd9SButChm2ubGarkBHhJJl4XD0orpt0OOWuYVHzUfxYfsuvO3RlydhhQ7PuPFluNK1q5ZaV8yU7omtCqB0ZbY5/5rqmNxfpHOQfM8kHNszmJJLFwqkXsrx3d/93XjDG95wttU5Erz+9a/Hd3/3d4v7fvVXX41A2NEviewpakJInIQpIXJ5efD1GVP0FNNUJpbVlc52mEhPPvaMVBVyGwbSkH+Ot+1AMDE4c+88PO7OnTt40YtehAcffHBynpcBL33pS/FP/sk/EfYY/If/8J/OujoTcMZUywQySaGgR98Sxh6wpxh7S78kl7b5CRkjmkqEUw8KE5mveBUnwQnBZAaj4KvdvXjuNcnjssfHb74Vp/aWoxnsFazs2k/mPQmAsMx7ulJXC8HEQUSdxdY9YwxEE5l7+5fZYDv84wQdn1DSpNR51LDQGvbi4TYURpNeHzt43tBrjTVO7FV88s6f4Pbpw9k5XVt9Kj7l6nMiksaHn3HjbSKRiPBITblbXyxUjquVov0svCwNHUs9iVJSiRNK/LobdFjZtVfFSK9VQmLERBDp4WKiKU2XkmejL+Tnw03oYxVWPN5r9440DSltQl45yKjbK5ySF9+36uA9w2icEslEadcDucSJ4yev78fnXHtBVva2v4UPPf47OOmv4iqueUrPhxsiEGwtREEK0i4SvcSN9vthFPdE6A6haYEICu83Pdvex0STJ42AmCju4e+RnlRCyDv9qZiPYQA4xW187NYfore3s/N64smzcc+VT2PXNYyv7PoK3xfRCoutpNOEMLOlMUYmATGhJOdRbqNjgobFXTjI4XG3bt3Ci170Irzuda/Dfffddy41O0R88IMfxAMPPIDbt/Mb4/BVlWzr4USq7mEpLBs6IPtWHJdmx3kLqCiVpkIM/4pMrKmsUohcvI/QejOshcO1r5K3C4b4gagcoe5Rm6QIx/D2iULkKA8O01WupdtuzIkYHvfQQw/hRS96EV7zmtfg+vXrhXpdPrzpTW/C3/gbf6Owl5t4XwLsmTRKDXsVlwdpeFwUAmddOJK0jyBtS8FD34IHk9sCAJ3pvVKqbPBNd2cK4wr3+t5agPkn8dC4cLw8Ie4Hw9zOOlMXCrGjMDkz+JT0Brj/5PPw0Olb8cjmnVEe2/4mPvL4m/DEe78R99onYIMt7uAOuOHyFqeg8BGvCjOARTd81+ShH/x7szcALC1svgrfTwYwdgUy+aYyyOS7NxYrG0gsay1W6LC1BmvTDedphrDC0G5xmNJgkDzcJ7bcp8XGTysGBms3xccn7n4YD9/6PaHVOzz9nuejH0K3SA1EGRmz8io36i9kgh5CCvMwmZKxfDiPmMyTVk/jSqXUTykKjWO0j0/j1X6hbG8G3kBKSEu1eyWM6bFCeJ7ok/3p9lbfzNI50fmEcDjjzbzpcwcTPXOSd5LYh8CVSuH9yofPheOzkTqEbK4QxjqZWJMZfWfduO0t3Ji1LqS0t0OYZm/x2Ve/Ch+4+3bc7D8SZf/45iF89Nab8FnXv9qT22YI0dwad/frLFNdjnBrdOfyT9XGYAvH9HRstGyBIZTV0VgY0ljjQle3IDN0C9u5tL69kvbN6kCBGMP7QF4Bp30PMu/eWEcPkwG6gcEJVtjiFB+59Ye4eTf/4XNlruJpN77Y97EOK9/vjOmGBQy2/ruFozOd7+c8xNqYLp538PlVkkeJ3KmFzpUwh6waIxjnEEjH9Ax2/PTYhcE4yz8trzy/973vffj2b//2gi/J5cPjjz+Ob/u2b8MHPvCBbN93fud3ouWajBM8rWqEaRPDXbyH9uVbNFrukSsmdq5/4/HGXAeEX3Fe97rX4W/9rb+lBt8DHnzwQTzwwAOF+9nJuf16dWaYGNq2c3F7fCkOF96biE0Yw744PG4J1My/U4NvgE+YLTsmKGX6Bb/x0jC5aJ9PY/C51/8SrponZsff3XwMH771Rl8/IoHoferNE/xtGIkxKHQkRGraxOgbcJM5yeS7B4UeBkUY0TYWYdLJlRPe9JsmqIxY4oqlUniigcHN7Ufw9pu/AOku8JQbfxZXV0/yn7lyJrRTEpqWhHFJKgIptEUKjXPbQ/uHeq+yiWPqpcRJGJ6G1yHktYrqM66vCv/S40nlJPkh8TpIZuLyNZKUS/uZNqYkSBhP4W+RWEqOCQTW8DJEtEhhdiYqe2XW+Pwb34Ju8LPieN/d38UH7/7+QJjJIVL+OnpvpjoCQUhjJhCB6TjaDuFxZPRNyiJSFG77QBKRMTepkaQXff/6EFemPOTj3ALZOLawePT0QTx6+0/EK/GMe74SXXfiz2UplJVP80LVWl7NdRsZT1T/mnqLXhKO6RlMlUsXEly9FHeb1772tXjggQfwX//rf8W1a7k3wGXBrVu38K3f+q34rd/6rWzfF3/xF+Mnf/In8bM/+38Xjk4UPGBqoMz0Oz2mAbVwtObbQEGRw/KJFEyZGXWszgH4TT3PezrxUkvP9kW/0o2d+9xbJDvXtF2S/eIxiXoJaP+i48fwLcbcwNOffgMf+lC88sZ/+S//Bffeey9+7Md+TPSvuCx4+OGH8XVf93V4z3veI+xdDa8jI+GOnHxVXDwENVJu6C0rlGL1Us3Yu0/MhPlEjEy9uck3VzCFX3Bp0hwmYeFbym1bDfdzy7ZHxt42J4qkdgj1jlVMFBrX0+TMAPd0T8AX3fNt+N3H/jPIgJrw0Ttvwx+bq3jmtS/FFXsNq0EBAOPOe0Um36Zn5uSnTm1RUeQQrHWUkTEdYE9hzAqb/g5oNTFu8k0Kph49trZzxuUwzhAZK2/0zfvBxgJrT3S5beky574tQGE6OQF4c/sxvPHxn8UWsUoXAJ509XPwlKt/xn9e4QQ9tu7a0qXwRFYHMqamq98L7WQbvpP5pM+TfkJoYhoCR3WkNFzZA8Cre2IicSBKIr8imajg58Snnf48DZlJO0piZWVVE1curbCOidvC92VKiqUqLDqvDp1XLRH5EuWTrBAX7xvyT7Z3Jg6ZM4jTSVeUzmJljCdQDFPkkIrJ9IA1Ts207c3wPOXUkU9b348vvPEteOPNfA7wjlv/Ax3WePqV5+JkGKu97YfKdcMYZvc9NjbSex6/z3ndpumxsRt/7bcAnG24a2Uaj1SkNR22wzhcDQ216gyox9fubdaPIQfnreba6tT26AfV0saNsiGtxU3cwSPbd+E9j/8KpOfup13/Ytw4efqQvmayvYrUSzQ+LLZeJdjbeDsQj9OSkik6zx2fBaeGOY6pkmoh462eU4cOJZcOAvuYJBq4y3ua7fnlX/5lPPDAA3j5y19+KUNsbt68iRe96EX41V/9VXH/G9/4Ztx775OSrRa16xSFyfmNKWEzgp1IJelYvi2vQ22FtHB8LTRMzncOLoKqaYk4aU7kPfzwY2KaH//xH0fXdfjRH/1RdN3F+CKagg9+8IP4+q//erztbW8T9ho41VLtieq4+9p5wMnmLy+ZqXBIw+OAtpC3lnS0ipL/nBBMWfowHQOFJIc6BTLEWot+CIejleMAN7Gi2wR/7+srdPfesrA6YyNz8KhMGDxh9XR8/o1vwltu/lyWz4dvvwkA8DlXv8afA5+C+V+/DQC7HRQ6brpI3xFSe/LQbGt7d9706GJdmxnjjqIQPCILrFmhsx16rGCwSfJ1MUcWzsB8M9RhjQ5bevbhjz6kemCeLRw3tx/FGx7/GWxsrjp9wvrT8MzrXz5czy27zqvoiYRWhuts/vRD1y4KI2m4ffF+VloFzp0r81nyBGcId+MhY7QtKIxiUqlD/Ne9zysbrTiWjj1LpEZQ7fQp0WHdEekKZ2HyXx6fXXr+7NzS84qPMwPNJDe+NMYoJC4nmkIYHX/qycZtcs17C7ZaJIBuIFU6M3ixGd+JuoEtPjEdPu3Kc3C7/4t42+1XJzW0eNutX4CBwX1XnjuMOOdZxtuKPyFnakzfdymwNwn3HQj0DajvBGo8JdRdGKyJRljfD/chk8xJBKSKQ65S7GGxGUYhheVZWDyyfRfe+dgviCT3k678KTzp6mcP+bWHoEnhcXma/McK/8Nu5bluKjk0FS3P/rsSSsf2DKbk0oUGEUybbM8v/dIv4Zu/+Zvx8pe/HE98Yi7fvqj4xCc+gQceeACvec1rsn0nJyc4Pd2i/BSSEkw5wVL0NNoBdWKpNW+ZKBonmFhakUCpK6TKdYnzPVvUicKQrM+IwdyDqv5LSe1LbfSL1KwBXIMVjBJ/7Md+DHfu3MFLXvISnJzk8u2Live+9734hm/4BrzjHe8opLgiE0tKKI3ivMJlFYeNVL3ECSaakHbonEpA8F6qqZdS8EkXIP2y72rU4r+04gTYoChaDQQTjDyBl3yYorYwMWFhjFMweTXTkL8xbnnzZ5w8B49f/Sr8yZ3fzPL68O03obMGz7j2fNwxt7AdntM4iUAeSVtLPxKeelPpkndI+t3To/cEUz/k05kOGBRMW3Pq0zkvlB6d6QZFxhp2IErWCKomFxZowo8hrmBPAADwJupb2+MONqCQu09uP4S3Pv5z2NhbWd2vdU/CZ9/4hkGt4a4mESCpRw2pmWDgJr02p0ZWhve9oIRIkU7u4jA4ptYZ0sUqpTj0TPIiovTkSUTpeSgc5efrVOiHPWw0TQ2Kkvj8DPqIaHKjYesJDU40AfBkk0u/jfohbwsA0blxzAmZq/0QVCN8S2onsDHa2WHMYlAsGQC9I5uNxaD0YQQTnLcYKZg+99qfw6P9h/GBu3+QFGLx1luvxC3cxNOu/BlsDfXPznuX0eWjp0Q3DodrJCqYQnqgA8zWE8KuRONTbYGgYCJF00AtA+4+t/WqzPr3umXEEn2mELweFnewwR3cceb7WOMjp+/GH998pXhPv7F+Op5x4/n+fighJZFigpPShHHLFUy0z9edHZfOTZacV0z54XhsIYsSkTRlAYxjgJJLFxYd+ysTTK961avwlV/5lXjFK16Bz/mczznLyp0L3vGOd+CBBx4QFQ/r9Ro/+7M/ixe96DtGcpGIiZhk4JO0VuImL2WOUmkMstpIDOsrEChlginPt1z+EshDyfYCTzDJYXDl7VSrHeW45gSAzQy+AeCnfuqn8O53vxs/+7M/i6c+9ak7lXMM+I3f+A18x3d8Bx5+OF9VyOFqaH8lkyIsQRwp9XS5wMO9SgQTECtoUnPvuZB+2U9D5Hh4XDdMrjr0AFbDex9TBsD9Qm85+TFMvnpTJ5R8ewyG1X4ya4OCaQUDL4KAGb43nJrgc65+FU7tLbzv7huyPD9054242X8ET7nni9Bji7W5iitwanIetmSHdyE8qw+CCyNPpCzcKrQGXWT07fY5VZRF7yawJpAJnXFtvrZr9Mait9T+5LnTOzNuC09MBHKEhT7B3TNOscUd3MXWbPDh03fgfY//GnrhefTE3IPPvedb0HVXAQRz5N7EJBP1PXel6f028lqi9qD01B6AI5yK1zgid2JCKSKZsveywXVKKqWEUupjlv6tIYyvzhNO7u9qaJMuqNUwKJgaw+dWkJ/lUiUWvU9JMwNZyTQH5LXkQ+IQE0tSKWRoTUIPY4ngcQetgHAHc4PDPQN31p/V2lpsjMWX3PgW3O1v48OJQT9g8e5br8Jj/YfxjGtfAmM6rHENV4ZrviESzwBbbKP7JCG9z9H5bUmt6e817s/aBaqCVJrk8LMZ1Et03baWtZcp9ynv6ZSspmkBr1i6aW7ipvkk1v0VPHrnT/Ce278B6Wng2upT8en3/MXBtyyEYJbAzbn52Hbl56FwKckE5IRMjWxaCi0kUE2JVDt+TGF1TM9gly+m4lKig2QQDABvfetb8eVf/uX45V/+5bOt0hnjl37pl/AVX/EVIrG0Wq2w2fQNxFIN8o107opuc8raH1qVRn2WtpRHOa/l2nEuymWNt/uyKiwKkbsCY66IKV796lfjy7/8y/GWt7xlwXIPDz/xEz+BF77whW3E0iWHFf4pFHNRm/iGbW1Gv3PNgCUPnR7Wh0bxSRs3waW/2TY7bUyQusIY49+TKXA6aePGwwDQdR3+zLWvx/1XvlDM+9HT9+EDj74Gt7YfRY8tTuxVnNirWOEEa1qqfri3FX/1rtz7iGRKP/eWbLvJ4HuLLU6xxQYWPTZm4z6bLbZmg80Q+kOhMtz0mz6TgTrgfJmuDGHbd3EX7739W3jP478qEktrcx3PufdbcLXLVfTcoNqfL1KT6fCe2suYsD3aV3kB8Ol5u/Lya8RSXEeiKWJiiUrjxFL6avm3Ynnlx/N9rGRLvkiG1UY2BZderr6H8T0r+jOZRN3E9pshnM7Qa/jMw/BWhsL44D2iTro1vvSeb8eT158h1uORO7+Pdz3+P3AXN2Fsh2u4gqs4qbZTavTNlUz8Xhc8tcJ9zo27rb+v9cN3PKmNaAxuEcz4vXdS8nJ+aC7tNnlSODErnAxk/k37Mbz31q/hPbd/HRLFcXX1ZHzGvV+HVSc/p6ZIDfPraeO5a2e6qvqnZog9FTy/sXypXmN1y7ePm4AfI1S5dO44qxjK1VBW/sX+sY99DN/4jd+If/Ev/gV+8Ad/EKvVxZHnbbdb/Kt/9a/wD/7BPxBX2To5OcFP//RP4zu+469OyDX+RTSgHHq2O/ah+qmE82UhYbmCCSh9ObTVdZRY2qv6RApxHAlv5EdXwuPm+i/ViakT0O/AKd71rnfhBS94AX78x38c3/Vd33WhjL5v3ryJv//3/z5+5Ed+pJLqqrtSjf1FyZYZsIl/ieJSwJnf5solt6/gv8TC43woEmJiqBWlX/bTEDlu8J2Gx/H0YngcqZcajL19u3DyCBZg5t5cwdTDOtVEt8LnX/tGrLDC++/+Xpbf6fZRfPjR18He8zx82vpPwaDDqT3F1mzQmy02uINuUKSQ95JTLwznRD9EQPYtIUKJrqD3eLFAZyigxqnOyOtohRNszSlW2KCzzgycwn44UZKGcnXW4Jo5wROvrLA2Bh++eRt/dOuVeOz0/WJbXjH34jn3PIBr3ZN8HqBzCycwXLdu2ANQqNyKnTNXPpCaiT6napzICFj4vpZWVquRSqm5NVfzrIepVkr8hG1lAlf6PrcJOcrJU+vfd34b7SdfoN72g9IpDp1z55b8mMjVINyTipFjKXkW0owPKCsZnhXg4zFIkcTe02eAKZeS7S4sLqS2BjDWjVFrXTydOzbc9zoL3GOu4s/d+1143WMvFRRMwOObh/DOT/48Pu/GA3jGjadi01t86DRQti1ICSZHQJEecwWYbdSvaMyvI08w48egO4v6tQj9wuV1ghVOzAorY/CEleuz77r7Ybz/sdeg7/MwVgC4tnoKPuPeF2LdXQX3SJMghcBJ+1K1oRQKVyJxpPC5uWg11x4rq0QcSaGnRRzZM9jFosoUI6AQuRx93+OHf/iH8TVf8zUVP5Pjwtvf/nb8hb/wF/DiF7+4uHz76el2IrE0hpp6Z5c8949s0r1HcufYDbxz7OYj1aLgcuol+Zehxx9/HH/9r/91fOd3fmdF3XNc+M3f/E188Rd/8QixdDKJnldiSaHYDXxiPOXX1uwXaGGZbvotPkXqUZIqmNzfnv3q30f78nJkkN/IVKReMM6TaGirIaRn3a3wede+AZ919QWFXHo88vjr8c5bv4rennqlSQr+Czg3kZbPZyt6M/WR7oF0C0RAudcWpz6dW2nMTRzJX2Yz+Chth392mEhv4NQTBgYfuPsOvO7RnyoSS9e7T8EX3PuduHf1lLxN0UV9JhhId1GadBt9jhRIgjqA1E3xCnFc7xMfH+cdlycRS1S/NAxOUill20x4icokU05jCnm62q382clqpnifO99YtZGdk9BHzwPScwCplNLxaUwcUkehditjvIrJDGPYGIO1Mbi+uoIXPOE78cyTzxPL3/SP4y2P/TT+4PFfywg6QtR2I+3WM7USjVGvXDJbf7/bsPFHKkKuLCT18nagfqQXHUNKRMI7b78B7/zkfysSS/eu78ez7/0GnHTXI9Joih0EH38p2SJ9v0xREO36qtZ7RM1UUyTxe0t0jHBPOlaoculccR4Kg7IHE+AmdF/0RV+Ef/7P/zn+zt/5O0epYtput/i3//bf4h/9o3+E27dzM2QA+OzP/my8853vRnAGmIOSgglo9yGqYSoBk57H0v1LUDxVFUw7oErOLEVM1dVLUV0aPZaiwxoVTFOIKGNOBgPGu+L+l770pXj1q1+NH/mRH8Ff/at/9ShVTDdv3sQ//sf/GP/m3/yb7BfaAHcfa/E0U0Jpd1icfTCu4jCQqpcIsWIpqJQAZqhr4smKSzu+uhyfnNDDOa0ml5p8d+hC2IjlCoyg5pDUSx0E9RK7n/Q2D70B8m+I3nuakOE1vBKK/sI44qrrVvjca1+NG91T8NZbvyD+iv/Bu2/Bw6dvx6fc+Hzcc/IM9HbrlUXk4YNBveRWfHPm3uRhIqmXPME0+DOZ4VjSAVnbozMn4XHIBBUU5bU1a3RYYWXX2JKpOPqIXDg1p7hrbuHD/R38zkd/Dx87/eO8AQc8af2Z+Owb34C1uVbtD8FJBv4Rh1RM8YpnYSLn6uy2r6JtQMkiIi9XUi6FbWOKJU4krFiI3Nr3zzD9BEIYltsXo0u+x73yjpqFwjbhPIN4eKJB8B8jjZph41YyAvcr8SF4NFH6qI0Sc3JJeVUDjTFS+/XWqY56awez7bCvhuAvVC5nZcITX3CrckeTggkd/Epymz6ktsO4PunW+JJ7HsC9t5+Od2SryLk+9sbHX4233X4z7rvxZbiyfiKu4DrWdh0TpeDhb+W+v/UEE/U1upsN98NhDGwB3+dc/l3xGkhkx21zayCpnFry1vbjeOjR38LtzSPFuj3lynNx343nD/eiPDx5DPw+lfovubxiFROQfi+Ux/EclexUpdPYDys1VVJpXlDL89iewY6fHlPMQAcXZiPffG7fvo0f/MEfxJd8yZfgla98ZWWCd1iw1uK//bf/huc973n4oR/6oSKx9HVf93X4nd/5HSxHvtTaZ46SaeoxtlCH0vZyOXPVS9b2TSRJOd0x3TaZf0V0LkJ7DucrGq5OaDMOY1YAruLzPk/+Be0jH/kIvuu7vov18+PAdrvFT/7kT+K5z30u/vW//teV+84KwJVRYkn9hhSK3RAmu2HSmIf0SL/MJqFSTAXB94/9eg/EaqZe9FiKCazebyHb4tiXhHsDWX8MCyuqqJek2nYg5QPzYoLByrgXKSJWg4LJGINnXvk8PO/ev4Yr5l6xnN7exUce/z08+Ohv4rG7D2JrTx2RYtbozBornLBfzrvhO6H+I4/7vnFKJlIpbe3Gf+7tKbbDa2PvYGPvYItTnOL28PeOe5k7ODV3scWpm5Aa9zo1p3gMH8MHbv023vHJl1WJpadf/WI8+56vB7oVuOIstGms/Cn5AqUqo5C+82TcFM+l2nEdK6eVWOK5rtFhjaAt4iqklaEQQ1LaOAXN2nRYm1zt1CHsW5vO9y+vpTCdf61Z66yGOqx9rVeimmll11jZtVc1uVBI4z/Ti64RBw/RmgIipPnf2tTDJH85sZR6L9FnUjH5vwZYG0c8rYyr+WrYv+6M377qgFXnFEzrrsOfvvYCPO/Gd2BVUJLf3n4U73n0v+MDj/8mbvYf9f1jjRXWjSQG1xZ5NaHZYDO8nD/aKU5xl43DzeCPtsFdnIqvU5xGakM3sm/jpvkkPta/H+96/Ffxrk/+fIVYMnj6jefjafc8D73h+qdxsizPKVYSckjqnnQUlPPNvZLGXlLdaq+0numLn1f6KuUvHX+sUHLp0sLAKZjKXeDNb34zvvmbvxlf8zVfg9e+9rVnVrM5+M3f/E189Vd/Nb7lW75lxNy4w6/8yq/hKU+578zq5jBGGPUNaVKMkUc83ZRc5xuKl8iSOpFyBMTSAmF8nGjaNSzQmA5/+Id/jNr4fdWrXoWv+IqvwF/5K39FNLI/FFhr8fKXvxxf+IVfiO/5nu/B+973vkrqE7hQuHofVVJpeVi7v5fi8JGSuXzySOE+bnvJX2KZx81auIg1gahIDb1TU2+f39ABd+2HRDCZIawmbGfEHAthevLqfnzxvX8dT1p9ejHPzfaT+PjN38fHbv4+7mw/gQ4rRyyZgQCJQkqGSYvJJ0Dp9w0RSsDQjoxgojal4yhELhBNLoBmaza+7bve4JN3/gTv/uQr8YnbfwRrZWX8ClfwmTdeiGde/7Lgh2T66JW2G0eJnOQqI04y0b504jb24sfx8mi7N7keKBpeX7nsfOwQscTVSkQqhf1oevkrPhxvAE+LcfKKqC0iu3i4nEQyRedi08l/rJSZgqljrbc2U27Y5K+ElGQCZIKpG96vuoEM7gLBRCFyNL5XA+n3zCufi6+893/BvV15pd6bdx/Euz/xSjx063XY9Hd8GxLZBAQSSTxv/y8nmnrjTPd7Nj43FAhnghE4Eb+n5jQKp3P5O/r9Jj6JD916Az7w6Ktx6+6DxVZdm+t41r1fgydf/eysnktACgmrkS1TCOOpLwk1EonXfyzktkROjeGYnsE0LO7ccAjhKkQw9SiFyQHAr//6r+Orvuqr8LVf+7X4gR/4ATzwwAM4OTk5q0oWcXp6ipe//OX40R/9Ubz61a+upnVhcO9FaPelR1MtRI5jiZvwnLrXtMWFcDB/6FDnzOAb4nHTiBMhbfogfKZEAQt7w5jJ+bA5C38bac+mOozDmNXwpVAfvy996Uvxspe9DA888AD+9t/+23jhC194EOFyjz/+OP7zf/7P+JEf+RG86U1vqqb9iq/4Cvz2b79xuBrl/rB7X1mK6NTfbRQXAzT57Yf7YWrwTXBBGv2wnUJthjxYeJwLpwqTqc52maeSBG7a7NNT/qCR240YfAcD8mp43PAX1hRDbdJb6BBV40oxTvXgzLbdN+8WFivfXm6a/6Tuyfiye74L77/7e/ij26/BVliwAQDunH4Ed04/ittXPoSnXH0OTlZPchNIC2xwJ7QlEQHdCbY2hMz59ktvj4YIJNcqHTqXpoMPdzGWwuOGfEyPNa6iwwpbewefuPNufPzuH+F2/3G5oQY8ef2Z+MzrX4OT1Y2iMixF6Gc0EQ9LlFNbB7P30C/8PnAD4ZDHeLm5D0yqVnLbcvNuKTyM/q7YvpVXMMATStSnIuI26Wd8PIZErv/RIvArY/yEsYdbLcwaN3p52FwtZC6EHNqoPSgsVarTWKgQ4Iiizgxm9wAwGOmvQGpjw8Lj4PfFeZRD4MRQVhP+9jY+3o1NN1ZhiES36DpgO4TI9UNsnh0GRweLNQzu6+7H1578Lbzj1m/gHbdfKz5/WPT40J034pE7f4inXnku7rvyBbiyfgJ6dHBrMG6GNgyKOLrXkSW4ZX0wtL/r11vfZ1ae+FzhBGsDp1UyzkKBxsFVXMcV60JRT/ub+ODdN+Phu29Bb+V7D+FTrvxpPPXGF2JlrohqQ65YKpFlVE++Pz1nIFYxpeFyYxgrey7GLC5qfb9GjrWmPTYouaRACJPrgcrAfNWrXoVXvepVuP/++/F93/d9+Jt/82/i2c9+9hnVMeBd73oX/tN/+k94yUtegoceeqjhiBXe+c73wcX4HlvkaopdJs8NweuKCOVV42ICaTmCaVrfpN8oXRz+pnh83/d42ctehpe97GV4znOeg+///u/HX/trfw1Pf/rTZ9RxPqy1eMtb3oKf+ImfwE/91E/hk5/8ZMNRa/z2b7/JtW+FuJxPLO3jfjCW56GST1TvfBba671DAWQEU4rSdrePr/o27r0kgfyHqmlMDzDSwa2MFcgw7yFjAZi6DrK3QAcLY0z1rm7IO0ZAN0zZ+Yp7bpuTTnzm1S/F004+G2+5+Up8fFtSblo8dve9eOzue3Fl9SQ84eqzcWX95CHELYSlrM1V558EoC8oiHyOdutD6qzt0Q9DXJrebO2pm+iZDnf6j+GxO+/D43c/MBoG0+EEn3X9q/GUk+fCGjspbMYdn6xG6EnGmKQEAlHJJ6yph0tKlIRyyhM9TiwRUsVSmkcaHsafI+jHHSKWJEhEU1w3TuzakH5YKaw31vfHzjiChI7ZRmMhfHfGRHJYDZK2pee4JFJvpdLTqnPTakPpp2QimSz/PCTszEAqYbgGlh8zzCIMgIGAvmJO8Pk3vhbPvPIc/M5jP4fH+4+IddniLj5098340N034971M/GUK8/F1StPwdacejXL2q4dbWPcEaRU4j/lxgRT6MM9eqxxgt4AV63zRjs1d7HBqSepXJsYPLr5AD5y9+34xOl7hNaJcWJu4Fk3/jzuPXkmTs2dbP/U8ezOI181jvpbCq9wbPzReilyptVH9uxIpeN6BjOH7KdjjLHtt5Fjw747yfQvAPfQSCqItn7xhV/4hfjWb/1WfOu3fiu+9Eu/FF23/BdP3/f43d/9XbziFa/AK17xipGwt4AXvOAF+J//8/X+S507LMTYxxhY+vouWcdS3fJrlxErxRvuQkRKk2pp6euXtkfqIcD2Z+dfjhmX8hqH7M1UTMP2BeK0PqEgGGPwghe8wI/f5z73uXtRNJ2enuLXf/3X/fh917ve1XjkCsA6tOtixNIxk8tnhQ2stb4zfMb1T7M/9Nn/r72V9nf+4H97vbX2+XsrQDEZT1rfb19w7/8aEUX8fVjyPA454yu10cRnazbZNiIG3GSq7NcRSIHySkKp941Ln/vfkLEyed90MF5BsoKJFCT8r1c5mFBq7VYZVCP02Q5m427Cvx2UIyHcx/lA3bUbvO/0zXjv7dfirn28XABD113HenUvrqyehNXqGp585TPxKfaZeNR8BB85fSe2/Z1o4Y3OhN+UiVhyddz6dFfXT8TKXMV6eJ32N/Gx23+Mu5uPY9s/Xgx7S3HvlU/H/defj3uMHDqUenONIfXW4ohXEIw9ukKaeX4wXeIvNNbPKBQuDUXjoXAlxRL1OSBW4dS+m/k8znsWkQKJ9Ts/TpN+BwAbPy7zEFKfV6H9THIduWKrNs7Ik2xtKHyPVmxzyqXObwNbzW0gWYaQtxVTIKVhcGmL8acEUjBZJH8tsPGfLTbDKZ/2bgxvh/HrxzEbzze3d/CO27+F9935HWwLi67E6HBl/UTcOHkGnr3+Sjyx+1TcwV3cMXdw2zyGx+xHYNHjxFz3PmBpqOYpnDcaXZs1ruIz+z+FJ66u4qHtJ/B+8zbc7R/Dzbsfwunm4zjdfDIjZSUYdHjS1c/B065/AU6MWw1uzFeppBqq3ddLmENaLYUWBV7VsHsi4SSlf8fHfiZ6Jjq2ZzBVLik8rP+1gquY6pO2N7/5zXjzm9+Mf/bP/hme+tSn4vnPfz6+9Eu/1L+e9axnTSKc+r7H+973Prz+9a+PXo88Ul61IIcBcIL/+T9/zz08WW7deYw4oLoXQsOmK3UOaYKf/kY2T3Ukrw5XDh/M0UIsleHI4TYVosvb4rWvfS1e+9rX4sUvfjGe9axnReP3ec97Hu67775JhNNms8E73/nOaOy+4Q1vwKOPPtqch2urdTTxUWLp/HGev0MZYz4dwP8HwDPgLuJLrLX/7vxqdHkQK0fCe1Iw8e0UXJVODIx1K7q5SWeuWOKKk7GJCz2cpwomCn4Ld9yVVzCFNFw55M7CWqdKoskkKUl6WB9mNEZ80ISWJvZBRTKExRl3ZqR2cHrToRw2sDrT4ZlXvgBPO3ku3nf3d/HQnTdga3O1QNQu/S3c7W/h7umHYcwJtnc/jtXqk9iur6G3G/R9eI7zZrJGnhj1dgNrLU43j+KO/Ri225vYbB/H3e3HJ0327jl5Jp5y/c/iZHUvVriKU9zJwskAOcSqhlTFRHlQnpapk3r0kdKIK5oIWT+VFAUNxBLfn9aX/422Jd+rnGRy+4c6+dUIy+gNz3/oT0zBRCsW+q9KA69k6n1fDUom+QnPjk66a+OExtkc9HBjyZo8JG7sMwdvAiAomKK/cOfvPhusjOsl3SBjskMeLtzVjWtSOp2YE/zpa38On3Hli/HuO7+N9999wwiJ0uPu5uO4u/k43oi34d7uqbixehqurD8F3foG7ppb6Mwaa3O1mINFj81wj6BlCm5vH8Hj/Yfx7tvvwUe2f4JNf7NShxxPuPIZ+NTrn4d1dwNAh80QrjuVVKohVRSmGBuru6KFQCKMqYqWUy+NKHLP6RlszvOXkkvngsOWtsWhNm0kEwA88sgj+MVf/EX84i/+ot+2Xq9x33334f7778czn/lMPPWpT8XJyQlWqxW22y1OT0/xyCOP4MEHH8RDDz2ED37wg9hup9+oHNykFOjCl9gCRszzwL7Fd85jadQEx+kNvRQWJqGFSKlcj6ZrdfbXM2qDjFwbC4+T0+X7WtGS1o1fRON3HO9///vx/ve/Hy9/+cv9titXruD+++/34/dTPuVTcHJygq7rsNlscPfuXTz88MN+/D788MM7rC4pjF9gIWJJSaVdcADBxBsAP2itfYMx5gkAXm+M+R/W2j8832pdDpQIJukz386JJCKY3L4OLhxn64kAQo1gAtxkhBNMAJx3kg3uSmbwinH5he+l2H/JuagAcXic82MyPszNCBPaYjsJJFNHShJGMGHI21m6GPcD2BC6tEaHzlzBp1/9Mtx35c/ioTtvwIfu/v4oyQQA1p7isdP347HT9yd7VoNq6cSFzBkz3KdJ3bJ1Zt62HFrdgmvrp+Kp178A19dP9ZNG1+JDqA+FGA3p+SpNpeXuU5TCtLgfE/WrkHdONLny5e/kdBXDlBRL6xmRTQiqJXcMU/GwcLiwTVYspaRSjZehWtmhH7unDUYymYQstSb4HlF4mOn8d3fbk1w85luUZ0D+VGstfH0tDKyx6G2IN/DrUZpwPJFNPYI306pxnFI3JEKJtnGCiUL0yPOps7SKHB09vBtuENS316bDFhY3VvfiOde/Fp959fn4ozu/gYfvvhV9g6L8sf4RPNY/gth6rcOqu4p1dx2dueIWDRjGM6zFxt7Gpr+Fvj8dfJN6vHe0JLllnnDyLDzp+ufiyuoJAOB1pvlPpu1ztPGw2TxETq7dfq0EWsLpxsnVdiLJpW8PjzvnZ7DJz19KLp05DptY4ohJJgs3SZ3WvTebDT7wgQ/gAx/4wB5qCKxWK3zbt30bfuAHfgAvfOH/E8awr66DWPJ+Dsl0FvR0iWBqObSkXiJchIl8hQwaOf86wXSWIJIJACy+7uu+Fr/yK78yKYe7d+/iPe95D97znvcsXjsAuHHjBm7evIMo/I2gpJJigLX2IQAPDe8fNca8FcCnAVBy6YzAJ/VEKHH/JY7eT7bDfbSHM4cumXu3Gnu7vHIVU0ow+QmyMUNIWo811kgNvv193vZu4jZ8NYrm3rBeJdLZ8oQ/UlLQNhsTTL2JlVG9tS50yDrS6ypOcGLW+Kxrfx6fdvXL8OHN2/Hwnbfg5naKipuwhbVbbO3pDI1BHcascc+VT8MTrnwmrqyfAIMOW5z6CVXwe9kCgxcUrJtYudXmHAJJNK4Uc+lDmtx0Ok2boOHrI/ZPSlapI+IoCYdL62WSbR3CT3UpsQTEaqWUVJJIE64eHDY4ogWOlqHjLamUEMgVIpl8hQZiysCio7BNX9cyiZy3W94OBE/GDAb6lML4/AFjgc4EY28ifYwBjA2qSZigZuKKpLCIQPkplxNMYMfxssKT00DO9daF4A1MkoETRfbWrTJHjXXVm6AbrFZPwudf/8v47GtfjQ/e/QN84O4bR43vc/TY9rew7W9NPK4NK3MNT7z6bDzx6mdh1eUKKe75NAVTlEY1YmcKkbWTYXcDeTVHwVRTI7WGyJ035jx/KbmkGIX7OnS3f3dL3aBVzbQ/dDBmje12hZe+9Bfw0pf+wvBLT16nwwiJayVzDqGuDRglmGbkl246lraoqpIOAW78/sqvvAYYrG3Pv5854uvmzQ0M1qEvnZvSUDGG/ry7zABjzLMBPA/Ab59zVS4l4hC4QDCNH8fNvM2sCUsKrmICnCKFCCbyV+ph0Znehy85BUcAuUTRZJjC42BC6NpS6JATTJ0d9FNezRQ0G66+HdbmCu47+Xw8+crn4Obmw3jk7tvw6Ol7cWqnhbssB4MrqyfhxpVn4PqV+7EaSCP6YcVdlzBRovA3Hso4NSSuhpqaydU2WaEwKZebzOdnWlAj2NqkMe83XI0rmXjLx1B6Xp84Hf9sYYN6jvIdSE1SJblQOBuTp7630f6guKO8UhN/iWxqVS/5+jKCltRHpGRamTAWafU7y9rE162gVvIqJEz/GdWrmBCelnLCelBVGRcWR/ySAXybkoLtqrmOz7z6fDzzyvPwse178eDdt+ATm/c0qRH3AYM1bpzch3uvfBpunDxj1Ly6JXxUSrcE9rV6WiuJMzckrnRv24VQOoRnsNbnLyWXFBHGwqDcY9AKMCfDlxWpmZb+PUzCCsasQSoH9yBD+9hNbdIE9SxH6wHcGUaRC6Jp4pD1i6UIpiMgFLJx0RAeB6B5xQmxzL20S6xmOluxbTeUbeS+NAL1VrrQeKox5nfZ55dYa1+SJjLG3AvgpQD+rrX2k2dWu0sKPiHm4a4SwSRrNSkAjqlKLAb/JSIA2F6LUe+lvAxHMPEQOZfXqS8dcIqpjd34ci2cP9R62NLDDrPdziuJOphhIfBYvUTtwifHUbuBEwlJqNEw2XcqCPiZb1BxDAFNloXtwWCLLXp7gieun4Eb66dhY+/isf5D+MTpu/H46UO4u/1EU3vNhcEa6/UTcHX9KbiyfjJW3RV0Zj0oG07hQhGHeptw1flf0HumluEaMre/E9VLJTLHMrXbFDWTKz5fQc6dazwBlBRLtF1aIY6nTc+DiKXIX8mrjOiYnFjyKqgqU2L8BNSRM25UkJIp8wJDIF9oLPtV5QYVUxj33KusjlzJGBNSfnwx0qg3FB9n0Flnkh2eFIZQNP/7sfWKIjoX0HmYeBJOBBPtz+pKRJL0F+ze1BmnnOqAbQ+sh4R2uDdYljudrVN/deiswQY9VqbDp64/E/es78cGd/GJ7UP4+Om78Ojp+3FnsqJpGlbmGq6ePAU3Tu7DjZOne9+1HlvU18vEcDbM/P+Anq/mKn12DYObqkiq5ZeG4Z4TRp/Bpjx/KbmkmA33Rei6UIjf79lrFzJlBfIJcN9tHbouLJkbT7wP50Z36bC0gomyPXMibvz3rWn+UzvW5kwINzoX9+g5lJz83SXvoHh0W3Yg2pRYOnfseUQ+MrZSiTHmBO7B5v9rrf2/91sdRQrD1A9ATjBxxMbfpFkKaYztACP/INUSHpeqXkorypGCiZxDVuKxVE93LpYxRpzk4Eul24RV4uoJSVmSKkpoQszDcEjBRCqSoKQiAs8RGb0FYLZYmRVurJ+Kk/UT8NTrX4CNvY07m0/g9vajuLP9GO5sPj4Y+U4fuQYrdN01rFf34MrqCViv7gHM2tXGxISKI2gSr0amYFp5Ms9dA76tuT6VyRfts0mfyb3BYjUTnecYWtVVc7/fal5KvE/VVkEj8FCv3tJxNvIOCuobROo5bvxNq8m5+pnhuBBa58qSx/4UjIVAWgTSxiInc1OPJKkmfGzSEG6pcVByxU8UHRAZi3MiymBoK29kRcQwEdW0rUOHNZ68/jQ8cf1M4DqA7QY3tx/Gx/sP4PHtw7i9/ShOZ47flbmGq+sn4crqSbiyejJO1k/wZJIPJWb2DS3KpNI9dt9YKkystd7jvkrtiqRafhKhNGroXd27M6rPYFOfv5RcUiwCRzSFiaRDh3ArJ7KJDw/D9tOxK/ZraR/9lSfcybZsaXZFGdMEw0Vyhdp8Dsk0iUQ5a9JgJNxtRL0ELKNgivPfF0zyNwWNXfG3P3asQSlMZgo5N3/sKrF0EWHcl8JPAHirtfZfn3d9LiuCYkdQIgxpSAWUhyqF5wNH8ITpm3s6iMkmUi+lhq9+mXk21gNxsA1KGOMe4ClfR+YMdbLu6DWcusrlYbHFEAAz+C/RLS+6O9pYeULeSyEMJ7/PBf2FDYqIRMFEHkykeFg5qmtQMJnBnejETQQtsB38mbzyyXQ4ObmB6ydPhUWPLU5xe/soLDbY9reH1x1n3o0tervxNeu6K6DnNWPW6Iz7Yc+YFTqzjs6Ew5NIto/Js0FJRteQtqXhcb3pB/WSNJlt817yNWOTtWAcHyuZ3DZOLJa/L9I6ZQokQaU0FZEpOCePIiIp7Uvs+KTYVLHjthlRxeSuiS0STAD843oeJlf2W6vB+TwN+SHxXqK+3A9DrHdKJT8bsHZQD8ENUWux6gw2RB71od0kBRO1ydiTBT82GqsAVsYRRXQnG5yXsOIKq0F5xZsRw1h2qjCLfhjdvbXYkNF3t8ITumfhmrkPp+YOLHrctbextXdh+7vo7V3c6j+BLe7C2q0rcbgHrLorMOYEpnOLAZyY69kzp7XkfRZvk55NOdmUkiN9FF66X4+jVkytx1wCaays2mqTrWW0EN5njTnPX0ounSnORvWwK5omgc2KFbqVC7Hs4vExAVVXcJSJpab0CpQJA5lYqfaNKSqmgwyFk9piqp9Sod2KJt9CLQ6ybYgIBsr3sTCBKmG/hO8+223Jeh/H9wCHxbnH+38VgP8FwFuMMW8ctv0Da+0rz69KlxdcxSQpmPL3cZgbKXC42sQMepY59rFcjcR9mDh54cyjSUVJBFVYQY4rmAAME8QQHkerx/UmKJymLq3OVUw0aQXcRLSDwSaaqGIwF++G78sQZrPGOpJh9Oid4mQI4tsO5M1Jdw0WPdbdVfT2Ca4NrJvMbu2p/66ha2Ntribj30fiRNT2MGblCSbD1El8tSlHbHDfrTAZi1f5292LaQ7RVIMUDlc6Pl5FjojI9n5COXLiqDPxt0YpNC41qObbemuiEE1uMM/73hYDwYQknM3kpLJp+M4vwa9eJ4wvDKs1ujFoh7ojCqXrjTvJVTeEAjJlFieHqC042SS1Uw3OeJ3ycWO/NxjMxynEL6iriDQ2YIpHi2E5AYv1QK/ycLQNNr6vru0aPXpcMdfQmxP03XUAwFU8ZRjjgSiyCJEcnPiRniMlYmR0fA/jdSk10z7D2KaWMzb+pxJJwDQySSKSSnU652ewyc9fSi5dWEydFM9A06ph5f3pzU9i2sv5CnVRnD9aCKaRa3VUirMJhFqLiukwiaVWnME9p1juvrCPvljL8/iIp7OAtfY3oI1zUCgTTCFkBuBhZ8F/yRstD6vH8W0d3K/x3HupZbnqnGAatg8Tu8hQ3BgYS59pjxn0BfGPDBSq1gkrvLlJpqmuHJe1W0Iw0TYAPqQmNfkmgokmpxZ9RDAZ9OgHPYT76wy2V+YE1rqW8yF4vJ3N0AY+BqpSb1MmVDi8Ykn4QYUbesvHbif9cl8y5uYwthND5lz68fv7XFUS5T+XiCzWJyKd8jx7GpOMWLGg6x8kST5MbhjH0Rg2FtaG/Le0X1AwjYF+kIxDTF17BLGSML6GutHqcb0NVBZ5vDmCx/oVIccIJrDtLUgVUJ0BtsNYJ3VStMocDIyxfp8jyZhp+nCvIBqdzgYIhHtnKICUyG/e3gCwHe6l7j5n0A33iX4nJdEuSBdWKGEqsXSWiqSWMvdFKLXW7bww5/lLySWFiOYQluZl6ccHzvjEurA/OU4mJ4550n5emKFeAvZE9JXyPFsiqmhuHmEaqbokWldu2g21mUjp3Jb+4txXG543sTmn/DPgXOwwyVUoGGoEk9sWQzL4dnoiF2jCw+NK3kucJErBCSpu9B0IplAPmC0bbkPYCizWIP2UkyKYYYLrJq7BP4VqsBqGn2WT2qi+QuhSMGfmKm34kJpAOg1/LdCZ1RAiZwGsfVtvbGgPiy1ggC1Ow0RoUBNZ22NrTtENYWzwZfSDqiuQQhwtituUFKIArNzXZeXVTAA8QTBmaGvZan8EWTUkk02Sksml3/3eKZlXt+ZL6p1Z5RbIqny7FRQ7Bn6VRAuQUzYpmHxoHPuq7xnBBDrOnweVJH9JcILJ19Pm4XHZ+BpC4awFVp3FlkhXytECYCFyW0YwbS2w6gYyiJ17K7GUGYMP5+nyCivs8fA437bGou8dNb7y+iRHENsh3NZ5MMVjrR+IdZd/51WJxnDl54kfQ1wdGKdhbT/hebOmsB8jhsfQpiRahqDahyIJmEYiubzalUmj94wjewY7XKpMccGwy2SwLx+/00T9iEbqXnE47XBUqiVCixfYpccxtMcR9j0Agxg/eSkUZ4NoiXXhAXlsW0oauPC4jn2e/pgafJmYV5Pp2faBjDHhs19tLhk/djA37q2N9tF7a+MpnVOKlMdgKaSJQm8ojRkm3h2MJwz85+FFJt/0z2CFznbohjbkqYHQlp3pBk+lYbsJbW7YvnSiGdK0Kwp4CE8JKYk4FhrZHs4mKAdmrsxUOm6qoXU/MkOc801pklcKqc+RSbj3KWJ9LGybUZmJoPbj46uHzdqViJ7e0ovG3zBDsDbsR5yWHz/2DVnbJ/UA8oVKSb0Ork1DaOSgmERoa4OwPxxXGHPoPCnC37s0YXtev3wcnzWWIJb4faycR1e9N7j7Ytl4u6ZMKhlwl9RJ0oqTpTDaJUjuQ4Mql84M59F5dgtTmaReAhrCg2pfm7n4s7lcvklVSwujrF4CxhQ803AYxFIcEuHQMI5EBd+SYWK79OEgwV4WDbEUEVrHf0v6JXEI/W5pLH9OehdVSL41QK5gCmniEDm3jULdwph34SD18DgKAykh/WWdwuTkEDn4UmA2Q4hcB2ALYIUNguF4N+hB/fLpMIOzkfH+MB3y8M46PYUAAKrYSURBVDiv1rD55J774LjPNKnGEBZEZuND+/p6DCPbK5gQ2nxQOXTGTYSCDxOFArrQwt66v8asvOLIJnosyXuJQMSSJ6xMJ/5CL6EWPhPMvoMKaqqptwRxlbhkopiGzaWYS0i5cuVzoJXPuM/QmAquFSH4jZMeuYKJfJhSD6baKnI+pNCHoIWQupoHU0m9BABbrmAC/BizANBjMMdO1EE810HBtLV2MC8nw3L4UU3tQa1Ra9uauimE24V7Hg+PoydjF+JHB7ByYfzzYufPl46yfiwbftAwtnsDrIeQ1w1OmXIpeJwhCSH2nknnTDCVMFdF5I6tE0lT852qTHJ57a5Oar2/HNMz2E7kkjHmUwH8DIBnA3g3gL9qrf2YkO7dAB6FG+ObsSWHFYeDScuv77Jq2JRhc9S+NIrLhfPyIWoFf2Cbi6kkk4TzGtMXkVhSKPaPdBlyTjBxeH8UnhYU3Ma2WReqRoFz6epxrszVQFDEoXHekJomUoxQ4CFyAJjJdyCYOtP7UDEyIHfvaeJtQwgPm0x38ZJQrg7S7xMF8Em+tJJcKN94I/HeWqzYxNSdZ7gWbrLpXF1WOBlak7WRcXu39tTXgfxqWm/lnFiaCpoIl4299/N9KZFMBMmXie+bgzTkjUygvYm1IAuaZxJf30eXtDPhE/kwwe9z4WMuTDEQTEQ50l8imHw3MSYjmGrg84l4FUmWxxAiR95LBvAELvkTkck35Uom3xjOsEfuw+TKkMPjSgbfY08HRA6GfIxvn8xAfAjpCwsCEEFHRBi1Q+fJpqCmdOMZwzGcnA/+TM5/KfWoo7ElhcydBYpEztzQtDMilEpl1Yj0MYN/n8cMEuvYsKty6cUAfsVa+y+NMS8ePv9wIe3XWmsf2bE8xTFgyqphc/Iu7Zo0UdRJZYzaE3GZIFlKwVS/dofhtxSXLJCuxX6/K8F0LGTqhFnVQUDvAa1wYUHnXQvFoSEz7ZbMgZNJJGHrt3FigfKj8Dh49dIUcBWTpGAihRQnmEoryBExRh4x3H+pN/Hk103MuYqhrF5KIa0k1xuDNeB9cEiJYu2gYvCrl4Xlzek2zD1b3OdtWuCwPHkHY9yZcu+mMa+WfSshSkRT6zbKQ0pbIpiAcRWTXI5rvdDnBgIBgpk13LdkzSSe5G+9dZ5e1H+kLjT2rVv6+ciFcgViMyVKABYyh3gfKemmhgS6+sbPTjS2AMQeTAgKJjCihjzQOkYw9YM3E+Xq6jucE6mYvNLKgY9H8mUKdQyYsprc1gZSyYUdWr96HCeKra8kAmEGFx61GSi1DiumRhykWTgdKtdFFeZPmNzPLOzfRuTKVKKpTvbMIHQqoWnlcqbXYSmF0lQT7lZCaQqZdGzPYLuSSw8A+IvD+/8E4NUok0uKI8Uk9ZI/aBcVUyGvWhLxS+5YJuXHgDpBMquPsGMPC9LjWn7+Z0swHQv4tTxUounQ+ptCcZhoVVLwiaZMMFE6B5o+uW3h3thbN7kP67fFv9hTHpJ6Kas7UzHxdB1WgaziCiY/sXX1oRoEHxiDte2wpUn4QDDR5DcNj6uFNaUTWSlMLiWY4jN1xNfWzU7Rw+IKMNBzcVicgVNqGeN8WsI0F+jNoHaISKYtgMQkvACadHXk3VTxfpmLsdC4+qQzDpNMt9dIpra6xQSY9VuYYml4nvAkigkBjaRuIj7JrzwG+BBL/pxBE8xuUBCVTL2zc0IIkXPHxRNVIkLE8Dgaw0l4HDCMF0/a2Ci/9LmOk8zWj6kYHRvn1K/X6LxyakNtOJh3rwy1rjuhbiCThihDmWSi7D1ZxcoXVE2jbcvYO4OgEHPXymA13Az8fWEgpIPq0bUIP19qrw4WFB7sSM8TkAE/7Bq96Vnvo5Uig8l32BOQEk27YCliqZx2GXJqn2TS1FC3KeT4MWPXM7rPWvsQAAx/n15IZwH8kjHm9caY79uxzCPEeU6yliFYZhMAtt8tjG02saSYjt3acc51GD/mIhGEc86lcszBh4ce4rg8xDodB+weX4rjBzcm5ebAY2lTGK/GaX88nTJZ6rHNfrknAqUfpmXun2AqXPhsLX/PttnwHVeasPJWoMmt8e04hI2Z2HyZH0umwWQOHF6O5FgP5t6d5VvpvSObOPHECaNu8FMqveTzOZ6J0j4ndZL5O38fG1JbT3ZI/WTJZ1xOSJF6qZpeGKcSqVUb06W2CCRT+OvHD0vP2yhKw8YYEW8UluaNvH06nsZtp3287dP2j/aLZ1eGH88mfPZm/EwVxsctks80Uo0NpKXJxvQKZOLvy2bm1aawfRcsqVhaotx9Eks1M24xj0bz7zED8hTH9Aw2qlwyxvwygGcIu/7hhHK+ylr7oDHm6QD+hzHmbdbaXyuU930ALiEBdfjYRZ2yj4mwkkpnjXH1TWuY3OFfO/d7WIxd1UuUB6HWlodOHLWCX+fzJNkPvb8dPo5Jkq2YB/78dc08cVYe3tyXKZgI0jcI6ZT4nkD+sD00wTPt6iWeV65gArZmUJpYF3JisMriiCyb8Fm4sDPrp4QDBhXTZlBY+MmkJQVTHB5nw2HR30GU4bfy5eK5gsmFMA2qKba8OVeHbNAD9gpCWJzF1p66NmPqMIseW5wCBu4vMCiZBs8W065gCmq04bMZX+HprFBSK9VUTCVwxVIIu2Rm14hDQlfsPalzuL9QFGKJcL15GJffF6mOBr+hJI2ENDwu9QQqmXv3diA5ucn3MAKkr4Q0XE4KnYu3BV8n/yxlhyerwUsphBmGED0zeBetOvIvcsolYw1Whggql98qUTHxfV5hyKqUhphFdbfyecehccF7iVRhAJgrElcuOeLLGEfZwrqRT75LTs3k7pO9DSbfGwArrNDZrSPDBxUT91ui0F+H2Oh76VE5NXRuCbWSlMdSZJKcR1u4WymPqUbfKY7pGWyUXLLWfn1pnzHmQ8aY+621Dxlj7gfwcCGPB4e/DxtjXgbgywGI5JK19iUAXjLkf0RNeTmwE8G0cD3qqD0oaLfaN2r95PCJJcV+0PIIvK8yFQrFGPjz15PW99th22STYYlg8mFzCGExYZWpQDD16DODZTcBSEmB2Nybh3uJ54Z0Nbl85TIKCbOmd0TQQBqYpL6uTsxHZ5jceu8ci8lt5vJM6fjyhB+gCa3xk1NHRrizXIdpLHrbDavxnYB8W6yhFdnCJM23jw91CtPh1hXhfN3ZDyzSsulLYI7yqIWQ3AVpP3Pb2p6bo/A4uBBLaq1SHlPC4+YgDaED+LgNoXGSmf9UeDLVjytbJOLCXyShqMH4m9RhflGBoV8DA2E1EHPZKnpC3UoT+8ynCvUnHT9OjWOpyCidk2ipTx350/WAvzem/bizHTP75vdGatvzMfqeMt5lQmZ3heQUY+59mXI353sgZPyu2NVz6RUA/lcA/3L4+3NpAmPMPQA6a+2jw/u/BOB/37FcxSQs6/dy3gSTEkvnifa+tDuJdBzqnaJ6CRjxHDvL8/POIgJKv0HuC2ehZtJxviScdPr8f1RQnB1a799cdcNRUjDRkuUd4skUJ5gA8pYJhJN/OB+UH3MmRWH1JV7PweeFCJuhDp3psbEbUCBZjw4b9FhTLYeJL8kpvFEv6Fsy9V8alAjWVEORKMvacvFeweTPwXgFk4HB1vYDIbb2bbyxW9Dy5uTDtMIaW7PJJqoWvfdjAuDNvTNT8ARcseTO5ewnSumETVLOSGqlqaRTTb1E3ktxmaHf1dRL9Jc8vLZ+rMCbWHNvIO6/VPtmLY3mmAxxn4wJfc2Tw6xulqlzpqDFALwDhsDVISTMus8lFZM7OYv10Pe5ionfnUhRRKGABsDWOsP+VM3E28YXwc+DheUVz8Pw68PMvUFKKbZ63KAGW8Fga5xRv2srvshBrGAy6N018HfQ7VDJDrEX01Dn4S95MqXbS+BpW8fz1JC5faiV9kEoAeWQt13ybWnXY3sG25Vc+pcA/n/GmL8F4L0AvhMAjDHPBPB/Wmu/CcB9AF42/IqzBvCfrbW/uGO5islYnmACxsOflkTbw+5xEBKHi+gru4DLYk4tQT73MydcD95vqRXpmN6lDZVQUiiWBF/Byph41asU0kRsaogc/4W+Q5cQTHFolhke3WvqpTgMJJ9YEJngCSZgCDNxW7tBwVRaQc5JTTq/ghwG5YkBUDP45uFxoroB8d2MK5hWCOE15FpMOgdXJwCmQ+dNl3mIkjMHJqULGQM7z6XQblucMmPgLYwJ69HVVpHjaqUsRA4dYgVT60RV7m+tE7d0RcN6WcsTTHGoXBvB5MPorHGrxcFdd9dvygQTwK/tPEhKpRYYabk5hlr7ywRgTjK1mH27IeFIJi9TYkqm9WAGbqjdhsHmQtpC2JyvhwnH1tDCsxFptwWYcftA3Hm1VlBY9cO20IfKBLx7nfr2KZNMQVlHaqZ4f0wgT1MIzfFhalMrnSeptCuhVMx3Aql1bNiJXLLWfgTA1wnbHwTwTcP7PwHwRbuUozhcnNWkWkOpzhItBNO+ccjkyQRyreq/dEg4a/VSCVPIpkOo7+XBMcX7K/aHsdW7gPhukhJMcbrweE3qJQsh5GMgnOLV44gCWmUTIrneIQyO+zCFfcGXKZAARDB5ustP+HyonLWwfhUuN6klRUKJHEj9l2oEU7q0eW+JDGMrerEVqMLqXvSZJiyOlnKrT3WDD9MwIfVEB12NE9CKU5n/TMOjgUQsSSAT8SUw1idTLyC3bfcQuRb/pbR+nLTtzeDJlPQfr6bxBteUX5lgcu+XDZOTSCNaIa0zBtsZ4XAlokm+RjEhB8B5jAHY2N4TTCsMHmQIpC56asdBLWmAzbCqnKt7IJm2/LwqdeWn2yfbSn5MKTjZTuSYBd0DkYzflJSXCSZ37Iq1We9D5QBkoywlmQhjZBNHa8jboamV9qFU2pVUqtWBcEzPYLsqlxSKiPhZkmiaRigdMhlxEXHe6qWzuMsuRLIdDcF0iDiib1OF4oIhWj58ovdSSjAB4Rf5uIx0MpdPngCEsDLaY+PwOEm9lBJP9J6TTOUQOfIo6gCzcb5FnkQg8oSMs2kS7kJVYIdvDuOycZPXOLxpKsHk2iJWMJGtslc9wKmHttYOaqpYwdQNdJ6lOsPVd4MtVnZoQ9MPLbmN2lKaiEoTz3RyyImm8H78V3/+vuRvEtK29UtJxZQTmXnI3BjKBBOFE/LzctjABTR1FtgOCqZN0n8oPsCB+2oFggkY+tdwDFcx+TJnhLAZNoApjIuHcPl0CKRQyVstbquwLQ1tzXU2IaWF8cRub8k438DafhhmJtTDGm/47VZZdD3ZGHjT744IWRNMuMnl17LuVP15ixNNI83LQw7pfsF1lkQOw4Tzs8M5bdA7s2+fmojiFfIwObo/rBBC5ZCRTPG9sUyyTn1yHSOLd/VVOgtS6SxD3y6KUimFkkuXCvsnBJZSMu1HqaQT1WWxr/50nERhte8vSTBdmJA4xTHhmH41UxwGWBRL2CYomDjcr/n00M0n7LmqwZURwuNaIZl5h+1EgjnHG/ctlxp/BwUTN/HmCiZgmHwOyqNV8tXQ+qyUakq5ggmIVRCiSXCkYCIioINfjYpCrYgg8SomahMH/pmTd+V6c0Kl3dSXTwrTidccA++zQuQLJu7nhFZ+3clzJ1UelZSCXAWXbgcCIem2LX/zLo3HGmrEEt9m0GXtRWGFGFLQmKt5V9HYk/zPSPmV+lYBcRu2NB2lt/5z/SCuxuIwyWBPF0SIfeviEOAOHbYgjyYi2lehzRjJJJHvJVKVj2PpmrX7ME0bu4dOLO1LqVQjm47pGUzJpb3j0FjJsyGYaij9ojEPrRPtIxqVigNC6TflGd5LqmBSKBRHiCneSxK8AgchRI4rmPK76YopP3J/Ea5eAoCtCd4hY+qlUKYjmMZMvju4Zb/dKlT9sI1cdSw7IoTKwfae4HEqBXivFUdGDUexSS7lNFXB1PkYqkTBRMcyBROfsG9ANsBbFz6DHlvjWnFrT9Gj94bf1F6uLvmqfGMKplSxlIbLdUwVxtOVEKcdn8yl9c1D1trUSnwFw6g8WzqezldWMHlPIesUKpGCCcG02oVMIfIUCgRFWPIe4H2keirhnNqS7YQstMy3R6n0rb9GW8RKQTquG5RMnXVk9GpQ7K0GtQ+1LeDGHAaSZjV4LqVKJgBezeTeB0UTR9rb0jMgYqm1/VPVF903ek8Yg61wFwjizaBPMuxY2LUjOQ2tDBd6fkwyDf3V9JnBdw2ts60WIqk1/A04fFKp7EPYnvaiKZiUXFKcOdQ/6RjQGhKWfXXtiJavryPuP7sSTDuplkq/lykUdVgc9ahTzARfGnwqoZRCIpisD9kKyprS6l49ejcBMERyrED3s5hMavfRaVEwEcFEuRv2zqUNpVMImlcwgYcSDe0wTBbDClWxf04JRQUTMCxhn6/s5QgpA1pJDpbIOX4t2flbIlBOPPUEu86MgXnrSqbAcb1HiKKRkLcsfYVYKpUlEWJLwpo+mpyG0LiyBxNhxbaTCo4UTDCIt7kLBK7EGU7Q/7DFQy2HXeV6j5zXnCeGkqKJtrUTGeHeEMio+PpG9RsIue2gNvIkEYKvUW+sD1PtDWskWL+qGwCvaKJ9UZlCaHCqVEqVTO79mFozHrs1gslyQonlwYl4V1dGzvt0lA95MpUNvlPSeFfl4CzD7yMklqaGwLV8rx7bM5iSS5cS5+2XsxRUtXSxcGzExwz1EhAIoqkkUwOxpMStQqFYGnxynKqXWn+GAMoKpvDLfXxHDVN0yybrIeyDK07y1ePaJrIhLIQ+E0G1xQpu8sUJJudfM6iZhhbY+Hq5cyM1ARkO91wRYRGF6ABBweTeh7YqITP55vkOBERU5kBWrEznv0e4n4tboNxgA8CZfW/AFWKkbCKSKajEtv5aFOsakUG5YomnkSaIJkkT8mojltL9cShRrmAKKwhOM/smVRNXMeUEk+unMXHC1CUDSUEKpp6RrxFBwgimobBBhUOqmdCXWp4IAhnCwtbs+BPZnNA4XyY7rtbONB5deYFkontGx3o5+S1ZkB8TU10iV4EBgxJsSGsMEWBBCZaSdC0hhjxFq4KptNieVyAyMlG6TwJ8xIayOxPTSu6+uA3jiStI2ZCqkcatIcgt4bBTSCWX53LE0iGHwB07lFy6tDhmgunYSIhjxZRpw64KpkO+plPagY5o8NOYomI6E5+l9LdxhWKAPa54f8XucJMw53Ni2CRSeiBO75C1X/c54QEgM/mWJk4rf0yHjd1E4XEA0A33R/IKSkO4WlaU42Fy4W576o4VQuTiWyWt0mTdilXWkTcrMxAJpCSAWzJ9jRAi58858c+RvnUM2ycRTM7m15117ldE19BNtbkxswufiWaWCAbBRPz06OzWtw4PqamrHfLwOKBMLAUiwRSJpRRTVpyTSKYS5qwmx0kmKUyuRJAQ0Ucm39xLqIeNVkXradVAG1Q4nR1MvY07u2DynfSDQtgcEUst93kiu8a2lRD6Xc+21QimnrWcG2euzqF/BhIphMsRvboa2s4MYW7c8JuIpi3gzb/drcqFzQVySW5Hsb6sGcZ+8OMqKadqlNVLAMQQOdceZOQdL4bA6xKTTJxEZSgQTWH3uNfaGGpjdQqh5PI6HLWSq09b2hqpVNx3ZM9gx8ouKBbBIU/oFZcHx9wPd6x7C2mkBt4KheJA0MP6cLYpqoXW5dG5AogrE8LfDsZ20UN4rmpZidvGQMSItCJab/pArKCHZZ8dIWWz9uhhI6VDn0zg0zu7C5GTw2pa0QF+Vb9ITcUUUbHKKrQzvaN/1M6U3rB2pYkgHRPKX0UvgkQslc+hFD4iqRamhaCMpV3KNJz7M/F+Q/0k963iRJ8bYz2jJvj+dJUyl3Yot0Aa8fSHNkmViCVrerEN+fu0HUPbWv+evyzgyTpSNdHffhh71JYUbkrtZdk/IGyXXv4cuDqLxnSDIoyjdt80MFk/d+M33Cv5WHbbwj6Xnhvox2M0HafhTtEVx51cz/FjLguxVMNFUjKpcunSY2nPnH1i6iT7wL5BLwX4NWrpUxeXOGleOfGgyCNVLylkaMjl5UNQK+W/3FN43BTwJdGjkK3hQ/hVniZAvC7xr/K9BdaGJobD1kHxEfsv1VUqfIUqV86Ygul0yHfwf7I0iYuVXaSegOmECb/75uMKJlKd8NCmNKwpbe1UvQSEkB8KkSO1FCkhuIKJKuNWn4oruRraYGOZCsyEdfsAoBv29YlaAnBknEtTn7RJiiUgD4dL91Od4nxztVYK6tOpgomHeE3z7ZLvix1Mk4qJDKtdXcPzeGuIF4azgbU+xAs2kEykZAImqG1seV8LWsLlOOEGIDNL98cbCls1w9qNcXu6frElCgU96yd+LLLwQk6ociUT4MLiSNXk0xMpa/g9aehDE25/pWi6Utt6FdOgvyLN4ZjS021ztK5N9w7tlobKcSWTG/dBfdiJfXcoZwYX0uKxNoVQKqVfmlQq5jmR3N4lPO6YnsGUXFIcCQ5pAn6ZMD0kLKAWenls13OXdlAoFIrjBjf35pjqvRSW+w4PypI5rfTZDBNJty0svZ1+m3D/JfoshceVSKeS0XfY3w/T2IFwYWFvIdyJiB6L3sBPZC1rKL8MOuRvStpfAyeYLJv0EsGUmnwHg3FKG7xcKIwoJVr8Odtu1CTY16tBiVCaLEppU4wRS60YM/ueExoHhHEB5KFyoU1zo2/yYYpCJJ0hkFfegIdP8bEyeDEBRC4O5tZJKBzvU1l4XKKqsyVWZAFIxFKJlIruB0XSLg47DFsD8QrQ2Bj6+aBkIpLJh6QB3t8qyoORTLxpSkRTpDKLtk9rV04mcq+6cI75fZm2x+m6LFSOe9q5shKCid0DOEpjvEYs11Af7+3E0j4wVwk5N49jh5JLigGHqmA6NhJCEWPp63eIzH2ZRPMP+5foS0Vx8eAmNeddC8XZwoqTl2gSXDD37q0dDYMjFVP6qzzAFUz8t/Vhog7jt/akbjGxegkAtiZ4AZHhd0owcWJBVjCFemDIP9Rxiy22AE7QDQRTH5Ffxpl5k4yEFEzDCRtXmFNgAcnqVbmCiZ2a0Jaxgqm3McHETb5pAh3q5gyk3XLt7vrSvt5TVj3Ww3Sht45Ys2y5c1I+rIb2thV/q3SSWFIs1dLE++aFnsirEtYVN8Z2TURIup+TTBIh4pQ3gZhcO+oC3j8IBrC9IxUYIUI+TBTqmJIhWwQlE2/V4M3kkCmV/PZxomcKKHy0hMkm32YbrqdFRNx1Q/tRvqRasjBOLWi7wY4+VoaB1EzDeODeTEC4N5FHE6HlGS9tzxAea4f98nFc8Rlt9+dHn1NSidpCfkaV/ZioTknduQk4z0O4Truokzhq5PMkdVGjYqm0fV+Kpdr2FMf2DKbkkiLBoRh970JKHNEIVBwRar/Nn/+4OSbJrOL4oL3r8kIKj4uXsxeOmUswJRNyF9bGFR5BnUATAaKW6C5MZBLVGahPVjksO1YKkUvzozXuOtM7s3GE8JyNT2O8gom+RjrLVgADAGuHMLhw3u5zvpLcGLhJsCPEZIKJQuWGOTX4CnKrgXqj1eTCumYUTkeEEilP+PfflBXkWJib7bI0GflU+Z5tmahJio54KXYiS4NaY6p6iZMcvEyAqUWyG2ro1xt2Lo56cqMDdtA0DeTHxvZecUMkk8VAHCWKG080UWnCDb2mrJlLKLVCMvmukZRbbGGwCuPSr/TWZwoxIppC+GG4f1H46hZwqykCgWgCKcliM33AtTFXLBIzNDZG0+ueEktpO8f9NHw2gyoxTSMpmAy4oouvvBlCjF3dZVsLdz+NiR7LFKRLYylSCdhPKFy5bvshlgjH9Aym5JJCwHmqmFSpdHiokSqKFjT7LykUCsUBwJENfTQhc9tDeJzzhcFk7yWOkoKJwrmAQN2HCSGpkNwkiYdrxf5LLEwLwX9pbPW4cYJpxUI/yAnG6aT6iI7gIXLWh+MYRjD1JihP6FwBt/IbhcXR94cU1pSCtEYUbhe8d+oEU888tHxYUFQvPklNJp6+/fmkvEW9MI1YKh1bSlMqMycwyxP6FKl6KUXqJeTyi4km7sfUWyCQVy7dKqlTFtqUhHVheG8tomsLIJBMJhBGTm1YBieWehsTILG6aH/TXYlYSkk76xWIq5j+HRRNMZFDNJ1hY5urv5w6LFJQMpUYKZ+2sAN5x/qPYQXZdoLTHyI0Y4ls8vVKSFIiqS1stC2USffMQJ5y3yoax9QvYxIuD4srkU1zMBYeS3Us72snlqagmO+5zI2PC0ouKSo4K5JpSULpmLjdY8IhEEyHfm3r6iUlmBTHjGOSZCuWgZtYuCkdh/cTGu5nllQ5w7baXU6a0HOCidLUQuTc59zgWyaYYrVRGh5XWpqeh8mlBFOPHmucAAA2ZoPODhQSkzd06LBGrELJTL6JURv+9MP5dga+Zqkyg5NMbnvexpL/EtCuYHL1o0Lia89D5dxZDpNUpmQCcoNmCRKhlL9nBJRANrWqAsZCPIk8S/sBV3lknjMJ6VM0Ps62s/MzPbbDxD7Nm5t9d2x0lMy+6bhUaUMqG5/HoJKrYZ/3+0idZEKoXFh9cZulAxCt2AiAhV9xtRMRIatIzbQFhtUPKQyxQ0rCUDsbG38GBvUh3duG0DlSHsKGMMMtbLFP1tskNHiNWOLg6iW/jcjliHQKpLw7r/LcLr3uJTVTXPdc2bQrxsjpWhuXSKUlFEtLhcPNwTE9gyn9pmjAvtRE/R7zVigOD/sKXVs2XyXAFArF8khJgehzon6SCASa4PFjw9+uuMJYyGf6Iy+RDanSSVI+ZZNhP2kOS6QD8MvMk48KXxYd4F4syLZNWVq+RCCEFbAGMtDwNqZtcjsTaMnzDkZsb2M7/0pR2p7Vc4RYKh1TUjrVjk3D7pacFKaQSCibECepQsirhzLVC/UtROk5QWFt6GO+T1q576TbxvyAloZELPWmj1SI6fY+8sEKBFXv/w1tZHrE/yws28/HqU22ubxdO1vAj11/jI1JofTYEtI0UjtLfkscY8RG+lcmacMYTscxz08eW1123Fy05LMUsXSe2Of95RCgyiVFI0okUOuA3TeJdESUrmIGDuX6jim4xr2XVMGkOEac1eRCcSggnU7QbnBwVQ0AHx4XrYDlfUhin5M4HxbiwVaS4yFyLv84RM7BGUqvwSbBngxyv6Sv7RCqZsIZxAa4ubl3CTWT7x491tZ5wTgxQ+8Nx/m5umNjBZNvl0E9ZIwroDOD2sgmZTIV0xh4eBz5L0Uhh4LJd+9XmBuUVIh9mMJkm653MPcWV5aaYfA7RbE0xxcl6qcFBVMaQiSFD9UghQqRwiN38Qoqpt6SIgzomOokNabuiTRIVEz8/KRQLv95wJgiIlXSpOFxreCrPbaCE0e18bmlFeTAwr0sEU3jaqYOHcjsm4hTIBAq/l6WqJloG3lekaqJQPuaz7eSdiyX0J8pfazW40om3sep3NRnjN5nqjqJ6PNjaHkSZ2x814jqejjd8aiWgON6BlNySbEjVHl0eXAIoXEXA0owKRSKY8KY/xIAv3rcVEihcixiTEzDJ0tb/zlMNNwKcsJKRsnkvrR6XHrutJ9C5OI84kktN/nubfAwiT2Y4E2+afLqCB3mmTMsLe+XP7csxMlM+x4xJvdfisLrYDIPJiKYSv5X/Lzc+9g0mNBq7k35+Tpz4mUisZS2S6r4iUhNxOFtpXrOMfdOwX2CAN6HAnlkh9UH09Jdet4mGLYNn4cwUH9Ogx+T2+cUav6cE28gadjyyeyYgmkK2TSnDfm4LPmlUeiqT8djA4GB2toObU/3CVrpsUegmXpPMrnyAlHX8882Lof64paF+PYYX9ighDHFEkepD6dkakowAcHIPqSL/Zjcdua3NNxjbeRpVw5DnYNWYmaur9JSxJJChpJLe4dOyPePI6JzFRcAu6uXXC7LEEy6Spxi37DQnxEuG9w1D+oKiQCSCB/6vMuvttyDKShsAskRakXlhVWhAJoouqNT/yWHrZ+utxh8p6gpmDrrFoHnlBLVsUOPDYD1MLXpMcTSGNe+G9t7g+EVYoLJtYGJCCbXVtPu/7GPE7z/UiCeIBJMXUQ0yN9wuadLTjSV65WH3Un7asRS7fuU77OF/hqrmcK5SBNlUi/FJFU7acJVTWRInRJMtOoZnW2oj0u39ttiggmAJy2J6OAEidufkG0FI+payNYU8sOX00Dk+fwNKY/k0NQsfbKfetDW9J78dT5NRPHmaqbe+zK5+4ll/YG3X6oco21AsirfcA2A+TPBNOSxFdx7jdeH93eXLpDqXK3nyotJJr6NEzupkm+fYV9tIbXz1ExTcVbhbcf2DKbkkuLIoRPrs4WSpW1oJ5iAtvCG2vHLI9UNKBSKy4ZYQRHUExSO5raG+5czGo7D4wwGkqLh1/toss9C5GhfSnLQZC484K98TTd2U1xBrmPmsynBVAuPq5l8U1tsTQ/Y9ZDziV/Ja2M3kEy+h4xhYbAynV9eHjbchUkd1g2URFjvKiGKGhGFxzGCyYceJgqmFQy2XgFDudDUVfqe4P1j2pSoRCqln2OF07TvT0rPSaZ0wp2WWwuPayVMZCUdXdVwLSkYlVY946FypL9xoYqhfrVQOX8OtPLZ0L94G6ZkE4ekYPJ+YaNnPY1QysoW2qyVwIuJETdeKXzOk4c2J5o8mZUQTaSQ5GGa1O7ueEOVjkgoIF9Rcw4pkbZhauZdg6TU4/dbScVER4by24imFC0hpCVMUSaNezXVCKcaMa2qpalQcklxxNDJ7+WAXmeF4rxxTCuVKJZHj0DKpMqkNDyOI/05okXVVJ3kDwRTPyg/+cpI/NgOXbaCHAblQm/iSau0glzN38WClBBSiNzKEViJgmk1pAnURCdM8KwnATryzzGh3WCNJ5HSny+Ckimua23cSqtNlVAKI6OpdomcKa3Gl9VldGLYTizV+lccehmUHSnBJHnTpCFDU1BbSa7zbRRC5lIlE88jbO/BQ7fcvjrZCzDFEQvnOnQ/l5JqqdavQtukqppVGMOmj8LmQqBrCJlDcrQUohiOGlZ0TO9LLB+6HnnO7aFl6bhtIe92Ifnc8Xl7ih5rCVKCaIxsmhPqdmiG3WOYo+49pmcwJZcUR4ojGmUXDmepXjrU69zSBm3qJZdb/MA7Jb1CoVAsD1I59MMy5l2kRkknVithIkWhOUCsXppCMI0rmFzQj1NycApsqAMjmIATN4G3VDeWDu0KJmqdQDCFPICgYOrRRSbfXMHUIZwPyzSoTWwa/IdBSeTOncy+nUoiPo85IM8lAN7zidRLQBwi59LEZa6Qh+BwpP2lVo/S511IJSkNEZQAIpJyjGBy+cjqpTnkU05+0Ha2paJisgPFlxp+uzxMFLbFlUw8ZA5Ak7qQh8LRu10IC2MHb7LGPMJqcH2yXSKf3Da6I2wRwuPcdvIOIoK4A7BBN7TvFoAxq2G0BjUTHcvVTEBuBM739bwfW7lPTzH+Duc9r+1Tspjy4iRvqmKSTLslNVO6L8VcnySOVjJpl5XngDrpfVYhcccIJZcURwidWJ8/NDxuXxgLlVNiSXHmsMe1UoliecghEWFyUvKQmxMeR6j90m6YQzVXMPEyaZq+9cQAGSkHBdPUFeM4xhRM9DkQDm4iTaunkUl6SmhYa2GN8RN/MmO2NhgvO8LPDiqIQEjwNK3ojPyrOPkvBZVSuCZm8H9Kr09JfcGvjViHmWTRWLpaH0oVWK0EU6BXp60eNxV2MJ+W/Jgkw+9cxeTOSTLd93kNOdD4BMokk0QsZWlgxfbeVTXj8i6pv9q8mLjht4muIe0f0jNXAEnNBKTjJfbDktBKALf2+V3bkspKPfRiZV98P5TGcE25lBI7uxjhS/ktnT7FQYXDHdkzmJJLiiPDEY2uC4/LTjAtq17Kcz/vvs6esBQKxaWC8/phhAgAWEaSiJPZeOJEITmU39jdkua0/CFaUjClfiaAECaGsJg77NpN+7xxb+dPcmt4uF8/qA/chLQ1pAtD+pLJd48ea8smqWaD3nZYY42grghmwVQ3WlqeEwF0VzaDVxIG36SeEQLdyG27dDal0LcOwX/JSPuSfFOSJuxvCwWpqZdSArOFlJLSyKqNNoLJHZcrlFL1ksEKtkB89AUyqrNxvqKKCXnIluvpRPGmq5w5VQz3Y3LKGhspmQh8tbMUadeidpzi/+PKa1N4jbV5SizVxmq8Z/BgYmRTqFtqAh77MgHIvJmofqRI5Ebgbh9v59D3SK3EQxlDPdqfr5dQMEmfpXtgjWQK9Rknm/aBdkXT+c9d5oTGHQuUXDoTXPZJ+FLQie7lwkW53vMJJoXiEOCIBsVlRZhgR9RR9Et9mFjTHS8oJaTwuNqDdUoy5RMeIlhoskz1rBBM4KtOkfE3n/zRMcw7qWEFOcnkO86H5zuYfA+EXQiRM0zxwMKv2EpytKw8D1lz5ACiFeWAmGjidaA2GgOppChUzl+HYRU/l2ccIheTMLmSjI5JUesH6fYxYmnKRE0ivXiYXNxmMcFEK8hFKj4L0dybCKZWMoWTTpxokkimsoomhMrx+vM8/DYWwsrbZuzpi58jEUtTCY60TcIKjgPhajuRhJMIJNn4O4xfrloiUJic2w9PNHGVJpmAcwNwFzK3jYgmHrIYjg3m686IP/dZC/0wHwe7fudKP1C2KMikNJKqUwqZC/uWVS3VMF3RNH6fmOIBtwtaCaZjewZTcklxJLgoRMNFw76IU73eCoVCcX6gCSMLyRmWRydwU2FJpQIgm0jx8LixB2sW+RbIq4HgKClotonihKaXzuCbVB9hjTc+gQ3E0DT/JQ5SMMXeLrLJN6lPuMm3P3c6L0bOZQQTJ28GH5fOhMk+kW+7Tkqk8Lj0GzpX+ZC6LCeZ0uPmoJVYSlfpqilsShNvabs4AWfhcXONvzmozwBhHPJQOa5iMjYtL+9TYU8wnfbbuApKaMolwtpqeY3lz8nesfEokcLpNhrrPLSVtodtgoIsCZlzeYdPnPALZu0hbM6ll65JriAqqdd3sUzYqX+jrOQcv37LkU1zFVCt95qlwuEusjJpDEouKQ4cSjIcPpYmmI7pmreeu6qXFMeNY4r3VyyD1PMFQNHvhU+YOEXiPIPiFav4HbOFYAKCkmbI1h0rmkw7omsNMiAnq2m+KpcjjjZDXTvbYWM2Ud0lgomOldsqVTCFfChfUkCEMJsTwGwHU25HHdhIxUTnFZaVl8LkXPmurXrWTt3C36VSeBzgJtzWxqRe6mUExJO7Kd5LNcWSmL5iOiWRTbKiivLPEdRu8fd6IBNLJFWdcEr7ll/NLCRgNegQUR+D4bcUKkckqzsqVsqQxikah0KbpITT/NXKUh+fzqu+wnmv4FSFcmhVrQ0lYklWNXEEYimombbDsakSsUsMwJ2aaevrFtRMVDZXM7m/TPXliVd+/8yJpvSMppIWc4jBUj8u3Qtz5VU72bQvTG2n8/BZqik7OY7pGUzJJYVCsQA09HMcSjApjhfHJMlWLIdUKRFUKH02QZB8anh4HPdfmmruXUKqYMLwmSuYwvZ0ha8QhpOG4IR9gWCagprJd0gzqFEYYUfKCTfFDYbMQFiRb5WomDgBZwy7Dj6cbaSuC0xaHPE1TjARllIsSfWYAqp3a9ljE2YeHgfqbxXvpRpIQUPIlUzDdip7UBcCRDLGYXH0Pj0ncmoqh2xN91RaElON9jlayGACjVkp1HVMzUQhjGPXhCMyaY/KzFWf/DPfFufXTu60otbnx65LTbF4FrhoqqFjegZTcunMoJPvaTgiilYxYIk+ftGv+3kSTMf01aRQKM4bpVCcfLIUdBTRktvgChAz6r9E81eJH2hVMAX/JbeTFEzus5soboa6u/Ng+hMLv4JcaIPpCqbgdTNu8r3FFlzBtAGRAluvNHGTTxO+Hk3n2wJDmI7fhUCu+Xa0bd/LrZNAHprIjxgjmFz7tH/Hl8J/fD2S/RKxVJtg+roR6Skpdnw+OeES64cC8SCFx6XeSyU/oRS8n3ElU+rHtB3GKA/PIg+g4DwWVEypH1OqZIr3tSHyYRq5zpx8A1ybhfEY2s6Nydhon9pCDs8KRHALIVXzYeKm36Rm4p8Dwb4V1UySCTgvM1c0BY8mVzr8ubp89hNmNceDicDJuVJ7j9V5V/JpiTbZl2JpyjU7LxJuH1By6UyhBFMbLs4Au3zYpY8f63XXca242LCw5/rLteL8UCSYokl22JYpHob7o6SKmHPX5D5M0XbAE0ycJKDVmCgkx70f/KQqBFO8QtU0BVOqOCFwMoCrIAxyBZMUbsh9mABXT8NYJSLoyI+J2qk3ocFKE53YoHn0FCPUJp/pPknFNKWcJdOnygquYpI8pFKTbyBfzczt6z1ZUlU6NRJMhEjdUvBjirV3phDGagZ1XB6Kxb1+uC/TvlQg0lL2qbF3/fh2VaG19bY2RNpGKiIKmcNQT4ifkW4fCOTOdkLa3J9JzgX+WoX6lBWAUzzNppuvj3tuTVldM837vHAWYXBLkILH9gym5JLiwHA8g0dRAv8NdUr6Y8YUgumYwuPS36YVCsVlgEUIwymGwEXhXBTiIU9a/WcLMTxuygM4X83MbYh9gEjBlJICPkRvSAm0KZgoSG2KyXduFJyafIN5RW29gokUJ7Br36rpSnKb4W9nge1AKvXWggzPo5Xk4ELnqN2W/nW89A3Br/scgmlX1dKUyRwnmVIVU6rAEo/x1ymsIMf9l3xfAzBl5bgSfN9KVExEMFFZnMSIDb/HDaZDqtz8e7x+4ySENHZSQo68l0i95OoUQk3jMTmd1MjqPZBPU0gmUjPtQjKRX9YW4Tp1rM90yfUiSGSTS1cnnPaNuSTTWWMusXTRwu32ASWXFAcCncBePESC+cq+y4izJpgO+0tecfhYwpdFcbxI/UQcOnHiKhl8c08XHh4nEUzkHVRDqmDKVpEzzqMIltcsmOdy96MawURnROc9N0SOf06Xl9+YzaBCOUWPlSvPbHxIExl9AyuQWfl2yG1tu4FIMiLJBDDlkp02MZoyMfUKH0H9k74HymFyJVJpDlmUYuwpJArjGzogkZRuH6XLEVb8YwQTEa8JYTIlPK62yplP48MfebqExGAERhwq13nqRFr1UTrfeZpDykvuE5xwS0PmQnhcXJ+UoJtKAJeQKZzY6aakUthWDpnrsPJm/oALmQMoEJHuRDLRxMGJplCHhGQtEE6uhN1IkRb1UlqXFOdJOC2hUprbhkuol47pGexYfj6/QDii3nFm0Da5+LDJS6FQKBSHjiZfGNMXlRg0GSESgU9Oovc23t8SAeCVOcNDOxmE80d48iyK0rG/RN/wz+49J8cCFTV3gpL6wLgWk8N5qC1t0vZ9oQ35dtpDJFMPC2tDe/L05brGafYZjWGGfzvl0WDiLaUwwnbeX/g2/rdcRldNQ33KYCXub+lbtRCwdKwGFVM+Nvm2MEb76DP/m/op0b+4vHxbCSYaXyXlVFdsq7Cfxusq2bfKyiFFUgqnFQyvFJxsiki9bEznY1zcbsJ+iy1cOGPP0g/Xw/T+3tqD3zfya8frVyJwetjoNRVLqKAMu2ZnhfMoU8JF8lQagyqXzgXq0eJweQaa4jJg6riu/Q56SNDQOIX2gMsMP2n1IXDDdvapS/yCnB2tm+D5MC6wu573A3KTdunOOUXBlJp8w1JonyuLwslWMAjhZUyrZNdObWB6ACcgw+0evQ+RI0UE152OKZhaVp7qAK9s6KxTPHhjb0HBlBp9m0Gh5cozkYopbRPuRTXWtpxUkojAIctFMEYw1X755ysRziub5TX85UosYLqCie8Nyjh3FFfkkHoJgDeuHlN3cAKEr27m8ohPhI9Vr1RiXj9BYSOHypXaPYSYlntAuoJjKYSrRe1FakI6RzL3zj3R6PRjI/QpihlJLRapmVhzlMy+W5RMJrr+bj8Zs0cqJUHNVAqdC3WWzzdeHe/8vtUPgeyZiiXC4XZRMB3TM9jxXV3FBcExDROFYp/QkDWFQnFosJNDGCz7Rd7lUFczxaXl6qVWlHgFCpHzBIGgXOJqkw6dn7xxBVNn41++a4qJMbQomGKVgo2UYf1wXbgCwWZKI9oe2lVqW1I0cWVT+rn9vA73mW7KVC5VvUH4TH+NoHLiafmEn4c4cUVOSbXTiqL6LRuLQcXk+43h/az3+1x6Se0kK+b2hbQNOdye0IYSWSGNzZJ6qYa0ja3tRXPwmpLJRm3sFFKSksmlH1cz8fTpe0ov32f1efO8ccj3yqWgyqVzw2VVL138QaW4zJg7rvfpwaQPE4rd4Cao510LxXmA+wZJCqbIfwkmmeTI/ktAeMDubFAvAW3+S5IKomTy7dMbppZCfLft0WHN6gRLRNlJqL2vJz8uKCboM7VZiqgdEwVT2MaVJ6delYFBbbKxG68y4e2a+jB1cI3BVUwAsB08qciTKQV5NIXzywe9pFpKia3a8Xm75GlawuSW8DApgWt1Uy+psVXkXN24CihXMJFSJzX4Jv+leAU66luVcDhvNh1UTNzwW1IxeQN+ccWyccPvdKW9KQhtF8rh6iWqjzU9gv8Sa0kbVF6kYKJz5udY8kczpovIoZYV53gb+2pQHoInE9UjKJlSxSd8ClnJlKePzL0NOT3l3kzhvOTV5UQzddWaFLGP+8zUVRiP7RlMyaVzxWUimI5oVCgU54KzNvlWKBSKcaTG1PG+rVdh0GSVr3g0toJcavANtBNMhGDCLJt8WypzhGDiU9iayTdfep4msRylMLkSwRTTcUN9BoYjEHhdtJKcq5P19IYUegi48yXDb95unCQioqlGFPSJlGmfT3R0VlkdEkKJf54TGpcSbPwceXSZbzPy+ErCBWWCiU8eQygcXxGtlWBqBfUpV++YZEpXlOPUimuLcZKpZXWyGmoG7zw8jrcVqXQC0crHYiCYQhvkIXJpCCsRTEAgiFoIJsoj1HkV5WFMuGY9S5NvQ/QZ6fZCaGN8TPCJs8K1S1ckDCF0cZsTSvewy4yzWBVuKsl0LFBy6dxxGQgmJZYUijYsTTCpakmxAOxx/WqmWB6pgkmarHI1BF9BLpAopG6y6JCvIMcZJCKYJNQeyLmCiRQ6RDC5/aaZYNoOhE2PdFn03PMFiCexwHSvFzrWq1VMnxNMgzosaJdC2xLSySu1rzEmazuDnDiqIU3ZqlqSQ3TK5ZYIphakJFTrUzb1FY4xx8G6lxBXIAWvHE4wuTLcCnIp5vYfV14cEiaNWeftE7x7Qh68f4UV5Eok81IT5Mx/KWmreEW5TlQw5R5MgVCSVpHjKqYWlVgN1vZZ2B0fz+k27r1Ga/ZFZFRGMsXXjbZS2xHJFN97Q1vyz25b+bpxcvKy4TyIntExdGTPYEouHQQuIsF0RKNAoVgUu47ndKqyaz4KhUKxO0pqCCAQIJxg6j2JExQQzqjaRMcAuarBkx5eLTKQIcKtNQ3RKRFMXIHSRDANJt9rQx4msYJpBa5U6LNJLLVV2n6hLCICQl3COcHXlRNMPYDOOJclY53xN+Ae5re+/mF9JAqVozZMVTi8/aYgW6VqArHUuqIYpeMkUzoJK6mX5obNeRWXoGKqK5goTYzQn+K9XBlHx/OwL1dO3KdcujbiIyUqSmFygaioKZhC3aVQuXT8TVUycaVfSjBRXWJDdFYj31bxeCS1WE60xp9LKiaXZj+hcrX6cLKvpGQCS1MLmQPqhMSYmskVeXEVTYeoFroofkwXp5ccPS5Gh3K4SOeiUJwXlBxSHA7sHv8pjhPS0udjy57H22NCwgp+PnNBJJQnskysg+FeRLSHSJnU5Dvsi02+OcIy82Wj7ykTM8nkm6tbJKPvOH1s+J1ts6G9p5gzS2mnKpam4jzuESXVHAcPNeQT1fR97bq3THDnTuh5HyopoLh5tDvGtXVqGp2O4WiFukLfa0FtJTrJEJ2PQ6cmrLfNmPF+/dq0mfWPkVDc4HvM9Lt6vMn3S4q3SE0oHBPS9dl1Hbt2x2wIHkj3shH/IeOYnsFUuXRQ8MLtc63FPOgEQaEIWEqNKP2WPeUYhUKhWBYtIXJAJ6ggKPgDgF/pyU1vPcHjw84MnIlp2X8pVUrMUTCtLfnIdNFDdmTyPSiYugaTb3dsHJYzhnqYDLzZr6ueq4Nvz4oPU3rVKMQv3hzaY+vbbfy7y9o6idSqVqpNZOPQtljFJHn38PA/SuNVTUM+U76VUxVTpmBCMPoOdaE0MdKQS1epjvUrQd9kA6Gwq4LJZVcPt6r5MIWQNBaGhdyLSfJCS7en4AqmEEYoK5hCvYJyZ4UVOjusrpYpmGKVUE1FxKuYqphC2rZ25z5MQN3QPzVkl57gyiomWfnIz7CkZEpD5uJtbWqmfSuZjpEEUii5dKA4pjA5JZUUChlLj+OxcDkllRT7gZvkn3ctFIeEGsEEwE9Ew0Q83L/SFbcyk2ZGMAE5wTQGTjiMeTBReld2JUQOwxgw23jrUFcpfGQKGdDiw+LC+TqEZeV5e8Y/RJRM1CU/ppQYSImjMcwhllqULRJh0eLF1BoeV/P14pC8mKheRDCVTL5jEiyEyKXf1mT8TfvI5JuaSVpFbg7BFG3f0YeJ6h0TJ3J7j13vsRA5Xj5PP+bDxOufriYXypFXlANYmJuvp9zupTbmKBFMABF0ieeSL7Psx5ReP5dXfA0jktWE1eVkHybp2pfH0D68mZRQynFsz2BKLh0sDl3FdES9XKG4UFASSXH2mDjfVFwCSAa/RGlMX0EuJjz4CnLpUxD1Ra5gqk1IUoIJwDCVN0wJEJQ9NYIp9nSJCaaSgsmlbicDSgQTAGby3aYSo3NI20hWO+SYQhS0mHbPCZPLyC+mYpqjYOJnNIdg4ibfkqG3RNgFMpVIR1mRM8Xkey7BVB63qWF0UDDF4zcnIFoIpjHE45PaSSCYkvaSVpIDGAETnWe8Lf88TjK1hsvRcdzkWyKY+HZ5W34f8Psy77vc9DsjA5nxt6tHTDLVzL8pj+w8FyKZlFgq45iewZRcOngcAsl0RD1aoVDsAfxxWqFQXHyYaCJbQvmXdE5cdNkKcrK6xsFPhJiCyStHTJnwkHxvJAUTJeMhcjAd8yCqEExRiFwgmDrbYWM2/jzSleRaVEzjE0uEtvYhTUHBBMAbqdNxXUIy5WBhgmKtyigRRa2E0lRfnnSCy1VMfXQeYQXCpQkmSs+jkzhJeZYm3+7o3QgmCrurKZiIIKY6Jq0y/J+HyZWIglLoHN/HVUxSW1FdViBfoThMzmJbMfseJ5n4tuGkIqSKpilICSZXbjlMju4DHDUVEz+PpUkmtz1XFPJzc+VOJ5mUWLo4UEPvo4HF2U/uzqNMheIiQceP4mKAmwEv/VJcTNQMqGnb2Ht/bPIZmP9LLp/EpCbfYXvs41Qz+SaVVmeD0TdN4lOjb9o3Rf0gmqQzH5XUSJ2b+LoWH9preJ+OvbA/N3edMm5Lx+fnM23c1w2G632oZDZ+FnedVpPv1Lg67p9xP6H+lfanVrSYfLt9FHpJxGS9xUrXeQxTDM3z8Te0heUrJMZm39x83+1dDS/ZgL/UrilZYkwXKZKKdW9IwyFdE2mbGJqXjHt37Dbb5t6zsZCYfucm33I/qY/L6eSbPgvUcUzPYKpcOjpInWAXtlcHs0KxXxyTh5pCoVAEtKiXANksWDIKJmVNfKybbG/QDxNEpiTw4u02g+90shqbLw/ljSiYOksP3M4eez384l82+U6smu3ahauwepDnC2+raR4tqd2yrGAip6u0nf12TxbUfFXmhTVRPktsJ0iqpTyNgxQmRwomwJGHJQUTKePmhMhF9WQKphAKF9eTMEfB1GMIgzJxf5pq9E1IFUyhP7UrmHYNkUv3p8dIKian2GLEIQuVo328ZYOqp/NjM6i+3L6gbgpqsPjMYpUYD5tbEiUFE8AVVl1Wx5oSze3fXcXEt7nty6qY5oZUKg4Lqly6ELDCqyWNEksKhUKhGIe1+3spDhtzQhx6plJKvWNSBVN0HFPRyOoaZObK/GOJhJAmLF4JIRAKQbEUFEzpqnQdOqaaCAomwE3uuCqCVBQuz+UevVMFk98OpxTjbU0qpp61bk09NlVdNEWl1Jp/SzpJeZX2GwAs7HF3BdMYCWWMvOx5ScGU9k+uYIrUcZTeyn1oioqJ0KJgqkFSN8UhaONqNo4SQQykyiLjxxX9M7bL9hmsvJIJCGOTlEwufa5k6rDy6UKZsZpp36ullSDdP6M2N32WrlXFlCofFYeBY3oGU+XShYU+sSsUhwNVLykUiuOBAbxCwn1uVzDxCRf/9VzyBsKwjfsvhV/DYwUT+S95gskb9o4rmKJzSxRMThkR8grqk7A1hF85VYRXMCFVmnQATqkxIlPh4MOUq5hKSNVL6cpRXq2QKJjCp7Stk32D/mFXM2bCXIWS1A5xP6opl1JFkvUqpmzf4MO0dwVTUl9SMFmhfSWTb1cXICwjL2ichiKoj6WKuKkqJpdXvvKjyytZJa5g8h23a24c3opUuRR/5mSPoAujepl435gfU6pk4rny3pkr0PaLkhk7vx+4eq3i/cK1JDUaHe+Oi1VMAKqrytUMv5dQMKl66fih5JJCoVCcCZRgUhwnLPb/AK04THCCSYK0BLcUasMJJj/REQgml6fxpMCKhzoJBNPcEDmgbvKdT2jjSWW6ihwnAnqvhkA0ic0npe0kEz+mRDBxM/VQ53o4k287NgFMQ8vmonRs67nWCKdaHcns26VDvo8RTCE95T/UvZFk4gRTWs6YyTfvY2mIHF8ZjZQkgZiMV5LjYXK8zUokU23MAjkpkYbH+WMaCKZQ5nzCIB23zabflsLdXF15uByRTGm4XEo0Ua7cEDzvUzHmkHopasTcGGlXupaurnGYnKtvuK4ROcgIpjSd9JmOd+XIJJMSTPNwbM9gGhanUCgUCoVCoYiQThymqBBSYiAOw0jDsfpoGw+FSg2brbXxsUKoE08/BwZDyBIjFlwIUxwiR8FweUhObCoc8pXNvmnfVJUHTWKD35Vk/Fs2ZOb7QnvH4TJzw+OkY2hPy7E1YqoUciWFwpX2lYy+s+MmxoyMTYd3MfkuGVYDiEyr034UTKzDqxVpaGsaJmWT8Ku0v41dqymohRi2mH6HPPJwOTL+Hgtn5abgvGzJsL/U5i3Xo52E4e0rm7XXfhyQ84nD5Erp6LO44EDj+K3XSSNwjhWqXFIoFIozg6qXFMcJu4/AfMXBo0PH1DeyOoJPavhESTb5HvKi3DNFTRwi5w/kkzemYHLHMgXTEMo2pmDi6iWXJxl6wy817xRNBoiWHechckFx0mGFDQDYDjCbSCWRKpiAOEzO5TPd/JajFCLn8g51T9s7Vh/Q323WZqkBeEt9SmidNNZD4fhkuFw3yezb7xs+pioml57VY0TFlKqXyGd9jsk3sBp0V7FWjhtW8zAvyoMbfbs6TFPEUdpU8RLvDwqmEFZpMoWLrzNTxbX06zlKlVi55sbcajiXoNwidaEjQlIlEynF4pC5gVAysTIqNQAHeBvH90IOXp8advVwKoXQhf3zFExA2ew7PTZsK6uPdgmZvKw4pmcwvbIKhUKhUCgUCgaDdBn0EvikaSwkpKZg4vvJbFpSMAH5g3ZNYSKRFLWJbEoimPSzoGByn2OVREgfmwm7bbECIp2Y1VBSK7QdO7RnReXE0xFaFQe1dG3m3Pm/ljLTemdKJdisD/njhb6z6zSu1LtSU/j0fZq2tV/w/sVJoSUm8K2mzql6aV+oGX4HcjA/79T4OzVNd8eVFWEuXV11WFMi8dfY9rje003aU7Sol7JjJo6CKQomoI34VPXScUKVSwqFQnGmUPWS4shgIRgCKy4LvJao4O2SIvV0GfMFIkUN9bENaCIYK5his2oAtvercgGITb4FBZPLQ773cv8l51EU1Cjkn9NFY2BcwWTQe0VVyUyYzitvw/bJoGjwDYgKptSUGWCqGHRJuWl4lWmaELqyamTftImunD6tW1nJxBUUWR9C8GEC+DUp+zABOQFZ8l6ivChvm3h6lRRMdA7c18vVAV55IymY3OegOqLxCkxTMaUo+S95dVLBf4ng+2ZFzVKCYentyDimfa7/rYbjQ4heUCtRhuEq0DXtESuZJF8mVw5XM9EWty1XNcUYuxI1QmkuYcjVaC0m3+5zXcGUq5WWVzCp/xKO7hlsJ0rbGPOdxpg/MMb0xpjnV9L9ZWPM240xf2yMefEuZSoUCsXx44i+JRQKxaWDCwvrUFoCfXxCECtqUl8gScGULoGdejD1g/ok8gSxdTVMOt/nadMJizHx9i71XGLLywMYNEvhlSqYwt9YgVJSo8S+LF0lXd3Mt7xvG6mBUhVTqhTK/VVs80tCTYkkKZZqCqa8rqxPJOeXt0PoR2mdreDhJeXSW5uRSZniDfnPSMaYiBBN+5LPK3nPVTcAiqob/hlApmKaQkyU1C4l/yUxjyrJWH8OMgg+Z+m2dB8fh/SZ73PH5r5L7nOuZhrzZSJvJq5A5B5NqU9Tiw9WiyfWvkLJ7EwTclmtNE3B1FaOPjMfE3ZVLv0+gG8H8GOlBMaYFYAfAfANAN4P4HXGmFdYa/9wx7IVCoVCoVDsGW6lEn24u6xIV6cK24OCKfVeAtoVTNzHhRRM4Vd17mdCqoX4l39aUa4DU49wBYoNxJGrV7kvlxRM5KHD1ScAqYF43rTqF/m8DBPYQWkSqUwSBVPsE0PLiy8T1lTKJ1WeUHoqm08U59SlRkDsqmAqKa24wqrkx0Qryhned6gtGlaT83Wa4IMS+wMhKrOkrOMKJpc2vUbGb+8RVpLj6dIVHzlBsYT3zZh6KfVealGipKRSazo7kje1J/dlykJzmTqs6MvkCnPpWXG1lhzr7Skx3OZTtX93m/R6ja0iV94mXxu+UuWUelwmHNsz2E7kkrX2rUAej57gywH8sbX2T4a0Pw3gAQBKLikUiksMDY9TKBSHClIBhEmrf/S3sqphF4LJpXW58BC5MF3bRpMPTjB1LKRJNPkWCKbqmU8MkeMEUweDDcLkdY2109gME1YeJsfbk+pPbVRaRr4FaXhcuqw81dnVNw+TS0mmkG43L53a8ZIHVA3G1urD+8kYyUR1S7YXzL5LJFO1rgjqJ+pTNG9qM/nmpGVIEZt8s+3DJyKZeJgcgCLRJKEUShXqVQ+PK+abEHotqJNGg0F/pFiKj+VlUdhcagDOiTpYIpRyosmVReOLK7lCOOIK9cUP4vq3mp6X00z1ZspDF+PwuNiwezrBJJe5G0F0lgRT3FcUU3AWht6fBuB97PP7h20KhUJxyaFfWorjgLX7eykOFyVT4VJ4nDTBGQuRi9MOht6mbujcsqx5qiqZ09dqIXIcPKwpNxzOQ9xaQw6XMPMltIawTCV6WsotXUdr+lnl1Y4TQ/+Sz5Lht1hOodNM7Uq8R5QMqcfVPHFoJQ/nivMph8mdNUrXYWmkYXFAHlYnhcpJIXPub5e1cQiZawtH5KFzqeF3Oq7T8kr/yue/3H2CsKuysOXezbGvvjEVaT86FLXUMT2DjSqXjDG/DOAZwq5/aK39uYYypKtSPBVjzPcB+L6GfBUKhUJxJlAG4DIj9blRXEzw568r5l4Y2w2/2JOCycGphtoNvgEe5hUvk92bPjKeNjz8bVAw9YMCCNjCwgy/kRs4PUdQfDh5UjxJjEy+JyiYSL1Ex9UUTLQ/VTD1MEiXlc8NmRPb8omhNnMhqRQihU5FxRTqldesaXW3Iik0/R7Tsby26LOV+oZUw//jKqbtECoXbU+uiTc4HvbPmXpyBVOryTfVPVUwAeMqpigvrrobIfY6sT2DR88Uc+8x1Ultf+t2OY+gPlv5a5crp3pPNAUiLCgIafz2mZqJ72d3I8Rm4K62QGjzMdPvuSiuOpdcy11Jx1S9JKFV0eTzbFBwnUd4HC/vPJ6Fju0ZbJRcstZ+/Y5lvB/Ap7PPzwLwYKW8lwB4CQAYY46nJRUKhWIWNDxOoVCcP/jz173rp9sOHXorkwG1MKla+EdUnjCRcKbT+cSnNElxYS2xXw6AiEGiELlwntMJJgncg8kfM5wRnwiYgbbgPjjGDuF/PpwneOWkPjkt5F0NratEhfqVV4iK8p1Yp5pCae7EqRau0+r9k3kusdaO8mZeTNF2tH2D8/A4yrtMMNmoL3FfJqk/jIUtlnzT+KpypX1LIx33Y2SBtK+FbJLM+3n4HPdnkurQI5A/3NvK7x+yDwS8K8kd2zNFE/w2IG/z1ANrF7QSS3OwJKlzTOFxKVLvNEWOXQ29W/A6AH/aGPNZAD4A4LsA/PUzKFehUCiOBEowKQ4bGr522RDC4XoLb0gNODWENw0W/IKAMsGUKpjcsT0dPOyL/ZeoDrS387lQHomCCUF90A06FEnBBIyTTJL/Eob8LGIFUzhHSXWySrRNcruCp/Bt20+agC6xopRE2gAyyTSGqUqlKaQVV1z5bXzVwayIdhWT28+3BfKypGIC5n2TtxJMhOkKppzsoO3A7uRDq/cSJ/iCWblk8pwryAhLeDQ5xIqmNDQykAi5N5M7l6Bmcp8lRZO7S5AZuDu34R4oqgLLZN8clK6rRNSbBULrWs293fbdDL73hUM1Dj+mZ7CdyCVjzLcB+D8APA3Azxtj3mit/UZjzDMB/J/W2m+y1m6MMf9vAP8d7kng/7LW/sHONVcoFIoLBSWYFArF4YEUTJLSJsVUlU1pIkEKJk8GJCbf6QpbbkJAxE5MApRMvoF2FRMvJ5wrJhFM6Upyrk4xESCt+MVJJqmtpqKmXnK1yBVMBE4U1YimOSqlOYbh0mp2UnjfHJIpVTFF24UV5Qi1cLmSegkYJ5jCOdO+cA4lVQ2NWa5s4mM3XX1uDFPDnHjecw2+xyb7I4tKefBVHuU6OEhEUwBftTIm8FIjcCCM7XhVunQVRqmy4+czB6VrIBFLS3p1zek343nmY2/JvA+RYDoW7Lpa3MsAvEzY/iCAb2KfXwnglbuUpVAoFAqF4nygMvDLh+C11IvbxlaQq614lq4iB8QKJlrZjIfI2YxgysObVsgn/JGvyo4Eky998F9KyYJQO+NppJgEoykobQuhh9S2rs7UFPmKX1NVDbuoUmqTrFTNtIsReHUluUqIJZ8U18ixMR8gKUSTh8kZKXzOhlXfWkmmcl+pE0xSeplgzcPj0pAuTmCGNG2rAU7yz9lxRbGaeonQSiylaa2t3CNYubXacnIv5JH0IXbpvAozJQKTfCNi2afZTclUa/dWYumsSZwW/6V9okRendez0DE9g51FWJxCoVAomrCLRahCoVAsAwMKjIvNqAE5RA5AZPANjIdvcYIp92HpI4KppGACtiA1gWTyzc2YI5NvOkmMh8nRNgqPc/WzEcFE6iVeJrXPaqhX2ObOOiIOiPiYaMjs89yjZ87Yr/itpJI0ORJXq2vw66qlTakV/65BxbSFrAyTwuSAcK1bSKYaxgmm9GxkBVOaKg+TC/v5lhZCQyIcSsbwY8bdVF/J+2pXtOTRJ0lWTO0Y+zOlJt/jRuBxHkwZ5leDZKbfWQidO9of4+sXh9TtiloI3HmuLjgH+1YZHROpcyhQckmhUCgUCkURFmxCrriUSMNnYoPh1aDQiY2ow7Flg2+JYCID6pRgin/t56FduUFwqmCy1kYEU1yH3VRMrg3ysDkOSWVC77k6jFboC8fFoXJ8W5T/BCLp2CaPU1EK9ZP8gAipiomHyaVm32MqJlfufia8JSNqp7ZxIam8T/n+k/SrFuzST0reS6l6qVWd0tqeU/2YojBXQ/eAfJz6NKz9c9VYbrouKcpSY38gNgXnqkZKF8rPSaFWwqnFU+lY7w0XPYzt2J7BlFxSKBSKg8Mh+S8dzxeaQqFYCsarIlJFRKpgiifwfaRgGjP4BtoIJpduoJiGSfLGboZ9YdrKc01NvjsrK5ikMDnfCky1xMENvvlDf03B1CGesMaKk86fRW/hjYEpV8rDtdH8sJm5k8clVnfKt7WplqaGBBEhGecR9gIAzJb1A05WtngxpXkO2xtUTK3g6qX4PGxGMMX7Y4Ip2lcw+07PZRd1jBT6NkYwuePKK/eNhcaNoXa02IZsEymaWtRMYT/9XUXpeFlZCCMz9yYKiMZ/rmzKz4KOnYKWe0HV6+oMlJFTzL0vOsF0TFBySaFQKA4Sh0QwKS47yganiosKHtoRSKJ8IkP0U+oPtCzBROmoRKpbmCjzlJLJN4BIwUR3WMmHiVD7sTglmEyy3RjjCC2vZghGwfFEU/BhYmqTVP1ghBCZVNWV1/X8vUvmHTvf5DtWyDg1U0xWlpVM1MdSFVPYW1cxATHJNEV1k4bHpWlSgmmKagZA1q9SSP1rDlrC47jfVYlgas033dby9CT5YaUkEFekdUJXzgMO5bpSPwrkX3xEtrIeK4srm9L8Q9nLjvGzIJYU7TimZzAllxQKheJgcd4E0/F8mSkUiv2AK5hSI+pgUhtWocoms4sRTLKCKazOFJt8h/onE0CmYJIIJjrnSW0kKZhEIin3zQFyfyu/n5l9S6bMhBLRNIbW5cd3UQTUwgVrqBFLJVPzzsokG1czxXRkOXyLq5hS8iPkiyjPsD0mmXZRMfHj4jC4nGAK554TTLxdOMHEz0QKwWo1VG/BFEN1QkrilfPeTbmSHmlRJppKK8+lmjC574eV41YI6px4Rbm0MnkobIlwiuszPu6mtlmNWDrWsDrFslBySaFQKA4aavKtOH/stlaN4thAHkJAbBycEiCB/IgNvjt0/ta1TwWTq2uqOMnVJiWCCcN5EsEE5GFyNUQkUrKCXC1ELtSeb89DEAEpnCnZnxBNwHxC4Dwnhy1KmbGV8jK/LxuTJhLJ5Emk4dgt+mQC7YzjuXl2ig4QVUwAxFXl3DHj/avkAzSmYOJ1lfoUEPqVRF66ulJIkkxiTkG6clwJY+FxY15XNXQTzdRSj5sVmGU3IwxTM3AeOkf+byWfLMq5hWzKvNYEwomjhXxqQct1G7tvnNV9ZVcS95BxTM9gSjEqFAqFQqFQKDJ0MNGDulPYJOEntkvSTFMztKBGKqRGxT0s0pXq3DYbf7aW7RPKhJ2luAHafwrg7etIrhDWF9K4f8Z2fqKX7s/LXxVf5brsb0oghzHF5e2r3/C+wyfjgWQKS8RHxwrTOVtI6/bZaB/vP2l4W7p/FxjWf6S/o8cLfapcVltfIvDzs17lmP4l76L4c2vbSG27BDpjMkKKf+Jj1xjjSa54bJI/k4muE39leQ2f0u3ucxeNm479S0H3i/RVw9T0VIdd9isuHlS5pFAoFEeBs1YwaUicwsFiN98UxXGiZBxcUjCRwbdLw/Z6BVP8q7xLJxk4b30abujam97nFSuRXIjcFj16SxOtoGDiKhJJwUR188oCpmBy9Wn/NZyHx0XqrwkKJlIydOgz9YKrH5VVc3tp8ysanxgu930zNzyuFSmhGK0gyNuKVSEPa4tVTLuafUfKtsgoPg63GgP3X0qVUTsrmJhSK4S5yiqmFmTeQeI9pD08bky9JKWdgtFQO0HxxFVNkqJpxVRrsZdWongSFE0hbTDy9ibf2f0z91wau1b9DkNwKlG0q2n4XFw0c+9jewZTckmhUCgUCY7nS0xxFrB7+3VYcbhwEzh5NSTaD4TQDGMdyVN7CObhcXOQhsgZNskKdeQT1niySibfpjChk3yY4mN3n7BIJIu0bayt+PLycp5lcmDJSR9XN4wtdz+FYMrCgAootVFppSnqQ0DoK9zwO5Q+zey7FsblypJD5VohEUzR/irBlPuBxeRO2j/SY9quxRiWDo/bFWN5SPc9gBHPjEgGWDgsclN2iQij+1AtbC4mEYMpeJon98ML287P3P+8FUsXi2A6rmcwJZcUCoXiqLBvBdPxfIEpFIr9ghNM9BkIqo2agonrJGoryLn8ZAUT918CgoKJyAGLbaQ6CYqT2LbZ5b5iKesKJk4wAbmKqYZUvcQnnNIS8ymBF7eB7MPk9ye+OfGx01eSGpuMtYTVcEhkUzxxjtUWZAof0u5OanDyiSbnpGTqGHHU+TREMuUqJn4W7v+ZKibkq8pNxVwFk7SSnL8OQn9qJS2mYky9VCKYwvGsfw9vjeFE1LBt55rK4yJVNfEVI0v+TLyuvD/w1pQUTWl6CIrGTrwmLUTe7tdyLpF0ccgfBYeSSwqFQnGUCKaRCsW+cUySbMXucO4/fGKXT1PiX9ZjEoBvM1iJBBOQmtfWQ+QovRQixwkBV99caZJPxoIJs9+WGH27tshJpjG0Eky8falOrWFNEikAIFIzLYW5S4/TcSnJVFMwpQTTkkjVTCnJVFIxAY5kalUxhb1tKiagjWTiShjKPyUfagSTKztfSY4bnvPV5ChfqjM/a7etjZiIzpepl+YRTENbVPq3GDKXKBFr46N0Kbh4JDuefeREU5q2ZzskosnVnx8rIz9G6n/y9ZlDPC+JsyKVLpJ66ZiewdRlS6FQKI4WFsspjZbMS6FQXATwB3M+mesG8omHHHHjab7NHbvy77uZREUNnIzoYSMyo4cL1eMKFjJTpn+R8TAz+nZ5B6QrSM2FZP5LoG3p33x/3s4Amo14m+q5UF5SHl3Un2JTYhOpzNh5LnRemeE7M5t2vWWL1PAbyE2p3XvZkDrel5t8p5NFa5cPfSn1odQ4nre/H7M2HcvjpuylbUB8vpKibczgu5anP0Zov9LRRXKzwkUYE14pov6cmIEbBO6J7p0uv9gInF+vQG7nZuAQ8qL38T07bE3rmr7OAmdZFuGYSJmLAlUuKRQKxdGDf3lO/eLWL15FHcdmJqlYBmkIF6kicgVTHroVwuPcNq5gAgBY7Bwi5xUAIybfYYLcAdiKZyGFyRkTq0KAWMUEtCuZUvUSkLcvWB147UphTTxlbqJc97ahyf0c4miK0oGTMJI3kxR6JYXIReqaQf3m80XZmyrtSx0jrdJwuVqoHP+0q9l3yC/dHyuZgDY1k+zPQ+dYM79O6yz7MLWqmKYi9bMaUzDl5x2Uh/wcPTnMFIi1MNe5ZIdIMNmymolAdSiFzq1Q8taK0wBxuLLkqxUjD6UjxPeUw0H+bTMPx65gOrZnMFUuKRQKxYXCFAXS8XxZKRSKs4f0q3qKVMHktskKpiiNJVVTeqy8xLlEOqVIFUzhvaSUSBRLiapEUpKkd8w5Sqapk5xUfSJNuKQlymuYo0gqLXk+55ha2S0Kprko9aFI1VYwJe8RdE1ArGKSVDepqmbO5LBVyTTWp6ohYJ5kihVxqRpuCUxpg5a0doE2XhIp4TSm1CmFzpkkfE9SNLnj5XSlskv1kdRNCsVcqHJJoVAoLiSUOFIsh11W+FIcJ1KPoLCN9scICibJ4Nsd0WLy7faXVUyEyH/JbQB55kgm3xu7YSqTbaQGCqlzVUnqw5QaBbcSTKReonxK/ktgdZA8mNz+1IcpKE9qaPHI2YcHi2QGHZGPJiZnxhRMfrU3UmChfRXCPjIMz5VMaZ9y6eDrUjL7llRMW5TIQKqLDE4ATCGYJP8ldxp1U2xqv9SHiXsrcf8sKY85qPkvUd51NVjuaVVTMLlzjf2X0jaxth4aN4b0WGsTci/Zz+8fLUbgQomJaimGrGKSIbWxhH0+D+yL5ErVfceGY3oGU5pSoVAoFArFwcIY838ZYx42xvz+edflssKY3J/DIP+l3KBLtpUVTKkHU8ukIiWbMu+c4XNNwZQSLKkPjhUmYtyHSfJi2gU1/yXanrY9VzGlypNwXK4a6hr+jaElj1p+tXLicwzpWjyY5kxKXeBkuU/1icdS6sMkTdpLKjnpr9TXSvlOhaRwqSlZSgqm9H2qYpo6Wc+8phJ/NPo7RoTSWORjtkXBRHs4qZP7X5XLlfyKagql1KMpUxjt6M+UpWP/imUW6tzqw1RugeljcNfjp+K81W3HiKnPYEouKRQKhUKhqMBGD/JLvxrwUwD+8n7PUSGhRnjw9/FEthu2hX/GBtLJvVtBMvmWQuRKYXIpJCKAkwDW9LAmBDeRyTeFMKUEU9pPrTAZtey1BHLyaNzw26ULxECJZJqjSJpDPo3lkW4H6ubRuxBMrf2nlWDiZt/1vhX6FO9jlJ7/tUl/C3Vqvj9OgtR/CIdEMPG0pbEa5SG0Lx+3cQjskPcMgql2TeaQTL6tJ5JMEuEv/QAgGYK3EE3pvjHCKdS7Rr/tTkYtgX2NrbkYfyY6rmcwDYtTKBQKhUJxsLDW/pox5tnnXY/LBJrYkAk1wMJL2LPoeIicS9Ohq5p8pyFyQDzB77DyBAA39+bpSuFMUYgcnUtScwrG4ZBCl+jcJbNv/oguTcHSR3gerpKHHoYQnzAxpPpIYXI2ardS2NKSIW9TCIVSHVpCryhMy713sNiCh85xk+8pIXJxHSn0LjaOl8y+pfBLwPVvblId7RP6WEhhGDkSttH58881SMf4Pub7ac3k2/r2C/ty0/j0WklljyEtvxQi5/JuN/l2x4f26GH9uB0z+c7qVAiRk9ourkfergSen7VC+krYXJYvJ6sqzc7vIyGvdsTjVz7vQyJrWtFyXvss81gw9RlMlUsKhUKhUCiKoJVKzvFXM8URoPzrt6x4qIXIyfm3q5g40hA5yYjZpYvVJVLf9GoTKysiQl6BTNpF2dQ6gZVUTHzfUhOnKQqGljq0KGNkhc0qP34BBRPQrmJy+3JPMJukkfIqqZjietjq51a0qA9TlEzjdylvKmrhhWPt2BomJ21tVTBNQauaqZYWiNVMaVoeNpfuk8ZfGjpXSlfbLqU5K5JmaezrmWSJ551jewZT5ZJCoVAoFIrzxFONMb/LPr/EWvuSc6uNwoPUS8B0BVNsOt15JULN5BtwBZYUTC6dTBKQosHVsa+qTLgRMy89VZeQQqGDwRaxcXCH3DSYt9NwKs2Q1Ev8fUnBJL3n5AC1374mfWOhLbECLVd0lEgLujaxgTRTzniCCX4bN/oeU8DVIKmYWvsWgFGjb1dGScXkYJCr4+YqLVIFU7qEfYuCia7VmIKpVF8JknoJwGQFEz+/UAcqg21LFExRXRMFE99HBBMngqYoytJ0aV0p31YlE22yyPONCKaRG1CqaLKFcxo717zt621y6D8qHXr99oBFn8GUXFIoFAqFQlFFyypTO+ARa+3z91mAYj44wZRCmtTRdkAOz+nQRdNxMd+ZYU41EoAjJmPSiWvIQ0ovbbM2TOrGQmZaUWrbsf3p9rlhYjVM8UpJ00pkE+8b8fVw5AUPveIkB0drmFwrwZRijGCileQiAiQJk5PIkXJ5YeJf6n/UJlMhEUwcgdDM+47U9gCi6zQF0rlJIXL8PW9Dt102tS+VRSQuJ2J4mBxfSY7nK4XJzRnvpbFrTK6UStN2xngijJNMUlo6P4m0FtPTeRbIotL9aGpIZC1sUCHjmJ7BlFxSKBQKhUKhUBSRKpjoF3Jr06XNc7+FVMHE1Q5O4RH76aQeTK78JQimUEcqKVUwcYJJXvo8zYO2xxPWll/yp0yoWpUnEpnnjikTPGNY2nS3pqriSqaIVKiqmCivbXxs0n/i8toVTKm/V41g4vXhKqZdfZgkFVOoY/uEPiUSJBIhU9UgKJhSEpC3N5ATTFMUTOm5tRBMdMwUHyZeN2tt5sMExCqmtH41FVN63jXUCCYgJpmy8U31EkgmSSHFSaZ0v5g+Jfsa+94ufVOCkk7HCSWXFAqFQqFQVGBn/SK9FIwx/wXAX4STbr8fwP9mrf2Jc6vQJcUYwRTCU/LJCKkgiGAiSCbf7l3nCQIghDktoWDiKhNXUqxgorrw8KX8F/8w4U8JHkkVsfQkqaQ8Sd+Xyl6CMNpFnRUmsTHRFOc5TjLFZBTlsxX7D5XHCSZ3XJ1kajH6piaWVExUX8P6YKzAKYfJ+T6VqJj4viloURpKhGUtRI7Ou0Qw1cpNUQuTk8pqNfp2afMxC+ShcmMkUy1Ujp8H5VVDdYzuSDJJ6SUlE69zKXRPCp2Tji+dX2n/GHYl5S8OjusZTMklhUKhUCgURVic7wOdtfavnVvhiggtBJNLl9MX8YRLnowSpZOuBhbKn0cwhTrEBBPViyuYQrkdapNumvCXfr3noXJLoHWCLoW+AMuN4aVC/ggp0cTVTJKSiYfKyUqbVdZ/9hEmV0NKYAKxgilV/pQQq3Nif5wlwi8l9RKVV1Iwxen2TzAB08LkSiGt7i9ti+tEKiZSHYYxLq8oR8cCbSQTT19L04paqBzQRjJZm9+3Wu4btT5TO59diabWci4iju0ZTMklhUKhUCgUCsVkjIXI5QqmOETOp80UTPRugFcXlI2+ayD1kqtD3Yi5j57hYwVTfv6sDKHc1FC3Rjalkz2Xf9kjJVUvuTqUVUtzJnet5MVckkP2EuIrxeWhZB5E1Jist2T9Z8zsm4e+lYimsRC5YeOQX8GHKTOSD7Us9bNYjRZQC5WroRYeJ6ngUgVTXFeZ/AN2J5jS8xpTMY21Y1wPKifBcA/bIhDD0bgRSCZKw4fvGNE0BZKCiderpGIC6iRTei+SQub4MXxbKWyulD7FEkST+jYdLpRcUigUCoVCUcWezSQVRwSuXgJygilO66ajJV8gIFcnuX3y9qmQwuOmgCuY0rCbdPLdVB8+8UtCVPaBljCo2rGtZcxFiQTjaiZJycT7BlcxUV5pmqIJtajGaVcylUy5S0bfEkrqG0ktV8LUflgjeUphlu15L0MwAePn1WL2zdsyzZerD2vKoozIYKbfUpqammkuJLNvCamKSUzTcA2kNFP7Q2s5gJJDYzimZzAllxQKhUKhUCgUHhYhJERCSjD57cZkah3SKMUEU65g8qbaZ6BgCsqHUEcqaY66RM4rRzwBbVdwlJCGqEydEM717VkiDdDmTSMrmWQVEyD3n+gI1hSlfiQpmfi2qOgCgVny+OJ15H2stgpaig6x2bdLOx6CVUK6SlhJwZSSfimhx897SYKJnxPPa0zF5N6FtpSIojEVExD8mHg9MgJHSJMlWZBsyuqThMnxOqYKJum4aOW8xJNpLFyu5MnE06fHtJzHFBwzSbX0ap7njWWXgFAoFAqFQnHBYGHR7+2lOE7weVIH4x/updAvw/bztOFz+GcsnximIULD5JylGTOnTvtYP2KMSpMTPomlSSufuND79K9N0kjHLIk0REUiFpbwSRrLh67rVAWNdFzeP4a+5Uk+E/UbDr8SYbKfPLZ4+pZ+1GFVJJYIvI/1Qr8JK8nF/Yj6WB/9s8V+kvY1l3eedol+Jl0P6VqkacM21raCYnBqn5TaRRqj6XufNml7/reH9f94Of46WesJlzDOY7KGk02la2htm/poX5BaXLoO6T28dE8Rjx3+SWi5P0y9h0jHHzLmPQMd1zOYKpcUCoVCoVAoFBlq6iWgXcHUw4KHyAGkXuAKiFjt0JneKyJKK4GVlpofQ20Z+UhBkngwSSt8pcqOmqpkLEyNp10ac0Kc+LFz9hGkyeaYKbAUxuT6UbjWPFQupO2zUDmvjos+jXsxTcFYCKbowTT0sdaV5CQVkdTfqM14m7agpoST+s9ZmXxzlJRM415MZUVYfJ5UTo50ZTleDyAmmCRfJsJZEUxSiJx0zxavbRLmXFIGla5hyfi7dszUNIeMy/zDmZJLCoVCoVAoirAYV3soLi7o8b4lRK5GnnCCiaPV5NulHV9q3tU57q/iKlIJwRTqk0xK2eSfnxHVucU4eGwZ+akhQmMYI7Gm5DNnX0m50JLGFoilFHG/ce+i/ZwUjELlevAV5Vxey5FMvvwsBDMNkaOtYwRT3YeJv6+RTK60tutSIgXSfIjsk0Lk9kkwUTm8LhLJlNY6vItJJqmPtZBMQCCa3HVyMKiHzYUy9q+yWZJgonTAeKicKyful2P5zElTOu6siKmzIJGO7RlMw+IUCoVCoVAoFBF2Vbmkqy2FcJqxEKh6OM1YeJNL0wk01jhswcg5nRDHx8jhNnEai1q4XAvO+lf8uRPfFmJp7HiT9Yk8LKsWKuc+l8LcQphcS6jcnH5EkCaEaR+TQuTivxSGVe5nU8jJqX2vNFY5pDaK2nRkTO+CWqhcnI6HzcVtKuVXCnNNy+ThcqWQOUAgmzDvPiBhqXtDS4jc1OOB+j3h0MPYStCw/jJUuaRQKBQKhaKKY1qpRLEcYlWEgzQVSA1jvVJp+OU7DefZRcGUKk+8QoKFyYV61SeyJXWJqw8hKJj6bA43ZfnzWBHCl5KfizGFSa0ugDwpbZnsTZ1EzvHXyb2kalgxJUuPbvhM/YOu2woYwuVCelH35MOfYkWc21UnGkt9jivkpoTI8dp1goLJbR8Pk5uC1vA4/n4Xk+9dlSapiibyYipmS9dpiw4GW4TrnCvEuFIMURoAkfn3drjv8foQttbKV+Qc+JVSSPMUBVNNpZqXNz9Mbo6CaWn10nkTScf0DKbKJYVCoVAoFArFXtCqYOJIFSiSyXeLgqkFU8INllSXzCWGDhVLEUt0THpcqmYq5c2VTO5v+FeDEUy7pf40VckkGXwDbSbfEngfG+tnu/SxmlF86f1Y29QUTGP9pE/+ldOVlUz82DElU9q2XMlkx9rd1sa9UGdrRWXTEthXvkD5ml00BdN5E0vHBlUuKRQKhUKhqMAe1a9mimVgrfsFPvM2Qbv/EoCqgomnI0gm3x26UQWTOzb3YZqCueqSMX8cOs9MYZEqBBonWGOkQcsv9mcRZjfXs0nqG6maKaUxePtW/Zjo2pl8X83wG5CVTC3gBt9L9jFql6k+TK3YVcEU9rd5ME1Rm/DvpJQ4rCmZxjyZOnCCKc83kJYOW0FlB6BZzeTrhToR1DWGp7WSSUuN/qkKoV0VTGcZHnw4pNJxPYMpuaRQKBQKhUKh8KCFjzsre26MhchJj/8ywZQbOAN1gimsAhavACaFyQHTSaaxyT8QSK7ehslyOvmn8wDyibjblxMoS6iZ9k0stSoMpqoaamlSw2VONHVJmphkyUkm3pcAdi2jMC4kee/Wp1LsSjDxc6oRmVLf2tUTa5cQuaUJJkI68Y4N+hNyvHF1OfduPNyVHxFb/iehigPpY0x+fu6eESO9SksqkObkJIXG1XDWRNDSOA9i6Zjbi0PJJYVCoVAoFEU4c9Lj+dVMsSxKCqZWRJPOhGACwi/Z+UR1nGDik1bJhwmQvZhSpEvHpyvIlbbx7aWlz2nyn7ZFjWSaiyWIpbH6pKTFFOx6nNR2vP9I9XRp4r4UpUv6E0etTwG7k0wpWgkm+dhyG3DYktJmJmrqvDytrBqSVpHbBfL4zUkmI6jJYsIpJov5WA7nxM9/OJ+aYpEdTsR9qrQCCgT9+KlX0UJdlK7fFGLp2HGWzzst9+xjewZTckmhUCgUCoVCESH91Z1PhNIJUDrpSdVLJYIplFVWMLnjc5NvwKlOUoIJLOUUxUmJYCJvnHQJeSo/qg/KKqZWkom32Rim/NI9XQ1SJpHmEExFH5bGcJ+0zyS5ZBN8Xq7bRybfu4XKuW3TlUw1ApPUS3x7jWDiNUoVTPK5ywq5FpJJWk5eIvvS98afm6xgSskcTjBJY6JETJVQUjNFeTYYf/fsWClkTh4LSUhcqZ2FPt0XkkrqpiVxlqqZQw6N2weJc1EUSa1QckmhUCgUCkUFFn1hiXbFxYef5Fo7aVnqFGOTgtqEIz3ek0m2ywim+JjpKqZdUPLIAeKVxEr+OHFe+WRe2tdWr8Oc3EzpT61hOZISLt4fewJF16sQKseVcYDcr4DllUyElGAS0yBfqa6ln+0DUohcvH8aUbTrcUBZzSSFy6Xp85DEnDSuhQtytZhEKkfEHwufS+sa2mG563io94bzwOESS8f1DKbkkkKhUCgUiiqOSZKtWAZ2uOrcv6Vm8k0wyV9JweRXkGM7KcRJmjoXFUyMYKIS3HYqOzb7dmW2mzFPUZcAGPHIGVcx8XaK6zF9grLEpKYWIid5+nCFxj7IjHTC3RVOUVIbxaiomICMZEr7VXrEnL5Fx/H+BQSFXNZ3RhVM5TDMUlghJ3PHVEwS+TsW5llXUuUKJiJ2uIJpSfJDJp+TOjaomSRfpi1ko/fQ/nE7cUWTOM4qSr2SumlpjJG5tWtT23cWK2VO7TdLPePsi6w7pmew6Wu2KhQKhUKhUCguPMjYGwgPzbt6b0gTpg7Gv4JRs4le0vE0MU2XNSfw5eXHlqJvgWW/HqdLyAP5MvLx0ucsHZso9KyN021zFEpzjmvNV9q+D6TXPu0DBGNMICpZGvprhn+lfIgMCMd10V/qV+l+d2zct5boXxySQiftX3H6YXxW9pU+u+PmXcsWApFaPk3P26zUfmn+Y+1ssRVfEvj4DNtCX7emj9q8NK5527t1veJxWHpvh39p2Wna9HpZa7PXkmjJc19jfyzffZS7BHGzj/vusUKVSwqFQqFQKIqwsHsNJVIcHizkkJoxBRMd24pSqFOryTehrGCqhzO1IA2n4QqmkEbyi5LDaniYnDvX2AtmCdVSC6R8x4iCMTVSzSy6VclUSxP7dDHVDetHUvvxleXSetRWlANqKqbg8cX7F+1rRS3UjZ8DnVuLyTdXMJVUS9L1mLuiXEnBVPMTSxVMHGMKpjnjmBNM+fjlq9Xl43F8hTm3JbzLvZlqKqz06ptK2vi4PJxu32ip13mTLGdZ/lmUdWzPYEouKRQKhUKhUCgihMkVfQ5IPZimhkDxSacUIkfljZt88xpi1Oibh8m5vNoe2GsrxbkasFCkykQ0DXVydZJJJp5mF0yZ/IyF5/E0tVArUyAwxvrJnD7k844iiko+VuWQDd6vuiFsLtpfIJkoXyAnmdy+eSQIN5DPyKOZIXKuPmXCKdRBJgklc29CTgAtb/K9K8EUzi9WMnGyKSWaojLZBH+LvqiYLIXNubJafNek+958zL2PzFFO1jCmjjtr1dKuiqXzJtEOFUouKRQKhUKhqOKYzCQVy0JW5eQm33vx2EHd5yVsk8y8Y8Nml98qmljOnaBK6qUsjcknn/EEOieZJENmfj5TsMTEp0Q+TM3jrIykCamSKVI5MRUTgSvzSobfKaR+mPYvl67ex6aE040p5FJIfaqUT37sdBVTXZ2zu8l3iweTdA3GwAk9jpTcy8YsG+MSOVYikyW1YgtpG85RWk2vfJ32TYK05L8rsbRkXY6hjLzM43kGU3JJoVAoFAqFQsGQ+0e0KphoewuiCedACKRKlzaTb17DeaFMtF+uZ14DyeCb6pxOPqVQGjH8JinfRHU7v1/JpUlsbTKcEhMllUa6AmGN9Cj1KKpZTckkGX/znpGSFlLf8teOX8+KiinUbyv2nymQ+lfJRJ7Xh/cpHp7F86H3fF9c/5zUqGGMKEkJplTBlJ53LUSuFIY4h2ACyoqmJdRMPfh9ZJvc5+JxPqb2k0rYTiQDz4qsbvHyWkqxNKWOc1RL+7wHz1XhHSKUXFIoFAqFQlGBnfUgpjhe0CN0PXRDVjBNhUQwpft2UTDxtDUVU+34qZAIJrc992GSjiGUlCe7Ymw818ocm/xOVSq19J3aXtqXTvtKxGVNWcNRUzH5cMshbGvMQ2gOUnVcicCU9h8yxhRMcdp21dg+ICmapqqZ4rSycnHMf630mW8LdW4jA/fdfq0G8edBmh/S80zbveK4nsGUXFIoFAqFQqFQRCgva+7QR9sCKVQy+p4KnrekYAr7gsokVT+QgokTANHS54mKyeUzb4IuTTqnhM/QMXTuhJqaqYZdJiNjZbZMflMFUy0EKM07nzDXCSYk+1M1U4+6txd8+hw1hRyQq+SyPhjVa/nQllr4ZUpgSOOZ3lPd+eesrEYioEXd1qJgSok8Ot+8/rmCqVW9VPK14pDMwFvVTEDoI/ycAvj7WNG0Ra5enOZL1oapBu6EuSsMLq1EOjbF0kVSKUlQckmhUCgUCkURFkBvjyfeX7EM3EQmnpASiDhIH5Hn+jClKhMAkdIkVTCVVCZiiFyDwkQimVow5r3UQjDJn2thSmc/MeFlSqF6JfKA+8WUTL4BRMRkKc0UpGqmNpKp3L/c/pzElMgPTjK59Hk/c3Wbfk+dGn6ZhdIh9vspqRJ3bX9CqjBKCS1JwSSN0agNE5Nvqi9PTxgjmHjaVl8sKXQuP5YbeocQRqp/nVzokk/x2GshOiSFk7SfMJckmoIpBM2+0p43sTTfgP64nsEOXz+pUCgUCoVCoThz9AU5/tgDNw9t2/XhnCZC9Ff6lb02EaaJoZ/8w7A8u2jiOGbSvSv4JLMf/vHPKXrk3ldLgvKXXiVQijSfUv7huLxP7Pv80l4h9ZNS/0q3p8d0A53J/wFt/cyVs6r2t5a+OO5Vk/cpG/W58jhd6rrkfkFGfM9JS7nN8zaWy8vbeVekY5XDYpsRTjx92set6UfvA31yjeh4PkLT/em1rI3lqWN+KnbJe4pa6ViIpVr/uYhQ5ZJCoVAoFIoKjiveX7EELFMMWK8fSCGZfLvt08Pk0l/bpRW/SiFyhNYQJknF5I7vs8loTfkgTVzHvJTSMKZamBzPI8WYsmTXidFYmamaqZQ+Ds2Kw+SyMLqKOXxLaJyENFzOl1kx/JZ6TziXFatbWz9zedrsOrv6LUNolrx+aiFyoV7nq2CisqhOqc+VdE48TG6ugmmqP5bs/0R1HlM0JXcsk4bAlc3AXdnpfWGbXZs0jC4ce/YrNo5hzv1pzjHnTSotg+N6BlPlkkKhUCgUCoXCwyL/9X2KgmmfapQagvokXhmr859zdckY5kz+xyYVNvVkQf55LI+a6mhf7V/KuzTxqSljSvu56m0qugmm8pFqhkLlGlVMY/1GUtjEip1cydSKvK/EqpiWY4DDUjC1HMPbK1IbFgiZfSiYJNQUTWm62rUD6spGaZs0HiVlYSltKc2+7iG75H15iaXjgyqXFAqFQqFQVLEPI1rF4SP95T1VMEkm3/F2WcFEacZQ8l+Ky+L15eqm9pW+wrGxosjXY8eJaYtyS1rtq8VseLd6tU2AakqqoCwKK17x85XfY0g7TcFk/XGVuiYEU8/IqqKKCTZaUS4+VzrPHGNKOVf+UF5BYRPymj8Z5W1Y8/aKy56mYKJjdsFcBVOoU270DUAcyy7PXMHk8s0N/Hdr//jYkprJpU2ReCwlBOGYoonyzO8RubLJbW1bFCC9VmeJXcqdq/A5dFLpmJ7Bdvq2MsZ8pzHmD4wxvTHm+ZV07zbGvMUY80ZjzO/uUqZCoVAoFAqFYr+QVBBcwST9yk1hT33yF8gVKXMe5sfC6tJXi4KppGLa97LuqfcKUJ6YLDVh6ZN/SxyXKhFaFDFSf0n7jLV2JxUToaRm4lu9UsmYSSom3s+cA5PsFQTkKiapv+2jzwX1oXzNa9drH+SCpGCa6sPEx/E+VWJzURtjqUdTmlZS95R8miSvJknZVFI3lVRO6bH7VDQtlX/tXFrqsCsum69SDbsql34fwLcD+LGGtF9rrX1kx/IUCoVCoVCcKaw+NF1SWNNHy2iHX+TDKnKZ6gQ2UqREqgqmSKFjQt5l4qjkv+TyGOpamCCMKZiAuvLBfT67/i+pTdI6TJks76PuUl1SRQwwrmLi/YXyKPWZaNtQdtpjemtFMom29QlZZVhevH5cxRSr4cJqcmldSXGTqpgiTy2mYkrLTNszbWdpfwmpr5eEuD1lBZN0DNV7F8jnPW8lOf6+1YdpXwomCaVxy8um+qRp0/tjSkZLK89JPlJpXjxPVxf5nEsKp/NSNHEs4UG0FKm0fxzXM9hO5JK19q0AogcFhUKhUCgUFwcW57P8ueI8YcPkPzMKDqFAkpFziWDy+xKCiTD2oC8RTNH+SrBHzwgmqmW8f3ximqavoUQASBN3iQgYC4fb5wS4BSUCJJ8QcxVFUIjlfcbBFEgHTjDRNkA2+S4RTIBMMlFKKUwOQJPZd7xfDpUrkUxS+Jmv7yQSsWwcXzKNbw2RozSlsuYgzT/dtkSYHOVZIoslo+8xk+++4GuVnZ9A7rWGz+Vm4C51VoakLm3kS0qEU9gfSOJWtITbTcE+njsOPfxNwrE9g52VTtAC+CVjzOuNMd93RmUqFAqFQqFQKGbChyiZPCyKh8iJxyAPjSMsEe5EaJ3kUuiSnIdsEFzKuxZqc9YhOLtgbijHLuF7tcldSX0GxH0mDsMTyhjpXxL51EqVTDX7TkMyozITAmJXwqaGlmtTCpGT89uP0XdtfylMLmybNo5dnrmfWm0MS6SRhN70o0RULXROSptvE+6tYjhz2Ry8PJanh6nVlxiY/loSS4b0HZOK6DwwqlwyxvwygGcIu/6htfbnGsv5Kmvtg8aYpwP4H8aYt1lrf61Q3vcBUAJKoVAoFIqDgIW1x2MmqZgH/vx1Yu5laoBYwZQqH1KTb0KqYMr2MaPvCXWM1EtAHEoVJvwymkKXIKuY6Pj4PJYhkkphTPsw9F7SvylFrvrgE/xcxSQhNYeP9g3Nn6qYpDA5IphqKiYpTI7ydHXIFUxSSGbN7NvtbzP85mVTWVNQUy+5/XE/5yGNYyFyklppCQUTkKuYap8lFZPYrpVxzNP36IthcqWx0tmuWcGUpmtVNLWZgbvU2ZbSqoEzuJUxhVOe/vyimfYZrne+hNJxPYONkkvW2q/ftRBr7YPD34eNMS8D8OUARHLJWvsSAC8BAGPM+Qd1KhQKhUKhUFxw8OevG+unWYCHm8ghcpxg4h5M8cQ/kD6Emg/TXNRWN5K8cSQfJpdWDq8ZK2OfKPkwzcmnFaVl7YHy8u8pGTZGYEj9peTd1VRnTA+Tq6mcaj5MNaQEEfcNcvtz4oITIVL5c9Hiv0T1bCGYqF77QHq+tc9pm+Z5xWRxrT8T0jC5mg/TFIKJgx9TUkGVxjvVjautJAK6dJ2oDaaE4ZZC+Uqo3YP3gbO4H6tSaRp2NfQehTHmHgCdtfbR4f1fAvC/77tchUKhUCgUy0Afri4bLCy23vsjJZhSk+8WggngSo/ctBloUzFx9RLPi79PjZc5agSTq2Pu3wIsoyw5r1/1m0KiJkyUpbSpQgaISRTJ48eljb2YUoLJpYnBfZD6oUlrZt+cQCoRTdG50HmyfEnFRAQTR6pLSs8jVczx/hbyWL6/EXLftPza8Hq7cz9bk2+CRChJ5XAVk9SurWbfkg8T0Gb2TeTQHJIpPS4lmmqkzpgZOKWX+otkDA7I5uBS2bV7SY14Og9Sfhcc2jPPodWnhp1+BjHGfJsx5v0AXgDg540x/33Y/kxjzCuHZPcB+A1jzJsA/A6An7fW/uIu5SoUCoVCoVAo9guaxHCfJSAmFyQPpt6TArFvR+rDlPpgtC4/n5JQfGIreeLwV5ymAy0hn3rjpL5KxnaiRw4/toSWNGOYO7lYmliq5VFbMj316wp9It6WvlyavD/5fbbQlwr1TJVKnTFNhJPvM8aEULmsP9V9mKb2N6kOS/SlGuI2lD2YJP+aFvLACP8kSOeYbpO8mNJ2ldqWj+NSepdnuxdTqw9TDeTRVPJqKnkkWWyj11h6aQwB8fhtGceyB1T936HimOp6DNh1tbiXAXiZsP1BAN80vP8TAF+0SzkKhUKhUCjOCxaS/4PicoMUTKQMqCmYxsKdMq+YhULlSMEkoaZqKoXJAXmoHD9231gqPI5jCrFUUkKU8pT8fmQlE6lGxvtNWh/y76L+EqtvMOSbnEejobxBTFLV+4ysmkv/yseWwzIB+RrtGqpW8l+iPKX8xkIUx/ZL17CGsbDAUphcrGYcD3ktpT9LFVOK3vTVsDleF45a6Jx0TK3/8H5X84Qr1aWWPsVZLoRwfOTRcT2D7T0sTqFQKBQKhUJxXKAJZ1AvEcKv/jWCyR3TFYkCnmca2gbEq4OlRJOkbpLySCf78flxcqtsEpxOwoF4orWE6qfFE2cqllAstahRaoRTOjkt1ykNbyqtxEdlCvsKZt9AmWRqQYlgoj7ZEiaXYm5/24XUrBF+6Xv3mcZqIP74dnqf1mGKR5bLl5HKlb7UUpZkoi6FvPr0PLzXyCGLPcqG37Q/qu+CJNOYGbjoBeX7VkxGlMLn6Jgxr6TWUNgSxr2ajo3wUZSg5JJCoVAoFIoiLABr9cFPIaNMMLmJaYlgmlTGjJXlOCQF05gqIqSTvGnyX/TnkkxTiKWz/XV/vkeKRASk5IakwuL9ZqqKyZdTUDEBsuF3C2oKptQDLD5O9v7iPkypKfUc1dwuaFUwtXowtewvwfiyxkmmVqSqJJdHTUGTXqtYyZSSNqVV5eYaftdA+dXC8ErqRknRNHaM2zdf2ZSWQTjL+9hFwLE9gym5pFAoFAqFQqHIwCcd3ODbISiYeNoSwSQhVaKUzHwJY35MpUl8KU1KdkmKkpJJMP8MyJOrEhEwR6k0dULWMpHeFZKJcLw/v5acZJLrdrgqprj88RA5V06unIvD6Oqm1FNUTEugRjRMWUWuRDBZ1i4ltJJMU1VMIZ0Q4iWomNL0XMXk6rcd8pcVPJwEWpJoGltxrjYupyqaQp71kNgp97qWe5ISUMcLJZcUCoVCoVBUYFWyfokhEUzxfhtCSioKJlOZLMxZdr6EkiKJT1glgilOO+7fIn3Oylwo3O2sJ1o1dUjtfGuT2ozkEUimWt+pqZhc/vD5cy8mIJBMqYoJaCeZUvVStC8JkUuJlxYfpnT1Qt4e6XtqN96OreArxxFyxRIntdJ2KyuYxj5PxRjJVCOS9+XH5M5rnpIJWJZk4vmNqZmobinGFE0EkZCrqJp8/hPUTaWyOS4n6XRcz2CX8QopFAqFQqFQKGYgXUEuBW0Pf8OqYD3k1cDc/nzVrzTNHJQmPtJ2vo2TYXx7uqpU+nlJ7DNvYD9eTxzS6kvZdRdXHuyjtNRbpP4T+le+EqEvI1lRLu53ZdJoDFP6Vm0lOXpfWvUs5Jv3B2kVwzFIhFQ6ntNrVkK6b+yzr8OEVm9dVU76HPLoiu07ZVW5LB1W/pXul8ZuZzv/WhKlVeaiNMlY5JBWnJOOlY4v3dOzMior0rVCWtmtVjfF2UOVSwqFQqFQKMqwgLXHs1KJYnmkyoZiiFyjgilVbbgcYi8dKeyG0k2FFKbEt0uhNjxkKQ2Tc8fKoXK8zeZiSUJpTnhcSf21yznlii92TTnBJM5Nlw2Vc2nkcDlgWshcyX8pN/keN5eX+lwpLDO9Fkv4MbUqmGom3y2fCVNWj6sZf9fC8+LzK4/pUigiJ+5q4XKuju3G38B+1ExTlEy8fhy8/mOKJimPsRC6qKwFQ4elutVwNCqoI3sGO5JWVSgUCoVCoVCcF6YSCzUFE/+c/uUTR5ng2E3JBMQT1ZLSIU4vq5jc5xLRUVYvLJF+Kkr5Lq1eGlNAAJJKJlcycSXC3D6UquAAp2Li3l1Sf7KIFU1T1E1jpvMSmZKqmaR97v3yKqYpSNuKm5GfhYKJUFMy1TBVmZi2cUQ0VdSMqZJJShPt24OaqZWwGlP8jI3lljxcmmkq1LnKpilQ5dN+oMolhUKhUCgUFdhoEqG4vEj9lwAUFUzkpROrLHIFSs1Hh3yY4I+er2RK1TiSgom/T8tKfVv4vpKhbyj7MH7LLfnBSKqXknpJQmnyKW2XDISnKZmoLbdDHesqJldWui/3Y+L74nMYR9a3EgVT7q8UK5gkH6YWhY3LX1YxAXU/Jsl7Kc1X/ry8B9MUBROhpGSaUv5k02+mZLKmF/KO7wNTzL99PVI/rB0IlhYVk1SXMTUTMM+jyaWRVWclLK1sGsNhKp+O6xlMySWFQqFQKBRFHNsyuIrDgE1C5EqQJtYh/GZ80jnl1/AaYVIy+S4ZA5fyGzP5Pm+cd/0kA+ExAoPS8FDLkF8ItSSk/SjkIfQxayO1UYkA2QU1gmk8XTc6sZxCGs7Fvk2+5xBMhJLx9xKm33F+ebicZPxNaSMD9okhcz7NnozAd4W0uANHzUQ8TjduCi6WzxYEOC+0nuOuOLZnMCWXFAqFQqFQKBRNKPkv8X35hDLXjrj/yyuBuf25D1PIYXcCQJrg8/xbCaa8bofhvzS24tLY6mNjE+ZdIPm6xGqcoe0bVEyx6kQwUWbvayomYFzJ1AquXkrLkxRMknIu7XNTFUxAPPmeQjRJE+eUYKL6AjnBxPedBcEEyCRTzY+p5LHm0vG2ktsAiPtkl7VvrlIaUzPxtFFOIySKRD7NDbNrJU1qK82leY3lN1XR5OuQnPd5kE1nRTIdC5RcUigUCoVCUYEthr0oLidaCSYgTLjkEByLkklzKUwuPnZZgqmmbEgn+0DsOSORTGFfOfyolmZXtITrjZFFU8LjSphqIBzXKazYxdVwaS19mqEHSuBkZcl0mIfLubqPT3pL7SOFx6Xvx0LkaFtJWcOv4ZgSJiUQS6FxNeSm37HRtynskwgmOheOXQkmoE4ySWWXwmDpnMZIPfosqZnS4/ixkpqJ58nTjmHp1ed42UuQTFPyc2nnEbycbDproikdG8vhuJ7BlGJTKBQKhUKhUESY+pDMH35LE6Ip5qmpEbMro80keBfUJjLpPiO0UbsHVPxv36gZj3OMTcikfFqVC/S5dv3LS6HLpt/x391M46MyBNURpUlfcxCbS9eNvEO6tms41p/I+Ltl8i1dp6ohe2XfPsZrDa3G37E5t0muTSfuS8dtavxdMv+WjiUDcGkcneU9Yle0EiBTzbPn9pt9G4IrZKhySaFQKBQKRRXHFO+vWA41JYT0K22rgik2+s5Nvt1nyc8oVzEtEsKUhMelKhNeTm4MXlYxEc56Ul1CSRGRLaleUWBQ+pbJ4TiBKKu3YqIyTuHfjaiYyPB7C4ihl4jUKnRkolxjeY+tAteCsb6UbqspmMauSYufTyvGQuSoHlzBBISxUfIyS/cRJKXiXKR5WKG8KcbfvO0x5FRCLWROMg1PTcBdeblHU3rMvjFFkdOqYqJ8gWlKprneTMD5+jPtimN6BjveVlYoFAqFQqFQ7B1zfzWvTXxalUulbZJX0i5KkimYoirZR9ktr/F8JNXV/HMoqS6mQFI0lBRxXoXEVEytioiSkintP6mSqaRmWgKcBEmVNHlaWRVz1uqWmoJpel75sSU/tF3QohKrfaYRJu3bRc2Upg/lyYqmUpnHiLNQMQGqZDorqHJJoVAoFApFFcf0q5liCRgYrMRfzccmAqVfrr1/EvN5kb11guphTNXBJ5+pH9NU1NRLpc9pWZKKiaeVsLRJeS2vvD3z69C6ItaSypi8nnF9eJ8S+0xi+h2UFnGfIhWTBMn0W1LaSARTSdXUQkZJ/kvpdjntuAcTfXbntD8FU1wOH5/tCqZ0P2FJFRPBCPlPUzJZSJ5MIe2yaiZX55xgGlM1ZWVP7AO7kFZTFEzANHXUXBUTMM9nrBX7JPmO6RnsuKlOhUKhUCgUCsVeMOYB0hoalXnimL7ZNyfOq+zfsg+Vw5iiobRtioppitpoV5TKafHo4XkU0zVOJKeA9zGLrahkKvkxhX8261clPyaXJlcy1VRxpGoiMmmqymns2sdeP2U/oPD+sNQsZ+XDNEfBZ4Z/Uj4tnyUl0y5qptLxNVVT67hLfd7G/p01ppJfh+TFdEjj7byhyiWFQqFQKBRFWNi9qBMUx4FUwcRRe6Dm/ksc0ipv3IOJfJq48kHyYUr9aFyZy6scUowpSgglFdMhQFJd1VbBAtxEuEXBNEfxRsuol1a8SuskK5niVeXI2ys9c/d/LyrjQqrY26vkkSSRF7uGzqXqJUBSnI0rmFKch4IpHpv1leSo/tJnd/z42JbuLZIySkJthbmx+nElE52r5InlPqdeVbGSJvU5k/Lgx4b6l72azgv7IJuXwj4VTEvj2J7BlFxSKBQKhUKhUHgYxOE1NYKpBsng270PIXJAbvLNCSaXTyAD+KStNNkvhcvNQSuZVJrYp5POXbGLt1MtXK9EFkX9gIXJ1QylS0usS+h5SJugKOCE0ySSKQmVS3JFx9qir7Qp7TFCX9tXSGMaoimV2RoiB+RhhktNVKVQpnScU50A2eh7Sjiay8POHtM5qS2N1+VC5tyxMsHp0grtl1SJj7W03lPIpnBOZ0M6nRWxJPWRs4aqlmIouaRQKBQKhaKKY4r3VyyHJQgmDolgkvZPJZhqaJ2MLhFWV1OOADEJMBVLGIbX1FQ5WRKu/RQVU4m4KO3rbCeSSgRJ1SSRTCWPLzFP8FUKTda3pD4mrVI45he0D7QQTON5nB3B5D6XVUxLE0xTyIaSMowgkXxj3mvp/nTMTSX/Ut+zWr1b1Gn7VDgdslJpXzgrYumYnsGUXFIoFAqFQqFQMBg2yWYGzxMUKYR04l9SMHGT75RgAnISgLa1hCzty49JmpS2EEznjbQOfOJLSK+92y+bfcdETJmQ3IXU4ARUZ/N6UTmpNgsIKqYtpFCY2PS7R5n8DKllJRMdNwc5KVEOjxsjmGqqslDesgQT5VnaVlMxtYSd8c/u+GUIpjTfPLw1J7YkJVGtvClqpmIeQrdKDcFDXSqG4knZh0IIzSVp5pK5S4TEqWJJhpJLCoVCoVAoyrAW1p6/f4PicDBVxVTyXwLaCKYoXUH10KJ4OCuMEUxnVQegjeyQVC81hcUYMbEvgqkE3k+kUMyaqkjy+UrJtxb1zCGE5wDtq8jtA3NUTHHaaSqmJQkmwnmpmeL0beGMXEHYWn+JADxvKEkzgiN7BlNySaFQKBQKhUIRwdjO/zIuqVh2CZMrmf/OJZhcXvny5vvyxOF51kyh900wtZzTmKKCIHlD1RQw/poMWUgKJvc+V7ylE2WvRGpcxalVxcS9mDyBRH1avDSyiqkEvjdVMrn97X2u5P+TGky3qPbSOpQIpqkm3y0myFPNviUfJqp36bOkSpRIpl0Iv1Y1U8mXKd0m1a1kAh7qPt7W0vWQfJrSurn6tV3LpbEEmbTL/XxX1dI+yLCLRLApuaRQKBQKhaKKQ1zxSrF/0C/jpQnqlDC5mnopSlcw+Q5lxyvJlVRMLv3unji7EET7IpiWIspKE+iasqKkYmrxYeKEpBiqNeK/JCH1ZKqRTJGKqdLPUpJJWlkuJXckkmMJcrNk7i3VoeS/tISCia4tV8rUJulzzL5Lq8mln6eEyS3hhbUk0VS6N40RTe6YETNwhD7NIfk1xceNq5wOCReJWGrN75iewZRcUigUCoVCUYE9KjNJxe5IV4sD6hPUOV5MQH2yKaUJ23Kj73S79LlWzr6wNMG0r3pLaq8xM2KJYAIwSkjWCKa56E2fmX6noXIiSTmoceK+OC1ULu6PspKmRk5NQetxNYPvOQomKQRrTMlUUjGVwuR2XU1uH2FyKWphZybpA1L6mqqSk4MuH1lB6LbJoXMEyRQcQHYNef7h2PMN6S1h1+t3SMTStLyO6xlMySWFQqFQKBQKRYYOXTXsqWQOWyKZ5FW9cvKIyjNWnvRKRt+u/HFz4FDuYU6gSphrUNyCksJGmuyWVEyS2XcprJL3k0wJNTFELjqPCSomOtuonguEyrm0sdqopqiZg1p4HM879V/i+5Yy+W5RMpVWHdyH2fdYmBxPuwtq95MxNVMr0r6WG4G7rflx8j21FEZH4MrDtvrt5x66JIF+vITS8ULJJYVCoVAoFEVYHNcyuIolYJommiXFw1Q/JslXCSgrI0qTpzjN+SwVL2FX9dI+iSU6RqpfK1khqZha8o/TnK2KiW/nKiYgD5UrhWOW1EtTfIGWwFn4e7WgxZOJY8zse4oqcYqKaR8oXQNJzVRKn25LP6eKJkoDjKuaatt9/kx52IIWX6e5eSyBJVaEWwq7EEvH9gym5JJCoVAoFAqFIkM08SsomChdbYnrVr8lX1aBYCqFLrk6yD5MtI/nHc5vt4nNWUzoW+u467nUvFj49S6F7IgKCtY8Ydl0TiZgyCsPk9tFwcSPm6xiYiRTrmRiaSYqmYCcYBgjP0peSy3l1UKsUg+fsVXJfH2F0LiszoygS1ELxTtLFdO+iOZWNRPVTUrfUiepz+2qaqJ9QBspU+sH50HgL0kkLaUwuixKpRRKLikUCoVCoajimMwkFcuAJqGxeqPNuDlFC7FU9WIZIZiy9ALJ1EKeHBrOilgay7eVZMqVGG0qprEwubkEEzBfxQQg82MqEZolU/mx0Myx0LkpGFO91NLm+3dXkdVIJkAa79NUTK6eslKsVTm2lA9TCWP+TJKaKU3fum2qqolQ8mxK92X1L6xSd5ZYWpl0yKTSMT2DKbmkUCgUCoVCocgwh2AC6pOSGpYgmKhOQH1CGpc7Tc00VbF0CCFLu/ioSCRJzY8J0rURlG9I+kvJ7HsfKiZOMFHZInnECKa4TXg6WV3T6v/l6nF+fWQKmdSiXuIYUzJJJtRzVpRraWspVO4sCOaSclJSM5XSt25LV51L06V1mEI2SWk4DikMrQXqp7QfKLmkUCgUCoWiguNaqUSxOwyCv45EMAHTw+TmokYwpWW1qpgIY0TTeWMJZcXU4+covFIl0y4k077Mvuk4KUyOypNWlANCSN/SJBPftgRq6qUxpdmcFeSmoEQyTQ2V4wqO8wyVm3vvKBFNaZ1KRuDSPaG0LV3h0OXbV+veQiiN+90d3vPCPsifsyOUjusZTGk2hUKhUCgUCkUGmpzQZER6mC79Wt0N/5ZGq2riEEiiHvYg6rErxibcfD+f0E7tN6X+smQ/SokpPhHmJvR8O11Dqe9JE2krHEvv0/5wnn0kva6t7byLQmWK6ilt21o7Se1a+7yrUqyk8JtCFtbSm+GfdExLPqW8zbCnlEepPh37N4ZO+Hce2Ff5+zqnqf3nUKHKJYVCoVAoFFUc069miiVgvLJBUjBxSEvPu+3zQuUkw9lMfTBBwUTHpYoHvp+w1IP9kmTBLuqlluNKXj8lP5gWkOGwpGKK0g1FUL/h/Yv3llTFFHkozVAxST5Mroay2bekYsrNvl3K8K7diJpvC8fPv+Y17yW+4p+cPlcwSWN3angcBz/OCNeByuXbpqiY0vMaUzG546erykpjc6qqqRa21mIEXqpL7d5RMqIvKZt4veYol441bGxf9Z46vo/pGew4r7RCoVAoFAqFYq+gB+BUwRSnaXuUnPKQvnRYRa5akPNfQkWyDxXKvpQtNRNpw/5JkJQS6fupKqY4j5COG8Knx3czVTS96avEVEnF5PfPVDGlSqZi/Sp9cWp/SK+VpFypH7+/6WKJoMpVS72oJvP5VO4ZYyqm1uPmpgGmqVJq6WrjsVW9VNtXUjbxY8aVjOevWtoVqk6aD1UuKRQKhUKhqMACC0/2FYePoFQqK5hS1RCRBJIPE6Vz23bvT6mHS2ryzcujesTmvrEXE0dtla2WdPvAHAVT7Zgpq5O1Gg/zax7ej6uYJPVbrGJyXkzc7Ju2A7t7MfF68PzT1eR43cnsG2AKrEjlw9IlfU3yY6LPeZ32RSwGBVOLZ5q0bRf1EseYH1PJ9Fsy/AbqKqb0c03F5Mob92Ka4tdUU6uV0qVpS+OxlP8UHzXJGDwuSzYJl+oZ6nR+PyxIOEvCaxki6biewZRcUigUCoVCoVBkaCGYgEDs+FW/CqvJhXzlUJgxSGRJKUSO16t6fIVkkso/T5TIoqnE067L3teMh/dFMqVm3+7oJIRrBsmUriRH9aD8eZgc7SNiIw3TlEI0W0km6fOSkMZhPX0bEbwUwQRMJ5lqq8oB9Xautblk+r00ySSlayWbWozAx/Iv7RurU3qfTBVjLe1Tw7EqnQgXXZXUAiWXFAqFQqFQlGGPK95fsV+kBBNHjWAC6r9qSxNICVOJFIlg4nUiTCGZDhG7eDPtAgOTTWglZQ4nKAFAUsHJiplcKVdbUQ5wRNGuKqYaOMFEdUxJTsk3rEZ+tCpOdsFU/6X8eJlwWpJgAuokU0nF5D7n6kQDmVxuIfYsbEbEtpJMc65d7T7Zmq5ENI0dV9o3prQaI5tKedXyPCacyT33yJ7BlFxSKBQKhUKhUHgYxKoljlTB5CCHpvEwOaCNZGpBNolkE3sqm+dZCpPjdfJ5scnR0kRTbeLFUSt3LNRl18nONOJOXta9pdVIydQhVvj4/ayLBKP4+BrXSKappt+pyXeUV0XB5N7HZt9cxRQj9paSwrhqk/l9TGSnGnwX81mYYAJk4+8x0+9UnbMP028pXYpdCMJWRdMYWdMSzpoeVzufllC42r1Luv/NaZ+zIqRUhTQPSi4pFAqFQqEowqJ9Uqy4WKgpGdJJqUvfNhHdB1KCScKYoiTLM1E+zKrXjPZoKbeVSJJDAXNFxhy0hFqVlEyEkpdXSlKSj5fkC5T6MWXqp0Ylk0QwpUh9mCRSdKwv1hQ2Y5P4s5jwjhFM5znOOSQl01gYbDmvXD3WMm7GylhChdaqaKK05Xt2Tpi1llHLt7V+/J62yzPFWFu2kk/HQh4d2zOYkksKhUKhUCgqsEclyVYsAwp3GlMwAUF9UiMHgFzBRMcsBUnBlJNJMsGU1svneV5kWVJuzXh8LKRq3wRTWqc0NGd8MlhXMQFBydRFJFFs+O3KK4fKRflN8WVK+gxXMZW8f2pm31PNqOO67KZmKhF8vA7yceME0xT10hQ1DiCrmFw+cp3Sa+K2tamYSp+Buh9Trf4tacbQet8c901qMwRPj99FpTXm3SRh7r33WEij9h8ujusZ7DgDyxUKhUKhUCgUZwLpYb22jU/EoyXlbZcpOpaeCKSTW0lhUVJdHLL/x64k13mFkpjhX7q/E7YFspLv66K/vP9I/Y1IJtpeCrfsbCeqlEqkUz/8a9kntXW8v5w2vc5j162HzV5jaBlzHdqWnE8xph4E6ufUch7W9CKJlbZxer14nlRKWm6pjvl1sqICqKX9lxiLdH2WuJbpGJ1aVktdeJrWe77Jjup2VpKeJy7KeYxBlUsKhUKhUChGsD3vCijOAalZMyCHOZVMmgFufhwrD/jkcErYxxy0Kph4HQ7x1++S6XirgmkJtPjBSPXgITlSHqEPyGq4KP1QJIXKUakuvbyqHO3L6tpAhpQw5sPEFUyl1eRKKqbUiJrv3xekUFcOURE2Q8HUEk7pyqmft2T8Pea3VlOMpftLfkzx8eenZOLHTyUVx8zAgXr4XCmPpfyiamglZs5Ddbo/0uh4nsGUXFIoFAqFQqFQiODhcUBKBNhoYiOtJCeFyQHIQuVc2mXC5STPm9Jy5uk2qfx9TOqnhLWkqJFMU/xfpnrItCrYpLY7JJKJ9s9BiZSU9vPzKa0mV0zPydgCMbILSoSEZPDNy3bblg2RG8PYWJxCMoX6TieZeHppLBGmGH+3phlDK6kzJf0Y2dRCEE0hkZbyUiJcZHXQIUPJJYVCoVAoFBUcV7y/YnlICiYOaaIqEUzpe6A8Cd23mmkKljJSbj2X1smmZPzdYkwc57GM9xJHTenBSSabTOBLqriUsAx5ur4k9aHU8Nud61bcPxWSBxMPx1uKYCqXv19j7zEFE7A7wdSqtklRO/cSqVwnA8dVY7Xx1OpndlYkE2Fq+7akrxmC83yAdvJ8ah3nHHf8OK5nMCWXFAqFQqFQKBQRSpONMQWTFCLnjpPMdssqprS8qSit2FUKkeP1knAek5mWsJMWhcvY53QyvBR5UQvT61mZY6bfuxp+uzz2o2QijBFMrjyTEUxUj1az75D/cgbRrSFVJXKv9BnYH8GU5kOQjL9rdRSvUTKm0raufQ551JVMab1bz28K9qFmAqaHz9XyayHbJLS2yeUioQ4DqhdTKBQKhUIxgn6PL8UxoEXdMhY2lZI36ecWM+B94hCWVx9Dajw8lnaXcpYE2djyzwRuKMzTpX/JCDdOkxt+Uz8q9T1OAkn758Imviil/tRiOu+2182+S+mWgGQ63DKhn2vyvQtK5z9m+k2fU4N1nt+YwXpL25eUPq1jecqYr2EqSZWO2RLGDMGn5jc3fS2PJfI6XxzPM5gqlxQKhUKhUCgUo5BCmeg9UFcwhf0lo91xFdNSqIXKtKiYDgFSCM2Yiql0vdyxuTGxVOYSkz0pr1YlE+9bJSUTD5Ur9T1OMElKJp7XFExRMAHIwuQkA2rpGreYurdiioIoV+7sZvK9VPhr6fxblEx829JKJsmTyeUzTc2UphtLW8Kc9m4NR2tRNKX5teTbqvBqwdQ2U+XTdCi5pFAoFAqFogILHFG8v2I5SJPOlGAC5ElP8NYJ/i2lMDnpM1c77INommLMvE+0kBdTPGMINe+YGuHEQ+SmEhbGVLydrDwxLoXLlfyY4nSxH1OL4bdEcEqeTKGeu/eBWl9q9WFydYlJJsmweC4BWCKYOEnM0/J6uW3nEyKXokbU7Ht1Oan8Un1KZO6UMbdLaORcUm+K71Er2ZTm21qvJUmnqWWcLY7rGeywf5ZRKBQKhUKhUBwUSuqWcthTV0hTD5Pzx59TuNw+w+TScJyWtLX0UujMWEhPCbVJ4NyJmzFGJJ/SyVsIgctD5aSQuTmhcmk6X0esIIXMTYVEUnFk14kRLnGIVv361cLkzkNxIY1nKfS1NJ6XnsjXwuWk0MS07cfC5Wxlv1S+PEatON56X0J7COzUY3bF1FCz1vA5nvdcovT4w+COF6pcUigUCoVCUUVtsqm42CgrGtpD5Fz6WMEU0tTD5Hx5yYS0pmZakoxaKkxuKaJKyic2pm5XWsxVMO0SHscJJlIzpWqI+DN8feohQ3KoHFfQSEomIFexSCFzuyJVL2XhbhUFE50HHec+l82+S2WMoaZmmaJg4vWmbVPC5JYkR1qUTFQfl758H+Jm65TflJA5advUsDnpPCScJbk4Rc0ETFM0pflPKad07NQ8DgHH9AymyiWFQqFQKBQKxU4oPcSXFEzj+dXTlhQQU4ilszLwPg+j8CkqptL7qQqm/3979xcqx1XHAfz7tTUIGog11KRJ0IqhNIpgKKH+QQotEkNpFBTqi4EKoQ8F+9ZIwPca8EGslAsKFYJF0NggNyRpUXxKaSxJ2pikvS2FhhsaaiEqhWq8Px9mtnd29szMmdnZmZ3ffj/hkt2dszPnl9/eu797cs7Z/NK3KjEzmT5sG3i87BfHsmPZ10h+Jt2sZjOFxM5gitHVZt+h7+GYwY46G33PasZJvZlAMZuBTz9TsHB2VcX33rwOjDTJXexspmmvEzqHZje1TzOXREREpMJw1vtLe2L21Mj+ElQ2G6buDKbkeHgW01gfOloyV3cGU5cDSvlr5We5JI+tz7LIzmKq2oep7gwmMyvdeymvaibTeJyjWIqtITtwVPyMtcxL+yPpoE52P7DkfnZWyvgAU5MZTaHXUNnsojozmJI+Fe/DlG9bpmo/nphZTLHfz0Ub+DfdEyhG8N8ud33a5Gyr8L5S8TOZQopmNwHls5myceSf17e6M5mA8dhiZ+k02acp5jzTnm82hlODTfWOTPIIycskL5A8RnJTQbu9JK+QXCF5aJprioiIyOJQDdGPJr8U5JXtwVS2D1PM3i19qRo0qrOXUtU5yv7U7WPRfjExsyDy+8IUzXSaVtVMpqL9mEZ/5/daWf9UufWdmbL7MWX3ZMq2W79e8etuNKMpNKtpmplOob2Aaj2/pP00mzc3Ffr3qzOLaZbKXvuhJXuTM5cmZyqV7csUalO0V1NwZiDC+zPlnzdPgyJNZzI1nc3U5mwk7d2UqFuDTfudfBrAF83sSwBeA/DjQIduAfAUgG8B2AXg+yR3TXldERER6YrZ7L5KqIYYnqINmkPHyp8X/qW0zUGmpucqGuBpa1CpTtuyvsT88ps9lm8z2T78/TqxPMis9hK5kdDG38WDlOMDS9nj+Q2/x49lBzbLN/0etYkdaGoysFS2PG6y7eRG03ldDTDlB4lH7UPfyzGb94cGmLr45b5oUKbOxt8xm3+XbQAe6kNhvzJ/6sbUh8b7szUcZBpdc1YDTb0MNg2oBptqWZyZncrcPQPgu4FmewCsmNmbaSefBbAfwN+nubaIiIh0obyInTHVEANQtjwufz+/RA5Y/2U4ZmlN9vHQsVhtfcR8G9o4T/HSuNCypOyyt/WlcvkchZbMjZbJzWKJXNboebFL5co2/F6DZQaYSpbKYW1smVZoeU8br72iPpZt8J2/dv65yfHqJXKha1WJWSaXH9Aq2uy7j2Vy+c3Uy9uWL5nL5yRpG7f5NzA+8BfaADzbh6rHkvOVL53LPzd0ji5Ms1F7kyVz+WuPtDXY1taSvDjDqsHanIP4CIATgce3AXg7c/9q+piIiIhIGdUQIj1pstlw25oOTmU1WprTwzItaV/TAcA6gwVdb9jfxkDGPMxokkGoXYNVzlwi+TyALYFDh83subTNYQA3ARwNnSLwWOErmuRBAAfTux8A/3u1qo+ObAbwbt+d6MgixQooXu8Ur2+LFu9dufsngZubZ3i9j5E8m7m/ZGZL6e1aNYQ0l6+/XrhxRPWXX4rXN8Xrm+L1bdA1WOXgkpk9UHac5AEADwK438ILrK8C2JG5vx3Aasn1lgAspec+a2b3VPXRi0WKd5FiBRSvd4rXt0WMN3vfzPb21RfUrCGkOdVfitcrxeub4vVtEePN3h9aDTbtp8XtBfAEgIfM7P2CZi8B2EnyTpIbADwM4Pg01xUREZGFoBpCREREpHu1a7BpFxT/AsBGAKdJniP5NACQvIPkMgCY2U0AjwE4CeASgN+Z2cUprysiIiLOqYYQERER6V6TGmzaT4v7fMHjqwD2Ze4vA1hucIml6iauLFK8ixQroHi9U7y+Kd4eTVFDSHNz9RrogOL1TfH6pnh9U7w9qluDMbxNkoiIiIiIiIiISDV9zqaIiIiIiIiIiDQ2N4NLJI+QvEzyAsljJDcVtNtL8grJFZKHOu5ma0h+j+RFkmskC3fAJ/kWyVfSPa3OFrWbdzXi9ZLf20ieJvl6+vcnC9oNOr9V+WLi5+nxCyR399HPtkTEex/JG2k+z5H8SR/9bAPJX5O8TjL4ceQOc1sVr5vcAgDJHST/TPJS+rP5R4E2rnIsxVSDFbYb9Hv0iGow1WAefoarBhs77i23qsEm2wwzx2Y2F18Avgng1vT2kwCeDLS5BcAbAD4HYAOA8wB29d33hvHeDeAuAH8BcE9Ju7cAbO67v13E6yy/PwVwKL19KPR6Hnp+Y/KFZO+1EwAI4F4AL/bd7xnHex+AP/Xd15bi/QaA3QBeLTjuJreR8brJbRrPVgC709sbAbzm+ftXX5WvB9Vg4XaDfY+uG6+z/KoGM18/w1WDTRx3k9vIeN3kNo3HbQ02NzOXzOyUJTuSA8AZANsDzfYAWDGzN83sPwCeBbC/qz62ycwumdmVvvvRlch43eQXSb+fSW8/A+Db/XVlZmLytR/AbyxxBsAmklu77mhLPL0+K5nZXwG8V9LEU25j4nXFzK6Z2cvp7X8h+RSQbblmrnIsxVSD+aYaTDWYg5/hnl6flVSD+ea5BpubwaWcR5CM1OVtA/B25v5VTCbCGwNwiuTfSB7suzMz5im/nzaza0DyAwTA7QXthpzfmHx5ymlsLF8heZ7kCZJf6KZrvfCU21guc0vyswC+DODF3KFFzLGoBssa8nt0XZ7yqxosvs1QqAYb5ym3sVzm1lsNdmuXFyP5PIAtgUOHzey5tM1hADcBHA2dIvDY3H7cXUy8Eb5mZqskbwdwmuTldHR37rQQr5v81jjNYPIbEJOvQeW0QkwsLwP4jJn9m+Q+AH8EsHPWHeuJp9zGcJlbkp8A8HsAj5vZP/OHA0/xnGPXVIN9SDVYwSkCjw0yvzVOM5j8BqgGUw2WN9TcxnCZW481WKeDS2b2QNlxkgcAPAjgfjML/eNdBbAjc387gNX2etiuqngjz7Ga/n2d5DEk00Ln8o2vhXjd5JfkOyS3mtm1dArj9YJzDCa/ATH5GlROK1TGkn1jMLNlkr8kudnM3u2oj13ylNtKHnNL8qNIipqjZvaHQJOFyrF3qsEanWMw79GqwdapBqvVZihUg43zlNtKHnPrtQabm2VxJPcCeALAQ2b2fkGzlwDsJHknyQ0AHgZwvKs+do3kx0luHN1GsuFmcBd9Jzzl9ziAA+ntAwAm/tfQQX5j8nUcwA/STzy4F8CN0VT1AaqMl+QWkkxv70HyM/Yfnfe0G55yW8lbbtNYfgXgkpn9rKDZQuV4kakGm+TgPbouT/lVDZbw9DNcNdg4T7mt5C23rmswm4NdxdP/IFtBsq7wXPr1dPr4HQCWM+32IdlR/Q0kU31773vDeL+DZETyAwDvADiZjxfJJyKcT78ueo/XWX4/BeAFAK+nf9/mMb+hfAF4FMCj6W0CeCo9/gpKPpVnCF8R8T6W5vI8kk1xv9p3n6eI9bcArgH4b/q9+0Pnua2K101u03i+jmR69YXM++4+zznWV+nrQTWY+XuPrhOvs/yqBjN/P8Mj4nXzPh1Rk3jLrWowJzUY086LiIiIiIiIiIjUNjfL4kREREREREREZHg0uCQiIiIiIiIiIo1pcElERERERERERBrT4JKIiIiIiIiIiDSmwSUREREREREREWlMg0siIiIiIiIiItKYBpdERERERERERKQxDS6JiIiIiIiIiEhj/weX5PQYyzdQFwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -515,7 +328,6 @@ } ], "source": [ - "%matplotlib inline\n", "from matplotlib import pyplot as plt\n", "from mpl_toolkits.axes_grid1 import make_axes_locatable\n", "from matplotlib.patches import Circle\n", @@ -524,17 +336,15 @@ "# First compute the scattered field\n", "scattered_field = np.empty((3, points.shape[1]), dtype='complex128')\n", "scattered_field[:, :] = np.nan\n", - "scattered_field[:, ext_indices] = 1./np.sqrt(vacuum_permittivity) * exterior_values\n", + "scattered_field[:, exterior_indices] = exterior_values\n", "\n", "# Now compute the total field\n", "total_field = np.empty((3, points.shape[1]), dtype='complex128')\n", "\n", - "for i in range(exterior_values.shape[1]):\n", - " total_field[:, ext_indices[i]] = scattered_field[:, ext_indices[i]] + plane_wave(points[:, ext_indices[i]])\n", - " \n", - "for i in range(number_of_scatterers):\n", - " # Add interior contributions\n", - " total_field[:, index_sets[i]] = 1. / np.sqrt(rel_permittivities[i] * vacuum_permittivity) * interior_values[i]\n", + "for ext_ind in np.arange(points.shape[1])[exterior_indices]:\n", + " total_field[:, ext_ind] = scattered_field[:, ext_ind] + plane_wave(points[:, ext_ind])\n", + "total_field[:, interior_indices0] = interior_values0\n", + "total_field[:, interior_indices1] = interior_values1\n", " \n", "# Compute the squared field density\n", "squared_scattered_field = np.sum(np.abs(scattered_field)**2, axis=0)\n", @@ -546,85 +356,53 @@ "fig, axes = plt.subplots(1, 2, sharex=True, sharey=True)\n", "\n", "f0 = axes[0].imshow(scattered_image, origin='lower', cmap='magma',\n", - " extent=[-2, 2, -2, 2])\n", - "for c in centers:\n", - " axes[0].add_patch(\n", - " Circle((c, 0), radius, facecolor='None', edgecolor='k', lw=3))\n", - " \n", + " extent=[-2, 2, -2, 2], vmin=0, vmax=5)\n", + "axes[0].add_patch(\n", + " Circle((-1, 0), .4, facecolor='None', edgecolor='k', lw=5)\n", + ")\n", + "axes[0].add_patch(\n", + " Circle((1, 0), .4, facecolor='None', edgecolor='k', lw=5)\n", + ")\n", + "\n", + "\n", "axes[0].set_title(\"Squared scattered field strength\")\n", "divider = make_axes_locatable(axes[0])\n", "cax = divider.append_axes(\"right\", size=\"5%\", pad=0.05)\n", "fig.colorbar(f0, cax=cax)\n", "\n", "f1 = axes[1].imshow(total_image, origin='lower', cmap='magma',\n", - " extent=[-2, 2, -2, 2])\n", - "for c in centers:\n", - " axes[1].add_patch(\n", - " Circle((c, 0), radius, facecolor='None', edgecolor='k', lw=3))\n", + " extent=[-2, 2, -2, 2], vmin=0, vmax=5)\n", + "axes[1].add_patch(\n", + " Circle((-1, 0), .4, facecolor='None', edgecolor='k', lw=5)\n", + ")\n", + "axes[1].add_patch(\n", + " Circle((1, 0), .4, facecolor='None', edgecolor='k', lw=5)\n", + ")\n", + "\n", "\n", "axes[1].set_title(\"Squared total field strength\")\n", "divider = make_axes_locatable(axes[1])\n", "cax = divider.append_axes(\"right\", size=\"5%\", pad=0.05)\n", "fig.colorbar(f1, cax=cax)\n", "\n", - "plt.show()\n" + "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "We now evaluate the bistatic radar cross section with the given incident angle. Here, we are only interested in backscattering into negative y plane. First, we define the evaluation points on the lower half of the unit circle. For the RCS we define the 0 degree angle to point into the negative x-direction, and correspondingly the 180 degree angle to be pointing into the positive x-direction." + "Plotting the bistatic RCS is also easy. The code below demonstrates this." ] }, { "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [], - "source": [ - "number_of_angles = 400\n", - "angles = np.pi * np.linspace(0, 1, number_of_angles)\n", - "unit_points = np.array([-np.cos(angles), -np.sin(angles), np.zeros(number_of_angles)])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We now assemble for each scatterer the electric and magnetic far-field operators and evaluate the scattered field contribution for each of them. The assembly of the far-field operators will be done in dense mode as they are sufficiently small." - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], - "source": [ - "far_field = np.zeros((3, number_of_angles), dtype='complex128')\n", - "\n", - "for i in range(number_of_scatterers):\n", - " electric_far = bempp.api.operators.far_field.maxwell.electric_field(sol[2 * i + 1].space, unit_points, k0)\n", - " magnetic_far = bempp.api.operators.far_field.maxwell.magnetic_field(sol[2 * i].space, unit_points, k0) \n", - " far_field += -electric_far * sol[2 * i + 1] - magnetic_far * sol[2 * i]\n", - "far_field *= 1./ np.sqrt(vacuum_permittivity)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We now have everything together to plot the bistatic RCS." - ] - }, - { - "cell_type": "code", - "execution_count": 16, + "execution_count": 10, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAHwCAYAAAB6wRHCAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd3ib5b0+8PvRtC1ZXvKe8cpexElIyADCLJRVRqEtUEqBttCectqeDmhP+yulp7S0p4WeDlraMsoqewVKWYEsJyGxM+w43nvIlmXZlizp+f0hKQTqJLYs+dUr3Z/r4rqwJb/v145t3X7G9xFSShARERFR+GiULoCIiIgo1jBgEREREYUZAxYRERFRmDFgEREREYUZAxYRERFRmDFgEREREYUZAxYRERFRmDFgEVHIhBC/E0LcOUv32i+EOH027hUqIcTpQgifEGJECHHecZ5TIoSQQgjdFK/5hcD1pBCiPLwVE1GkMGAR0XEJIZqFEGOBF/hBIcRLQojC4ONSyluklP9vitc5axr3/YsQ4sfHvk9KuVBK+dY06w+GmZHAf81CiG9P8rxrhBDVged0CSFeEUKsCzyWKoT4sxCiWwjhEELUCyH+6wS37ZRSmqWUr06xxreEEOOBe9uFEO8IIRYf83n/SUppns7nTUTKY8AiopP5ZOAFPhdAD4DfKFxPKFIDn8PlAO4UQpwdfEAIcTuAXwH4CYBsAEUAfgvg4sBTfgnADGA+gBQAFwE4Eub6bg3UlwHgLQAPhfn6RDTLGLCIaEqklOMAngKwIPi+Y0eahBBWIcSLQoghIYRNCPGuEEIjhHgI/tDyQmCU5luB5z8ZGBUKjtosDLz/JgCfAfCtwPNfCLz/6CiYEEIrhPiuEOJIYFRp17Ejayf4HKoB7AewLHCdFAA/AvAVKeXTUkqnlHJCSvmClPKbgQ9bCeBRKeWglNInpTwkpXxqql+3QK0/F0L0CyEaAVxwgvo8AB479mtMROo0pTUARERCiCQAVwHYdpyn/CeAdgCZgbdPBSCllJ8TQqwHcKOU8p/HPP8VADcAcAP4HwCPAFgmpfyDEGItgHYp5R3HudftAK4G8AkA9QCWABidwudwKoBFAO4OvGsNgAQAz5zgw7YBuEsIkQZgi5Ty8Mnu8zFfBHAhgOUAnAD+cYL6DPCHy+N9jYlIJRiwiOhknhVCeOCfJusFcO5xnjcB/zRisZSyAcC7J7qolPLPwf8XQvw3gEEhRIqU0j6Fmm4E8C0pZV3g7b0neX6/EMIIf5j6BYBnA+/PANAfGDk6ntsAfB3ArQD+IIRoAXCblPKVKdQJAFcC+JWUsg0AhBB3Azj9Y8/5tRDi5wCSAIwBuGyK1yaiKMUpQiI6mUuklKkAjPCHjLeFEDmTPO8eAA0AXhNCNE62mDwoMG3208AU3zCA5sBD1inWVIjprYOywh8QvwF/uNEH3j8AwHqiHX1SyjEp5U+klCvgD2RPAHhSCJE+xXvnAWg75u2WSZ7z1cDXOAH+0a6nhBBLpnh9IopCDFhENCVSSq+U8mkAXgDrJnncIaX8TyllKYBPArhdCLEp+PDHnn4N/IvIz4J/4XhJ4P3iOM//uDYAZSHU/wsA4wC+HHj31sDbl0zxGsPwL4Y3AZgzxVt3wR8Ig4pOcH2flPJd+IPqOVO8PhFFIQYsIpoS4XcxgDQAByd5/EIhRLkQQgAYhj+IeQMP9wAoPebpyQBc8I8gJcEfWo718ed/3AMA/p8QoiJQ1xIhRMYUP5Wfwr+APiEwHfl9APcLIS4RQiQJIfRCiPOFED8LfF53CiFWCiEMQogEAF8DMASg7vi3+IgnAHxVCFEQWMd13JG9wP3WwL/Iff8Ur09EUYgBi4hO5gUhxAj8oekuANdJKSd78a8A8E8AI/CPDP32mL5VdwO4I7DD8BsA/gb/VFkHgAP490XdfwKwIPD8Z/Hv7oU/uLwWqOtPABKn+Pm8BGAQ/sXnkFLeC/+i+TsA9ME/OnYrPlynJQE8CKAfQCeAswFcIKUcmeL9/ghgM/zrxHYDeHqS59wX7NUFf4uGO6axxouIopCQ8mQj8URENBVCiA3whykXgKuklJvDcM3Pw9+LKwHAAill40yvSUSRx4BFREREFGacIiQiIiIKMwYsIiIiojBjwCIiIiIKs6jq5G61WmVJSYnSZRARERGd1K5du/qllJmTPRZVAaukpATV1dVKl0FERER0UoGjsybFKUIiIiKiMGPAIiIiIgozBiwiIiKiMGPAIiIiIgozBiwiIiKiMGPAIiIiIgozBiwiIiKiMGPAIiIiIgozBiwiIiKiMGPAIiIiIgozBiwiIiKiMGPAIiIiIgozBiwiIiKiMGPAIiIiIgozBiwiIiKiMGPAIiIiIgozndIFEBEREQVJKeHy+OCTEgBg0Gqg06pvPIgBi4iIiGaVzyfRPOBETYcdh7odaBlwotU2it5hF4ZGJ+D2+j7y/OQEHdKSDCjOSEKp1YR5uRasLElDWaYZQgiFPosTY8AiIiKiiGuzjWJLQz+2HO7He0f6MTQ6AQDQawUK0pJQlJ6EhbkpSDXpYUnQQ6sREADGJrwYGp3AgNONlgEn/rG7AyOuFgBAusmAM+dl4YLFuTit3AqDLnpGuhiwiIiIKCJaB0bx/N4OPL+3E/U9IwCAHEsCzpqfjZUlaViUn4LK7GTopzEFKKVE88AodjbZ8P6Rfmyu7cZTu9qRbjLgM6uL8NlTi5FtSYjUpzRlQgbmOKNBVVWVrK6uVroMIiIiCtGo24Nn9nTgyep2fNA2BABYWZKG8xblYkOFFeVZ4Z3Wc3m82HK4H3/f0YY3DvVAKwSuqCrArWdWID81MWz3mYwQYpeUsmqyxziCRURERDPW3O/EQ9ta8ER1GxzjHszLSca3z5+HTy7Ni2jQMeq02DQ/G5vmZ6NlwIk/bWnCYzvacLhnBE99aW3E7nsyDFhEREQUsgOdw7jvzcN4pbYbWiFw3qIcXL+2BCuK02Z9AXpxhgk/ungRbt5YBntgjZdSGLCIiIho2mra7fj1vw7j9QM9SDbq8OXTy3DtmpKoWP+Un5oY8enBk2HAIiIioilrGXDiZ6/W4aWaLlgSdPj6WZW4/rQSpCTqlS4tqjBgERER0UkNOt349b8O4+FtLdBpNPjapgrcuH4OkhMYrCbDgEVERETH5fNJPLazDT995SBGXB5ctbIQXz+rEllRMBUYzRiwiIiIaFIHOofxvWdrsKd1CKeWpuOHFy3C3JxkpctSBQYsIiIi+giny4Nfvl6PB99vRmqiHvdeuRSXLs+P2mNpohEDFhERER31Tn0fvv2Pfei0j+PqVUX4r/PmIjXJoHRZqsOARURERHC6PLj7lYN4eFsryrPM+MeX1mJFcZrSZakWAxYREVGc29Fkwzee3Iu2wVF8cf0c/Oc5c5Gg1ypdlqoxYBEREcUpl8eLn2+uwwNbmlCYloTHb1qDVXPSlS4rJjBgERERxaGmfidu+/tu1HYM45rVRfjeJ+bDZGQsCBd+JYmIiOLMcx904LtP10Cn1eCP11bh7AXZSpcUcxiwiIiI4sSo24P/fn4/nqhuR1VxGn599XLkKXxmX6xiwCIiIooDdd0OfOXR3TjSN4JbzyjHf5xVAZ1Wo3RZMYsBi4iIKMY9sbMNdz5Xi+QEPR66YTXWVViVLinmMWARERHFKJfHix++cACPbm/FaeUZ+NVVy5GZbFS6rLjAgEVERBSDuu3j+NIju7CndQi3bCzDN8+dC62GR93MFgYsIpo2l8eLt+v6sK3RhvoeBzrtYxhze2HQaZBpNqIs04wVxWk4fV4mspITlC6XKO7saLLhy4/sxqjbg99+5hR8YnGu0iXFHQYsIpqy+h4H/vp+M17c1wX72ASMOg3m5VowP8eCJIMWbq8P3fZxbD7Qjcer2yAEcNb8bNy0oRRVxWk8KJYowqSU+Mv7zbjrpYMoTE/C37+4GhXZyUqXFZcYsIjopHqHx3Hv6/V4oroNBp0G5y3MwaWnFGBNaQYMun/fhSSlxMEuB17c14lHd7Ti9QM9qCpOw48vXYR5ORYFPgOi2Dfm9uK7z9TgmT0dOGt+Nu69aiksCXqly4pbQkqpdA1HVVVVyerqaqXLIKJjPL27HXc+Wwu314fPnlqMr55ZgTSTYcofP+b24qldbfjlPw9jeGwCt2wsw61nlvOcM6IwarON4uaHduFg9zC+flYlbj2jHBqut4o4IcQuKWXVZI9xBIuIJuV0efD95/bjH7vbsaokHT+7fAlKrKZpXyfRoMXn1pTgwiV5+PFLB3Hfmw14t6Eff/zcCmRZuD6LaKbeqe/DbX/fAykl/nzdSpwxL0vpkggAO4wR0b/pH3Hhyt9vxdN72vHVTRV49IurQwpXx0ozGfCLK5fid59dgcM9Dlx033uoabeHqWKi+COlxP1vNuC6B3cgNyUBz9+6juEqijBgEdFHdAyN4crfbcWRvhH8+bqVuP3syrB2ez5vUQ6eumUtNAK48vdbsaPJFrZrE8ULx/gEvvTwbtyzuQ4XLsnD019eO+M/gii8Ih6whBDnCSHqhBANQohvR/p+RBS6Ntsorvi/99E34sLDX1gdsb+GF+RZ8OytpyE3NQGff3AHdrUMRuQ+RLGooXcEl9z/Hl4/2IM7LpiPX396GZIMXPETbSIasIQQWgD3AzgfwAIAVwshFkTynkQUmkGnG9c9uAMjLg8eu+lUVJWkR/R+WckJePTGU2FNNuL6P+/gdCHRFLxa241L7n8PQ6MTeOgLq3Dj+lK2P4lSkR7BWgWgQUrZKKV0A3gMwMURvicRTdP4hBdf+OtOtA+O4YHrVmJhXsqs3DcnJQGPfvFUWBL1uPFvO9E7PD4r9yVSG69P4mevHsItD+9CWaYJL9y2DmvLeJ5gNIt0wMoH0HbM2+2B9xFRlJBS4j+f3Is9bUP41VXLsGpOZEeuPi4/NREPXFeF4TEPbn54F1we76zenyjaDTrduP7BHfjtW0dw9apCPH7zGuSlJipdFp1EpAPWZOOWH2m8JYS4SQhRLYSo7uvri3A5RPRxD21rwUv7uvCtc+cpdpzG/FwL7r1yKfa0DuGOZ2oRTf35iJRU22HHJ+/bgu2NNtx92WLcfdkS9pBTiUgHrHYAhce8XQCg89gnSCn/IKWsklJWZWZmRrgcIjpWbYcdP37xIM6cl4WbN5QqWsv5i3Nx25nleHJXO577oPPkH0AU456sbsOn/u99eH0ST9yyBlevKlK6JJqGSAesnQAqhBBzhBAGAJ8G8HyE70lEU+AYn8BXHt2NDLMBv7hiaVR0ff6PsyqxojgNdz5Xi86hMaXLIVKE0+XB7U98gG8+tQ+nFKXhhdvWYVlhqtJl0TRFNGBJKT0AbgWwGcBBAE9IKfdH8p5ENDU/feUQ2myj+M3Vy6d19E0kaTUC9165FF6fxDef2gufj1OFFF8Odg3jovu24Jk9Hfjapgo8fONqWM1GpcuiEES8D5aU8mUpZaWUskxKeVek70dEJ7e9cQCPbG/FDafNiXg7hukqzjDhjgsW4L2GATy0rUXpcohmhZQSj25vxSX3v4fhcQ8e+cJqfP3sSmijYGSZQsPOZERxZnzCi+88XYPC9ETcfk6l0uVM6upVhXh1fzfu2VyH8xfl8MxCimmDTjfueLYWL9V0YX2FFb+8ahlHrWIAj8ohijO/+ddhNPY7cfelS6K2+7MQAj+6aCHcHh/ufuWQ0uUQRcxbdb0491fv4LUD3fjWeXPx18+vYriKEQxYRHGkZcCJP7zTiMtOyce6iuhuUlhiNeGmDaV4Zk8HtjcOKF0OUViNuj343jM1uP7BnUhN0uPZr5yGL59eHhWbTSg8GLCI4sj/vHoIeq0G/3XePKVLmZKvnFGO/NRE/OD5/fB4fUqXQxQWbx7qxdn3voNHd7Tii+vn4Plb183a6Qk0exiwiOLEzmYbXq7pxs0bypCtkjVNiQYt7rxwPg51O/DUrnalyyGakV7HOG59dDc+/5edSDRo8cTNa/C9CxawcWiMis4FGEQUVj6fxI9fOohsixFf3DBH6XKm5dyFOVhWmIr/feMwLlmezxcjUp0Jrw8Pb2vBL1+vx/iED7efXYmbN5bCqOP3cizjCBZRHHi5tgt724bwzXPnRe3C9uMRQuBb585Fl30cj2xvVbocoimTUuL1Az0495fv4IcvHMCSglS88h/r8dVNFQxXcUBdv2mJaNp8Polfv3EY5VlmXLpcnWetry234rTyDPz2zQZctbIQZiN/dVF029lsw72v1WNr4wDKMk348/VVOGNuFoTgIvZ4wREsohi3eX836ntGcNuZ5apuWviNc+ZiwOnGg1ualC6FaFJSSmw9MoCr/7ANV/xuK+p7HPjRxQvx6n9swJnzshmu4gz/DCSKYT6fxP++cRilVhMuXJKndDkzsrwoDZvmZeFP7zXhC+vnqG6qk2KX2+PDq/u78df3m7GrZRCZyUbcccF8fGZ1MRINnAqMV/wNRRTD/nmwB4e6HfjFFUtVPXoV9KXTy3D577biiZ1tuP40dS3Wp9jTOTSGx3a04tEdbegfcaEoPQn//ckF+PSqIm7GIAYsolglpcR9bzagKD0JFy9T9+hVUFVJOqqK0/DHd5vw2VOLodNylQPNrkGnG6/UduPZDzqwo8kGIYAz5mbhc2uKsbEik41C6SgGLKIYtbN5EPva7bjr0kUxFURu3liGL/6tGi/VdOHiZepctE/q0jowin8d6sEbh3qxrXEAE16JskwTbj+7Epcuz0dhepLSJVIUYsAiilEPvteE1CQ9LlteoHQpYbVpXhbKs8z4/duNuGhpHhcOU9gNOt3Y3mTDtsYBbGnoR0PvCACgNNOEG06bg4uW5WFBroXfe3RCDFhEMah9cBSb93fjpg1lMbfIVqMRuGlDKb711D68f2QAp5VH95mKFP2GRj8MVFuPDOBQtwMAkKjXoqokDdesKsKZ87JQYjUpXCmpCQMWUQx6aGsLhBC4dk2x0qVExEVL83D3ywfx0NYWBiyaNvvoBLY3DWBboz9UHewehpRAgl6DquJ0fOOcXJxamoElBakw6GJnep1mFwMWUYwZdXvw9x2tOG9hDvJSE5UuJyIS9FpcWVWIB7Y0ods+jpwUdZytSMqY8Pqws8mGN+t68f6RARzo8gcqo06DFcVpuP2sSqwuzcDSwhR2WKewYcAiijHP7unE8LgHnz+tROlSIuqa1UX4/TuNeHxnG752VoXS5VCUGZ/w4vUDPXjtQA/equuFY9wDg06DFUVp+I9NlVhTxkBFkcWARRRjHt/Zink5yVhRnKZ0KRFVnGHChspM/H1HK75yRllM7ZSk0Egpsbt1EE/taseLe7vgcHlgNRtw/qIcbJqfjXXlVph4zBLNEn6nEcWQQ93D2Ntux/cvXBAXO5w+s7oINz+0C28c6sW5C3OULocU4vJ48dwHnXjg3UbU94wgUa/F+YtzcPkpBTi1NIO9qUgRDFhEMeTJ6nbotQKXqPRQ5+naNC8LuSkJeGR7KwNWHHJ7fPj7jlbc/2YDeh0uzM+14GefWoJPLMnlgeCkOH4HEsUIt8eHZ/Z04OwF2Ug3GZQuZ1botBpcsaIA973ZgJ7hcWRbuNg9Hkgp8VJNF372ah1abaNYNScdv7hyKdaVW+Ni5JbUgYsWiGLEGwd7YHO6cWVVodKlzKpLTymATwLPfdChdCk0C1oHRnHdgztx66N7YDLq8JfPr8TjN52K9RWZDFcUVTiCRRQjnqhuQ44lAesrMpUuZVbNsZqwrDAVT+/uwE0bypQuhyJESom/bW3BT14+CL1Wgx9etBCfPbU4Jg4xp9jEESyiGNDncOHt+j58akV+XL7gXHZKPg51O3Cwa1jpUigChkbduOmhXfjB8/uxpiwDr9++AdetLYnL73VSDwYsohjwam0XfBK4aGl8LG7/uAuX5EGnEXhmD6cJY82h7mFc8OsteKuuF3dcMB9/vm4lclNis4EuxRYGLKIY8MK+LlRkmTE3J1npUhSRbjLg9LlZeHZPB7w+qXQ5FCZv1fXi8v/bigmvD0/dshY3ri9lywVSDQYsIpXrGR7HzmYbLlySp3QpirrslHz0Olx4/0i/0qVQGDxR3YYb/rIThelJeO7W07C0MFXpkoimhQGLSOVe2tcFKYELluQqXYqizpyXBZNBi5drupQuhWbosR2t+NZT+3BauRVP3rKGU4KkSgxYRCr34r5OzMtJRnmWWelSFJWg1+KMeVl4bX8PpwlV7NHtrfj20zXYWJmJP15bxYahpFoMWEQq1jE0ht2tQ/jk0vieHgw6f1EuBpxu7GiyKV0KheDFfZ347jM1OHNeFv5w7Qok6HkQM6kXAxaRir28zz8ddmGcTw8GnT43Ewl6DV6t5TSh2uxosuH2x/eiqjgNv/3MKTDqGK5I3RiwiFTs9QM9mJ9rQXGGSelSooLJqMPGyky8ur8bPk4TqkZD7wi++LdqFKQn4o/XVnHkimICAxaRSg063ahuseGs+VlKlxJVzl+Ui55hF/a0DSldCk3BiMuDmx6qhl4r8NfPr0JanJyjSbGPAYtIpd6q74VPApvmZytdSlQ5c34W9FrBaUIVkFLi2//Yh+Z+J35z9SkoTE9SuiSisGHAIlKpNw72wmo2Ykl+itKlRBVLgh7ryq14dX83pOQ0YTT729YWvLivC984dy7WlGUoXQ5RWDFgEanQhNeHt+v7cOa8THa2nsRZC7LRZhvDkb4RpUuh4zjQOYwfv3QAm+Zl4RYe0k0xiAGLSIV2NtngGPdwevA4Tp/rX5f25qE+hSuhybg9Pnzjyb1ISTTg51cs5R8JFJMYsIhU6J8He2HQabC+wqp0KVEpPzURc7OT8WZdr9Kl0CTuf7MBB7qG8ZNLF3FRO8UsBiwilZFS4o1DPVhbloEkA7tcH8/p8zKxs9kGx/iE0qXQMWo77Lj/zQZcujwf5yzMUbocoohhwCJSmeaBUbQMjOLMeWzPcCJnzM3ChFfivYYBpUuhAK9P4jtP1yDNZMAPPrlA6XKIIooBi0hltjT0AwDWV2QqXEl0W1GchmSjDm9xmjBqPFHdhpoOO+64YD5Skzg1SLEtrgKWlBJ/3tKELYf7Meh0K10OUUjeb+hHfmoiSjLYM+hE9FoN1lda8WZdL9s1RAH76ATu2VyHVSXpuIhnZ1IciKsFHH0OF3704oGjbxelJ+GMuZk4c3421pRmwKCLq7xJKuT1Sbx/ZADnLMiGENx5dTKnz83CyzXdONjlwII8i9LlxLV7X6/D0KgbP7hoAb93KS7EVcDKsiRgz51nY3/nMPZ32rGz2YbHq9vw160tsJqNuLKqAFevKmI3YYpa+zvtsI9NYB13D07J6ZX+adS36nsZsBR0uMeBh7a14JrVRViYx8a4FB/iKmABQJrJgHUVVqyrsOLmjWUYn/Biy+F+PLazDb97+wh+9/YRXHZKAb62qYJBi6JOcMH22jIGrKnIsiSgMtuMrUcG8OXTy5UuJ27d+3o9EvVa3H72XKVLIZo1cRewPi5Br8VZC7Jx1oJsdA6N4YF3m/Dw9hY8u6cD164pwe3nVMJsjPsvE0WJ9xr6MTc7GZnJRqVLUY21ZVY8trMVbo+PywAUUNthxyu13fjqpgqks+cVxRH+tjlGXmoivv/JBXjnm2fgiqpCPPh+E86+9228tr9b6dKIMD7hxc5mG04r5+jVdKwpy8D4hA8ftA0pXUpc+sVrdUhJ1OPG9XOULoVoVjFgTSInJQF3X7YY//jSWqQk6nHTQ7vw7X/sw5jbq3RpFMd2twzC5fFhXQUPxZ2OU+dkQAjg/SP9SpcSd3a12PBmXR9u3lgKS4Je6XKIZhUD1gmcUpSGF25bh1vPKMfj1W246L4tqO9xKF0WxaktDf3QaQRWzWHAmo6UJD0W5aXg/SNsODrbfvXPw7CaDbh+bYnSpRDNOgask9BrNfjGuXPxtxtWYXDUjct++z7erucBsjT7djTZsLgghWsCQ7C2LAN7Wgc5Cj2LajvsePdwP76wrpRHOlFcYsCaovUVmXj+1nUoSEvEDX/ZiUe3typdEsURl8eLfR12VBWnKV2KKq0py8CEV6K6xaZ0KXHjj+82wmTQ4prVRUqXQqQIBqxpyEtNxFNfWov1FVZ895ka3P9mg9IlUZyo7bDD7fFhRXG60qWo0sqSdOg0Als5TTgr2gdH8eK+Lly9qggpiVx7RfGJAWuazEYdHri2Cpcsy8M9m+vw6zcOK10SxYHq5kEA/vP1aPpMRh2WFaZyHdYs+dOWJggAN6zjzkGKX5wYD4FOq8EvrlwGjUbg3tfrISXwtbMqlC6LYlh1yyBKMpLY/2oG1pRl4P43G+B0eWDiOraIsY9O4PGdbfjk0jzkpSYqXQ6RYjiCFSKtRuCey5fi8hUF+OU/6/HwthalS6IYJaXE7pZBTg/O0IriNPgksJf9sCLqyV1tGHV72feK4h4D1gxoNQI/vWwxNs3Lwvefq8VmNiSlCGjqd2LA6UZVCacHZ2J5URqE8I8GUmRIKfHojlYsL0rlmYMU9xiwZkin1eA31yzHkoJUfPXve7Cnlb+8KbyCgYA7CGcmJVGPyqxk7GLAipjtTTY09jlxzSruHCRiwAqDJIMOf75+JbIsRnzp4d3oc7iULoliyK7mQaQk6lGWaVa6FNVbUZKG3a2D8Pmk0qXEpEe3t8KSoMOFS/KULoVIcQxYYZJuMuD3n63C0JgbX3lkNya8PqVLohhR3WLDiuI0aDRC6VJUb0VRGhzjHhzuHVG6lJgzMOLCK7VduOyUAiQatEqXQ6Q4BqwwWpBnwf98agl2NNvwk5cPKl0OxYBBpxtH+pxszxAmwXVsbDgafk/taseEV+IzbCxKBIABK+wuXpaPz59Wggffa8a/DvUoXQ6p3N52/4635UWpClcSG4rSk2A1G7gOK8yklHi8ug1VxWmoyE5WuhyiqMCAFQHfPn8e5uUk41tP7UP/CNdjUehqO+wAgEX53JEVDkIInFKUht0MWGFV2zGMxj4nPrWiQOlSiKIGA1YEGHVa/Prq5XCMe/Ctp/ZBSi6opdDUdNhRkpEESwKPGwmXqpI0NA+McvbRVCIAACAASURBVDNKGD37QQcMWg0+sShX6VKIogYDVoRUZifjO+fPw78O9eKxnW1Kl0MqVdsxzNGrMAuuZ9vNliph4fVJvLC3E6fPzURKEv8QIApiwIqg69aWYE1pBn7y8kH0Do8rXQ6pjM3pRsfQGBYzYIXVovwUGLQaThOGybbGAfQ6XLh4Wb7SpRBFFQasCBJC4K5LF8Hl8eGHLx5QuhxSmZrA+isGrPAy6rSYn5t89OtLM/Psng6YjTpsmp+ldClEUYUBK8JKM8346pnleGlfF944yF2FNHXBBe4LGbDCblF+Cmo67FwfOUPjE168WtuN8xblIEHP3ldEx2LAmgU3bShDZbYZ339uP8bcXqXLIZWoabejOCMJKYlc1xJuSwpS4Bj3oGVgVOlSVO2tuj44XB5cvIyd24k+Tqd0AfHAoNPgx5csxpW/34oH3m3EbZsqlC5J1Y70jWDz/m7sbhlCq82J8QkfLIk6lFrNWFOWgfMX5SA1yaB0mTNW02HHMva/iojgxoF9HXaUWE0KV6Ner+3vRmqSHmtKM5QuhSjqMGDNklVz0nH+ohz839tHcOXKQmRbEpQuSXV2Nttw72v12No4AAAoyzShNNOMJIMW9rEJbG8awPN7O/GD5/fjmlVFuO3McmSYjQpXHZrBwAL3z60pVrqUmFSZnQyDToPaDjsuWsrRl1BMeH1441AvzpqfDZ2WkyFEH8eANYu+ff48vHGwF/dsrsPPr1iqdDmqMeh0479f2I/nPuhEtsWI/zpvHi5dno+clI+GVCkl9ncO46GtLXhoWwue39uJuy5ZhPMXq683Dxe4R5Zeq8H8XAv2BTrl0/TtbLLBPjaBcxZmK10KUVTinx2zqDjDhOtPK8E/drcfXcBMJ7andRCf+PW7eLmmC1/bVIG3vnEGvnR62b+FK8C/a3NRfgr+5/IlePVr61GYlogvPbIb92w+pLrFzMGAtSiPAStSluSnoLZjGD6fur43osVrB3pg1GmwvsKqdClEUYkBa5bdemY5UhP1uGdzndKlRL1Xa7tx1R+2QasReObLp+HrZ1ci0TC1nUoV2cl48pa1+PTKQtz/5hHc+Vytql5I93faUZSexMaNEbQ4PwUjLg+aB5xKl6I6Ukq8fqAH6ysykWTgRAjRZBiwZpklQY+bN5bh7fo+7GqxKV1O1HpxXye+/MguLMyz4IVb14XUzdyg0+Duyxbj5g2leHhbK36molB7qNuBeTk8NDeSFhf4v6fYD2v69ncOo2NojNODRCfAgKWAa9cUI8NkwC9fP6x0KVFpy+F+fP3xD7CiOA2P3LgaaabQdwQKIfDt8+fhM6uL8Lu3j+AJFRxb5PJ40TIwirkMWBFVkWWGUadBTTsD1nS9dqAHGgFsmsfmokTHw4ClgCSDDrdsLMOWhn5sD+yII7997UO4+aFqlGWa8cC1K8My/SCEwA8vWoh15Vbc+VwtDnUPh6HSyGnsc8Lrk6jIZsCKJJ1WgwV5FuzjCNa0vX6gB1XF6ardpUs0GxiwFPLZU4thNRtx7+v1SpcSNQZGXLjxr9VIMxnw1xtWhXX9kU6rwS+vWgZLoh63PboHLk/0Nnyt73EAACqzzQpXEvuW5Kdgf4cdXhWtz1Na7/A4DnYN4wyOXhGdEAOWQhINWtyysRTbm2xciwXA55P4zyf3YmhsAn+8tioifcIyk4245/IlONw7gvv/1RD264dLfY8DOo1AqZUBK9IW5qXA6fai1caO7lP17uF+AODuQaKTYMBS0NWrimBJ0OGP7zQpXYriHtjSiLfq+nDnhQswP9cSsfucPjcLl52Sj9++dQQNvY6I3Wcm6ntGUGI1waDjj2ekzcv1T8PWRfm0cTTZ0tCPDJMBCyL4c0oUC/gbXEEmow6fPbUYmw90o7k/freK17Tb8bNX63D+ohx8dnVRxO/3vU/MR6JBi7teOhjxe4WivsfB6cFZUpGVDCH8uzbp5KSUePdwP04rt0KjEUqXQxTVGLAUdv3aEug1GvxpS3yOYnl9Et99pgbpJgN+etkSCBH5X9oZZiO+emYF3qzrwzv1fRG/33SMBaarKrnAfVYkGrQoyTDhUBcD1lQc6nagf8TF6UGiKWDAUliWJQGXLM/Dk7vaYHO6lS5n1j28rQU1HXbceeGCWW2qee3aYuSnJuLe1+ujqst7Q+8IpAQD1iyam52Muh4GrKl497D/D5L1FZkKV0IU/RiwosCN60sxPuHDI9talC5lVvUOj+Pnm+uwvsKKC5fM7nmBRp0WXzmjHB+0DeGtKBrF4g7C2Tc3JxnNA06MuaN3Z2m0ePdwPyqyzJMeVUVEH8WAFQUqs5OxvsKKR3e0wuP1KV3OrLnr5YNweXz40cWLZmVq8OMuX1GA/NTEqNpRWN/rgEGrQXGGSelS4sa8nGRICRyO0k0P0WJ8wosdTTaOXhFN0YwClhDiCiHEfiGETwhR9bHHviOEaBBC1Akhzp1ZmbHvM6uL0GUfx1t10TOaEkm1HXY890EnbtpQijlWZcKEQafBDevmoLplEHtaBxWp4ePqux0ozTRBr+XfPrMl2DGfC91PbGezDS6PD+sruf6KaCpm+lu8FsBlAN459p1CiAUAPg1gIYDzAPxWCDG1U3rj1Kb52chKNuKR7fExTfiL1+qQkqjHTRtLFa3jyqoCJBt1eCBKNhnU94ywg/ssK84wIUGvQR0D1gltPTIAnUZg9Zx0pUshUoUZBSwp5UEp5WQn6F4M4DEppUtK2QSgAcCqmdwr1um1Gnx6ZSHequ9D+2BsNz3c1WLDm3V9uGVjGSwJs7ewfTLJCXpctbIQr9Z2o3d4XNFaRlwedAyNoTKL669mk1YjUJmdzIB1EjubbViYnxKW46uI4kGk5iHyARx7qm574H10AletKoIA8NiO6D+QOFRSStyzuQ5WsxHXrS1WuhwAwNWri+D1STy5q13ROhp6RwCAI1gKmJudHPVnVCppfMKLvW12rCpJU7oUItU4acASQvxTCFE7yX8Xn+jDJnnfpHvhhRA3CSGqhRDVfX3xsf7oePJTE3HG3Cw8Xt2GiRhd7P7+kQFsa7Th1jPKouYv4bJMM1bPScfjO9vgU/BMusY+f8Aq5wjWrJubk4z+ETf6R1xKlxKVajrscHt9qCrh9CDRVJ00YEkpz5JSLprkv+dO8GHtAAqPebsAQOdxrv8HKWWVlLIqM5O7Uz69qgh9DlfUNcAMl9+9fQRZyUZcPQsd26fj6lVFaLWNYnuTcudCNvU7oRFAUXqSYjXEq3k5/mNfOE04uZ3N/p+LqmKOYBFNVaSmCJ8H8GkhhFEIMQdABYAdEbpXTNlYmYm0JD2e2dOhdClhV9ftwLuH+3Hd2hIYddG15+GchdlIMmjx/F7lvu6N/U4UpCXxDEIFcCfhie1ssqEs04QMs1HpUohUY6ZtGi4VQrQDWAPgJSHEZgCQUu4H8ASAAwBeBfAVKSW7+E2BQafBhUvy8PqBHjjGJ5QuJ6z+tKURCXoNPhNlo1cAkGTQ4ZwF2Xi5phsujzLfqs39TsVaVsS7zGQjMkwGHvo8CZ9PorplEKu4e5BoWma6i/AZKWWBlNIopcyWUp57zGN3SSnLpJRzpZSvzLzU+HHJ8ny4PD5s3t+jdClh0+dw4dkPOnH5igKkJhmULmdSFy/Lh31sAm8r0ItMSokmBixFlWWa0dgXv4euH09djwOOcQ+qihmwiKaDcxFR6JSiVBSlJ+HZGJomfHhbC9weH244bY7SpRzXugorUpP0eLW2e9bv3etwYdTtRWkmA5ZSyrJMaOxnwPq46sD6K45gEU0PA1YUEkLgkuX5eO9IP3oU7s0UDm6PDw9va8FZ87NQmhm9O+T0Wg3OnJeFNw71zvouzuDICUewlFNqNcPmdGNoNP4OXT+RHc2DyLYYUZCWqHQpRKrCgBWlLlmWBymB5z5Q/yjWGwd7MOB04zOnRkffqxM5d2EO7GMT2DnLuwmbAiMnJTyDUDHB0cMjnCb8iOpmG1aWpCtyXiiRmjFgRanSTDOWFKTgpX1dSpcyY09UtyHHkoANKjgkdkNFJhL0GmzeP7vThC0DThi0GuSlcpRAKcHR1WA/MgJ6hsfRZR/H8iK2ZyCaLgasKHbuwhzsbbejyz6mdCkh6xkex9v1ffjUinxoNdH/F3CiQYt15Vb8q64XUs5e09FW2ygK0hNV8TWKVYVpidBrBddhHaOm3Q4AWFqQonAlROrDgBXFzl2YAwB4TcW7Cf+xux0+CVyxovDkT44SGysz0WYbQ/PA7J0J2WobZYNRhem0GhSlJ3EE6xj7OuzQCGBBnkXpUohUhwEripVnmVGWaZr16apwkVLiyep2rCpJR4mKFm9vrMwCALxd1zsr95NSonVgFMUMWIorZauGj6hpH0JFVnLUHGtFpCYMWFHuvEU52N5kw6BTfTubdrUMoqnfiSuqCpQuZVqKMpJQkpGEdw73z8r97GMTcLg8KGTAUlxppgnNA054YvQs0OmQUqKmw47FnB4kCgkDVpQ7d2EOvD6Jfx5U3zTh03s6kGTQ4hOLc5UuZdo2VGZi65EBuD2Rf6FttfmnIjlFqLwyqxkTXon2QfWuewyXLvs4+kfcWMKARRQSBqwotzg/BXkpCarr6u71SWyu7caZ87JgMqpvemFtmRVjE17sax+K+L1aAmu9ijIYsJQWbNXQ2M91WPsCC9wX5zNgEYWCASvKCSFwzsIcvHu4D6Nuj9LlTNmOJhsGnG5Vjl4BH3at3j4L/bCCI1iFaQxYSis72qqB67BqOoag0wjMz+UCd6JQMGCpwDkLsuHy+PBew4DSpUzZK7VdSNBrcPrc6O99NZl0kwFzs5OxrTHyX/M22yisZoMqR/piTZrJgLQkPZuNwj+CVZmdjAS9VulSiFSJAUsFqkrSkWTQ4p362T+EOBQ+n8Qrtd04Y26WqncfrS5Nx66WwYgfm9NqG+UC9yji30kY31OEwQXuXH9FFDoGLBUw6DRYU5qBdw6rI2BVtwyiz+HC+SqdHgw6tTQDo24vajrsEb1Px9AYCjg9GDVKrTz0uX1wDEOjE9xBSDQDDFgqsaEyEy0Do2gZiP5f/C/XdMGg8x+crGZVJf7jQXa3DEbsHj6fRNfQOPJ5RE7UKM00o8/hgmN8QulSFBNc4L4kP1XhSojUiwFLJTZU+tcyRfs0oc8n8WptNzZWZsKs8jVFWckJyE9NxJ62yO0k7B9xwe31IT81IWL3oOmZE2iK29w/e538o01Nhx16rUBljlnpUohUiwFLJUoyklCYnoi3ozxgHegaRvfw+NFjftRuWVEqPmiNXMBqH/L3W8pP4whWtAj2I2sbjN+AVd/jQFmmGUYdF7gThYoBSyWEENhQMXvNL0MVDIAbK9W5e/DjlhemomNoDL3D4xG5fmcgYOVxijBqFKb7/y2C7TPiUV23A5XZyUqXQaRqDFgqsqEyE063F7siuCZopt6u68OifAsyk41KlxIWy4v867AiNU3YEegYzjVY0SM5QY+0JD3a4jRgOcYn0DE0hrk5DFhEM8GApSJryzKg04io3U04PD6BXa2DMTN6BQAL8yzQawU+iFDA6hwaQ3KCDskJ+ohcn0JTmJ4UtyNYh3v9LSo4gkU0MwxYKpKcoMfyolS81zA7hxBP1/sN/fD6JDZWqnv34LES9FpUZCWjNkKtGjqGxjh6FYUK05Pi9jzC+m4HAGAuAxbRjDBgqcyppRnY3zmMEVf0HZvzdn0fko06LC+Kra3di/ItONA5DCll2K/dwRYNUakwLQntg6Pw+sL/bx7t6nocSNRrUcCNF0QzwoClMitL0uH1yYj2ZgqFlBJv1/XhtHIr9NrY+rZamJeCAacbPcOusF+7Y3CUC9yjUFF6Eia8Ej0R2twQzep7HKjMNkOjEUqXQqRqsfVKGAdOKU6DViOwsznyhxBPR0PvCDrt49io0rMHT2Rhnv+w23BPE464PBge9zBgRaF43klY1z3C9VdEYcCApTJmow4L8yzY3hRdASvYnmFDDC1wD5qfa4EQwP7O4bBet9vuHx3JTWGT0WhztBdWnAWsgREX+kdc3EFIFAYMWCq0qiQdH7QNweXxKl3KUe819KM00xST64lMRh3mZJiwvzO8I1jB6adsCwNWtMlLTYRGxF/Aqu/hDkKicGHAUqGVc9Lh9vhQ0x7ZQ4inyuuTqG4ZxOo5GUqXEjHz8yw42B2ZEawcjmBFHb1Wg9yURLTF2U7C+p7ADkKOYBHNGAOWCq0sSQeAqJkmPNQ9DMe4B6vmpCldSsTMzU5Gm20Mo+7w7d7sDoxg5XAEKyoVpifG3Rqsuh4HUhL1yIqRRsFESmLAUqF0kwEVWeaoWei+MxD0gsEvFlVk+Q+9PdLrDNs1e4bHYUnQIdHA896iUVF6UvxNEXY7MDc7GUJwByHRTDFgqdSqOenY1TwYFX16djYPIi8lAQVpSUqXEjEVgTUpwSmUcOi2j3N6MIoVpiWh1+HC+ET0rHWMJCkl6nocqMwxK10KUUxgwFKpVXPS4XB5cLArvOuCpktKiR3NNqyaE7ujVwBQkpEEvVagvjd8AatneJwL3KNYUYb/D4b2wfgYxep1uOAY96Aii+uviMKBAUulVhRH9hDiqWoeGEWfw4WVMR6wdFoNSq1mHA7ssgqHnmEXA1YUC47Ixss6rMY+//R3WSZHsIjCgQFLpfJTE5FuMqCmXdmAFVx/tSqG118FVWSbcThMI1hen0TfiIsL3KPYh72w4mMnYWO//4+HOZkmhSshig0MWColhMCSghTsU7hVw45mG9KS9CjPiv2/eivDuJOwf8QFr08im2uwopbVbECiXhs3I1hNfU4k6DXIZegnCgsGLBVbkp+Cw70jGHMrtwh3Z7MNVSXpcbHrKDh10tQ/852ER3tg8cUsagkhUJCWGDc7CRv7nSjJMPEMQqIwYcBSscUFqfD6JA50KTOK1Ts8jpaB0biYHgSA4sCi5+b+mb/g9rAHlirkpyWi0x4fU4RN/U6uvyIKIwYsFVtSkAIA2NumTMDaG5iePKU4VZH7z7YSq39tSvPAzEew+kZcAIBMNnSManmpiegaGle6jIhze3xotY1ijpXrr4jChQFLxbItCci2GFHToUzAqmkfgkYAC3JTFLn/bDMbdchMNoZlirDP4Q9YGWbDjK9FkZOXkoABpzvme2G1DY7C65MMWERhxIClcovzU7FXoZ2ENR12VGQlx1Un8jkZJrSEYQSrf8SFtCQ99Fr+CEazvMDh5V322B7Fagq0aOAOQqLw4W93lVtakILGPicc4xOzel8pJWo6hrEoPz5Gr4JKrEloCsMarH6HG1YzpwejXW6KP2B1DsX2OqzgtPecDAYsonBhwFK5xYF1WLM9Tdg9PI7+EdfRdWDxosRqQv+Ia8aBtn/ExYClAvmp8RGw2myjSDbqkJqkV7oUopjBgKVySwr8C8xrZrkfVvB+8TaCFfwLv2VgZqNYfSMuWLnAPeplp/j/jTpjfKF7i20URRlJcdFuhWi2MGCpXLrJgIK0xFlvOFrbYQ8scLfM6n2VFtxJONOF7v0OF6xc4B71jDotMpON6IrxVg2tA6NH25AQUXgwYMWAxfkpsz5FuK/Djsrs+FrgDgCF6cEDgEN/wR1ze+F0ezlFqBJ5KQnoiOEpQq9Pom1wFEXpXH9FFE4MWDFgfq4FrbZROF0zP8JlKqSUqO2wx930IOBv1ZCapEf7YOhThP3sgaUqeamJMb2LsMs+hgmvPHr2IhGFBwNWDJiXkwwAqOsJz0HEJ9NlH0f/iDvuFrgH5acmzmhE42iTUY5gqUJuSiI6h8YgpVS6lIgInrXIKUKi8GLAigHzA+ugDnXNTsAKTkfG4wgWEAhYM5giDDYZ5RShOuSmJGDU7cXILI0Qz7bWwIYNjmARhRcDVgzIT02E2ajDoe7hWblfbYcdWo2IuwXuQQVpSWgfDH1EIzhFaE3mInc1yLL4g3DPsEvhSiKjxTYKnUYgN4XnYhKFEwNWDNBoBObmJM/aCFZthx0VWWYk6ONrgXtQfloixia8GBwNrRdWv8MNAMgwcQRLDbIDB3L3DsfmOqw22yjy0xKh46kCRGHFn6gYMS8nGQe7h2dlncihbsfRdV/xqCDN33wy1GnC/hEXUhL1MOj446cGwYDV44jNgNUxNHa0oSoRhQ9/w8eIebkWOMY96Izwbif72AS67OOYmxOf04PAh929Q91JaBt1I8PE6UG1yEqO7SnCjkEGLKJIYMCKEZVZZgBAQ+9IRO9TH9ipyBEshLyTcNDpRhoDlmqYjDqYjTr0xOAUocvjRa/DhYI0LnAnCjcGrBhRHghYhyPcquFQt//6lXEcsFIS9TAbdSE3Gx0cnUAaz3xTlSyLEb0xOILVFTgCKD+NI1hE4caAFSMyzEakmwyRH8HqdiA5QYe8ON5xJIRAXmpCyAcADzrdSEviCJaaZCcnxOQIVnAUllOEROHHgBVDyrPMOBzhgFXX7cDc7OS4PxQ225KAHsf0RzSklBgc5RSh2mRbjDG5yD24jrCAI1hEYceAFUPKs8xo6B2J2E5CKSXqehxxPT0YlJWcENK2/bEJL1weH0ewVCbbkoCeYVfMdXPvGByDRgA5cTwiTRQpDFgxpCLLDPvYxNGjWMKtb8QF+9jE0QX18SzbYkSvwwWfb3ovuMHeWekmrsFSkyxLAtweH+xjofU+i1btQ2PIsSRAzx5YRGHHn6oYUpHlH1lq6InMNOGRXicAoIwBCzkpCfD6JAac7ml93GDg+akcwVKV7Bjt5t4xOMYF7kQRwoAVQ4I7CRv6IhSwAtcty2TAykoONJ+c5jTh4Kg/YKVzDZaqHG02GmML3Tvt7IFFFCkMWDEk22JEol6Lpn5nRK5/pG8ESQYtcixcr/HhiMb0XnBtgREstmlQl+wQA3U08/kkeuwu5KQwYBFFAgNWDBFCYI7VFLGA1dA7gtJMEzSa+N5BCBw7ojG9KaOhwBosLnJXl+CBz70h7ByNVrZRN9xeHw95JooQBqwYM8dqQnOEAlZjnxPlnB4EAGQmz2wEKyWRI1hqkqDXIiVRH1MjWN2BY7WyOSJNFBEMWDFmjtWEtsExuD2+sF531O1Bx9AY118F6LUaWM0G9E6zN9LQqBspiXrouGtLdbItxpgMWBzBIooM/paPMSVWE7w+ibYQDyI+nsY+/6hYKQPWUcHeSNNh4zE5qhXKv3c06wqERfbAIooMBqwYM8dqAoCwTxM2DwQDlims11Uz/wvu9Eew2MVdnbJi7LicHvs4tBoBq9modClEMYkBK8aUBgJWuBe6twz4R8SKM5LCel01y0qe/pSRjecQqlaozWWjVZd9HFnJRmi5aYUoIhiwYkyayYCURD0awz2C1e9EVrIRSQZdWK+rZlazETane1ovuEOjE0jlFKEqZVtCay4brXqGxzk9SBRBDFgxqCQjCW228K7BahkYRUkGpwePlW4ywCeBoWkcnzI8PsEdhCoVau+zqajtsOM3bxzGcx90wDE+O8fxdNnHuMCdKII4HBGDCtOTUNNhD+s1mwec2FiZGdZrql2G2T/VZ3O6ptSZ3eeTGHF5kJzAgKVGWYF2Bv6doylhuaaUEj995RB+/07j0fcVZyThbzesQnGE/6Dpto9jA3+miSKGI1gxqDA9CR2DY/CGaa3IqNuDXocLJVaOYB0rw+Qf0RgYmdqUkcPlgZSAJYF/16hRqM1lT+R/3ziM37/TiGtWF2HXHWfhbzesgn1sAlf9fltED5Z2jE/A6fZyBIsoghiwYlBRehI8Poku+1hYrtdq4wL3yQRHrWxTXJMzHHjBtHCKUJUyzeGdIqzvceC+fzXg4mV5uOuSRcgwG7GhMhN/u2EV+kZcuPvlg2G5z2SCnwObjBJFDgNWDCpK9weh1jCtw2ru91+Ha7A+KjhF2D/VgBVYW2PhFKEqGXQapCbp0T8SnhGsHzy3HyajDt+/cAGE+HAn35KCVNy4fg4e29mGD9qGwnKvjwse+RM8kYCIwo8BKwYVpvkDVrstPCNYLYEeWEUcwfqIYLsF2xSnCIfHPAAASyKnCNXKajai3zHzXYQftA1ha+MAvrqpAhmT9KG67cwKJCfo8Md3Gyf56JnrCwSsLAYsoohhwIpBuakJ0GpE2Eaw2gZHkZqk58jLxxh0GlgSdLA5pzaiwREs9bOaDWEZwfrr+80wG3W4sqpg0sfNRh2uWVWEV2q6wr4jGPgwYGWaOUVIFCkMWDFIr9UgNyUhbMfltA+OHR0Vo4/KMBun3BcpuAaLbRrUy2o2zjhg9Y+48OK+Tly+ouCEO0qvP60EQgg8trN1RvebTN+ICwathqOpRBHEgBWjitKTwjaC1T44hoK0xLBcK9akmwxT30U47p8iTOYuQtWymo1T/vc+nldquzHhlbh6VdEJn5ebkoi1ZRl4aV8XpAxv9/g+hwuZycaPrP0iovBiwIpRRelJaAvDGiwpJdoHRxmwjiPDZJj6LsLAFKHZyIClVlazAQ6XB+MT3pCv8UpNF8oyTajMPvnB6RcszkXzwCj2dw6HfL/J9DlcsHL9FVFEMWDFqLzURPSPuGb0QgAAA043xid8KOAU4aQyzIZpTBF6YDbqoNPyx06tggcjhzpNODDiwrbGAXxice6URo/OXZgDrUbgpZqukO53PH0O19G2E0QUGfxNH6PyUv0jTt32mfXsaR/0j4Llp3IEazLpJgMGR6d2HuHw+ASbjKrchwErtGnC1w/0wCeB8xblTOn5aSYD1pRm4J8HekK63/H0j7jYooEowhiwYlReqn93UOfQzKYJ2wML5QvSGbAmk2EywuuTU+q6PTw2wSajKhecVhsIcQTr3cP9yLEkYEGuZcofs67CisO9I+gNU4NTj9eHAaebAYsowhiwYlRwxKmTI1gRFWw2OpVpQv8IFgOWmmUEuveHMkXo80lsbRzA2rKMIjRDeQAAIABJREFUaS0uP63MCgB4/8jAtO85GZvTDSnZZJQo0hiwYlROSvhGsFKT9Dyg+DhSA81G7WNTCFhjHu4gVLlgKAllirCuxwGb04215dZpfdyCPAtSEvV4r6F/2veczNEu7lyDRRRRDFgxyqjTwmo2hiFgsUXDiQTXVE1pinCcU4Rql6DXwmzUHW3UOR3BgLS2LGNaH6fVCKwty8B7Df1hadfQN8JjcohmAwNWDMtPTUDHDANW59AY8lIYsI4n2DQ0eAzOiTjGPVzkHgNC7ea+rXEAJRlJRzegTMeppRnotI+ja4ZT/sCxXdwZsIgiaUYBSwhxjxDikBBinxDiGSFE6jGPfUcI0SCEqBNCnDvzUmm68lITZ/wLucs+HtILQrwIBqyTjWD5fBIOjmDFhFCajUopsad1CFUl6SHdc2mh/1fr3jAc/hys3ZpsmPG1iOj4ZjqC9TqARVLKJQDqAXwHAIQQCwB8GsBCAOcB+K0QQjvDe9E05aYkonNoLORphRGXB45xz9H1XPTvLEdHsE4csJxuD3yS5xDGgowQRrDaB8cw4HQfDUrTNT83GXqtwN52e0gffyyb04UEvQZJBo6mEkXSjAKWlPI1KWVwbmQbgODJpRcDeExK6ZJSNgFoALBqJvei6ctLTcCo2zul9UGTCfbQymXAOi69VoMkg/akX+NhHpMTM0I5j/CDwMjT8hADllGnxbwcS1hGsGzOCaQncfSKKNLCuQbrBgCvBP4/H0DbMY+1B95Hsyg4tRfqOqxgwMqxMGCdiCVBf/QYnOMZORqwOIKldlazEYOjE5jw+qb8MXvbhmDQaTA3Jznk+y4tTEFNh31KTW1PxOZ0Id3MgEUUaScNWEKIfwohaif57+JjnvM9AB4AjwTfNcmlJv2tIIS4SQhRLYSo7uvrC+VzoOPIDgSj3uHQmiJ22f3BLJeL3E8oJVF/0hEsp9sfsJKMnClXu2Cz0cEpHpEEAHvbh7AozwL9DI5JWlKQihGXB439IyFfAwBsoxNI4wgWUcSddL5CSnnWiR4XQlwH4EIAm+SHi33aARQe87QCAJ3Huf4fAPwBAKqqqsJ7ZHycC66d6gmxA3RwBCvLwt1GJ2JJ1J10F+Goy38mpInrXlQvMzD60zfiQtYURnc9Xh9qOuy4elXRjO67pCAFALC/cxjlWaGPhNmcLszJ4NmiRJE2012E5wH4LwAXSSlHj3noeQCfFkIYhRBzAFQA2DGTe9H0Bbdh94Q6gjU8jgyTAQl6jrqcyLRGsAz8WqpdxjTPI2weGMX4hA+L8lJmdN85VhO0GoH6HseMrjPonECaiSNYRJE20z+n7wNgBPB64OiHbVLKW6SU+4UQTwA4AP/U4VeklN4Z3oumyaDTIMNkQI8j9BEs7iA8OUuCHgfHTvyiNxoIWCYjR7DU7uiBz1NsNnqoexgAZrT+CvAvdJ9jNaG+J/QpQpfHixGX5+iRP0QUOTP6bS+lLD/BY3cBuGsm16eZy7IkhHxIbJd9HPmpDFgnY0mcwiL34BQh12CpntU8vfMI67od0GoEyrPMM753ZbYZ+zuHQ/74Qaf/+5QjWESRx07uMS7bYgx5irDbPsYRrCmwJOrhGPfAe4LdXaOuwAgW12Cpntmog1GnmdIB3wBwsMuBUqspLFPtFVnJaLWNYswd2oTAgNP/u4AjWESRx4AV47KTE0Ja5D4+4cXg6ARbNExBsJt7sBXDZJyBF8RErmdTPSGEvxfWNKYIZzo9GFSZnQwpgSN9oU0THh3B4i5CoohjwIpx2RZ/U0TPNHr2AB+eVzaVXVLxbirH5Yy6PEgyaKHRTNbBhNTGajYcPTT5RBzjE2gfHMP8XEtY7js3xz/NGOpC96MjWOyDRRRxDFgxLsuSAJ/ElKczgnqDB8Ims0XDyQQPcD7ROiyn28ujSWKIv5v7yX+mgkFobnZ4RrCKM0zQa0XIC92Dvbs4gkUUeQxYMS7YbHS604R9gZ2HwVYPdHxTGsFye7jAPYZM9bicI31OAEBF9swXuAP+o5kK05PQMuAM6eNtTjeEAFIZsIgijgErxmVbQuuF9eEUIQPWyUzlwGeny/P/27v3IMnO8r7jv6evM91z253dRXckYQkiMCChyMECmwDm4iIIjG2kEAfbVAhliIMJZQeIY5djVWEbmzgXO5YxVbiKezAVCicYSIgTUlYkoYiLbkhmhSR024t2Z3YufTtP/jjn9PT0dk/P5fQ5s32+nypqd870dJ89nPfomed93uelwH2CHJqt6ORKc+S2NUePr6hUMF24kNxuCM88WNP3T6yOfuEAJ1ebWpguq8hUNTB2BFgTbvcZrIYKJi3WCbBG2U4Ga6XRIYM1QQ7NVNUJXKdGNJh96PiKLlmsqbSHLXL6XXKwpodPrmpj44zto8kokB4CrAm3WK/IbKOmarueWm7oYL3Kb7rb0M1gbVGDtdpsU4M1QTa6uW89ro4eX9Fli/VEP/uSxbrONNo6ucO6Skk6tdak/gpICQHWhCsVCzpQq+jENpsixo4tN3SEAvdtqUWtF1Yaw3sTrTTJYE2SbrPRLX5xCQIPA6xDyQZYzzwY7iP4/ZM7nyY8vdbqZlwBjBcBVg4cmqlsu+t07NiZBisIt6lQMNUqxe52OIOEbRrIYE2KePHH8S2ySE8sravRDnTZ4YQDrGij5kcIsIB9jQArBxbrVZ3Y5sa0sWPLBFg7UauUutvhDLLS7KjORs8TYzv7ER49Hq70S3qK8OI4g7WLQvdTqwRYQFoIsHLg0Oz2lpTHgsAJsHaoXh2ewXL3cBUhGz1PjPnpskoF23JcdQOshDNYU+Wizpub2nGA1Qlcy+vtbs0ggPEiwMqBxXplRxmsU2sttQOnBmsHapXS0BqsZidQO3ACrAlSKJgO1reeej96fEVT5YKeMZv8bgjhSsKd9cJajhZhkMEC0kGAlQOHZ6tabrS13treBrHH6OK+YzNbZLBWo8CrxhThRBnVzf2h4yu6dLE+lu2RLjo4rUefXtvRz8RtRAiwgHQQYOXAYtT3Zrvb5TxFF/cdq1VK3Q2d+61EgReNRifLodnqlqtzx7GCMHb+/JSeWm6oM6LRaS8CLCBdBFg5sJ2C3F7xtMchMljbVq8WtdoYksGKAq8abRomSrg6d/AvLe1OoIdPro4twDpvflqdwHfUfoUAC0gXAVYOLM7EGaztPYzjeq1FOj5vW61S6gZS/VYaZLAm0eGZqo6daQzsqP7o02tqBz6+ACvaoeHx09vfoYEAC0gXAVYObGSwtjdF+PRqU8WCaW6KB/F21SvF7lRgv7j4nSL3ybI4U1GzHWh5QOayu4JwjFOEEgEWsJ8RYOVAN8DaZgbr5Eq4ncY4inMnVa1a6haz94sDL4rcJ0s8rgat0B13gHVeFGA9cXr7he5xgLVQI8AC0kCAlQPTlaLqleK2M1gnzjSZHtyheqWoZidQsx2c9b14dSEZrMlyaIv9CI8eX9HsVEkHxzSODtYqqhQLemJpZzVYlVJBU2UCfSANBFg5sThT3XYN1smV5tj+wzCp4m1wBrVqWKFNw0SKA6xjAxaPPHRiRZcfqstsPFngQsF0ZK66owzWEtvkAKkiwMqJnexHeHKlqYMzBFg7EW/kPKhVQ9x/jMzBZDm/O013dh3U946t6NIxTQ/2fv5Oa7AIsID0EGDlxIFaRU+vtLb12hMrTBHuVDeDNaDguRFNG06VGW6TZKFWVrVU0ON9WaT1VkePnV4bW/1V7Lz5aT2xRIAF7Fc88XPiQL2ip1dH12C1O4FOr7V0oEaAtRNbZbAarY7MpEqR4TZJzEwXLEyflUV6+OSq3MdX4B47b66qx0+vD2wTMQgBFpAunvg5caBW3laA9fRqmOVaZIpwR7bKYK23A1VLhbHV4yA7582dPU33vWPjXUHY/ez5aTXbQXfMjkKABaSLACsnFmoVrbeCkfsRnoy206HIfWdmohWCwzJY1RL1V5Po/Pmps2qwHjoRBljjrsGK9wrdbm3l6VUCLCBNBFg5EQdMo7JY8UpDAqydiVcIDlpF2IgyWJg85y9M6cml9U17Ah49tqJDM5WxN+o9FO8xusWG0zF315lGW7NTtAoB0sJTPycORM0FT47Y8Dn+/mKdfQh3Iu5xtTKg2eh6q8MKwgl13vy02oFvyiIdPTG+TZ57LcaNTrfRfmWt1VHgG5lWAONHgJUTC1HR+qkR9RpMEe4OGax8umDAljVHj6/o0sU0AqztZ7DOrNPsFkgbT/2ciFcFjpoijAOsA2ynsSNxkfuZIW0ayGBNpv4ta5bXWzq23Bh7/ZUUjmkz6cQ2arDi+5IpQiA9BFg5caAeBkxPb2OKcKFWVomWAjtSLJimygWtDmk0SgZrMl0wPy1JeuxUmMG6/4llSdKznzE79s8uFkwHahUdHzGmpY0Aq14hwALSwlM/Jxam4wzW1lOEp1bpgbVb9UpJK0MyWFWajE6k/maj3/nBaUnS8y6cT+XzF+sVndzBFOEMGSwgNTz1c6JSKmimWho5RXiKXjm7VqsWh2awpmjTMJHMTJcfntF9Uebq7seWtFiv6Blz6SwSWZypbKvIPc5gUeQOpIcAK0cO1Msji9xPr4ZThNg5Mlj5dPUlC7rrkVMKAtd3HlvScy+cT62p7OJMdXtF7gRYQOp46ufIgVplZJuGU2stLZDB2pXpyuAMVqNNBmuSXXPJAS2vt3XP40t64MllPe+CudQ++1B9e5u4x4E/U4RAegiwcmShVtGpUVOEq61uSwfszFSpqEZ70BQhGaxJdvUlC5KkT9/+iNqB67kXpFN/JYUZrKX1tprRhuLDLJPBAlLHUz9HDtbKWxa5dwLX0jo1WLtVLRfUGPAfOrbKmWyXH6prfrqsT9/+iMykF1ycXoC13R0aVhptlQrGalYgRYy2HFmoVbZs07C83pK7qMHapWqpMDCTsE4N1kQzM11zyYKanUC//Ybn6aIDtdQ++1DUbHTUNOGZ9bbq1RIbjgMpIl+cIwdqFS032mp3goF9ruICeAKs3amWimdlsNxdzXZABmvC/frrrtIvvmRNL73icKqf290uZ0Sh+5lGh+lBIGWMuByZnw7/715abw/cCufUWhRgTVODtRuVUkGN1uYarDjgYmpmsl1+eEaXH55J/XMX4w2fR7RqONNoEWABKeOpnyNzUW3V6bXBdVhxAfw8GaxdqZbOrsFqtMKv2SoH4xAvSDk9ov3KmUabFYRAygiwciQuXl8aEmCd7mawCLB2Y9AUYbyqkAwWxmEuCppOr53df60XU4RA+njq58joDFZcg8UU4W5Uy2cXuccBFxksjEOpWFC9UtTS+ogM1jpThEDaCLBypJvBGvIwjgOsOaYSdqVaKqjZCRQE3j223iKDhfGamy4P/aUptkIGC0gdT/0cmZsakcFaa2q2Whq4whCjxSsFm52NLBZF7hi3+eny0Gn/2JlG2KYBQHp46ufIRg3W4HqN06stCtz3oBIFUXFhu7SRwWKKEOMyN1XecoowCFwrTYrcgbQRYOXIVLmgctG2yGC16IG1B3GWqne7HDJYGLdwinB4kftqqyN3aaZKkA+kiad+jphZOJ0wtAarSQ+sPdgIsHqnCMlgYbzmpktbThF2N3qu8ssTkCYCrJyZmxpeEHtqjX0I96IaBVG9AdZ6NF3IVjkYl1E1WMvrUYDFFCGQKp76OTO3xcN4aY0arL0YPEUYryIkg4XxmJsqa7nRVqdn9WqvM90MFvcgkCYCrJwZ9tuuu2tprd1daYidGzRFuN7t5M5Qw3jEWeflIVP/a80wyJ8uk8EC0sRTP2fmpstaWj+7ILbRDtTsBJqb5iG8W4NWETZaZLAwXnMjVgevtcLjtQr3IJAmAqycmZ8uDazBio9Rg7V7W/XBIoOFcZkfsUPDWjO8B6cJsIBU8dTPmbjI3X1zvUY8bcgU4e51pwhbGzVY8RRhheatGJN454Vhq4PXWvEUIQEWkCae+jkzP11WJ3CtNjubjscP5zkyWLsWZ6n62zSUCkZ3fIzN3IhN3Ndodgtkgqd+zgzb8Dmu32Afwt2Lpwg3B1gB/2HDWI2aIlyPi9yZIgRSRYCVM8M2fI4fzmSwdm9Qm4b1Vocu7hiruRGbuDNFCGSDJ3/OdDd8Xu3LYK1T5L5X8SrCJhkspKheKapYGL4F1mqzo0qpoGLBUj4zIN8IsHJmI4O1eUl3XL8xyxThrg2aIiSDhXEzM81NlYa2aVhvdcheARngyZ8zcZ+rs2qw1tuaKhfo17QHA/tgtYPucWBc5rbYY3StSYAFZIEnf87MD1lxdHq1RYuGPSoWTOWibarBancClVlBiDGrV0paaXQGfm+t1aHAHcgAT/6cmZ0asopwvUWBewKqpeKmKcJ24CoVqX3BeNWrRa02h3Vy71AHCGSAACtnigXTbLV01nTC0nqLAvcEVEuFTUXu7Y6rRHExxqxWKWmlOSSD1exomp0EgNQx6nJobro8sA8WPbD2rlIqbJ4iDAKVCgwzjFetUtRqY3gGq1ZhbANp48mfQ3PT5bNrsNaYIkxCtVTYNEXY6jBFiPGrVUpn7c4QW2syRQhkgQArh+anz17SvbROkXsSqqXiplWEnYApQozfVjVY6xS5A5kgwMqheMPnmLtraa3VbeGA3auWN08RtjoB+xBi7LaswWpRgwVkgVGXQ/N9PXNWmh0FLjJYCaiWCmp2Nq8iLDNFiDGrV4pqtgO1eu692BqNRoFMEGDlUH+RO/sQJqd/irDdocgd4xdPAQ6qw1ptdjTFFCGQOp78OTQ/XdZqs9P9bTfel3CBAGvPKn1F7m1qsJCCejWc3u+vw+oErmY7IIMFZIAAK4fidgzxSsJTa01J0nyNAGuvqv1tGlhFiBTUhmSw1ludTd8HkB4CrByKA6l4w+dTUQbrQK2S2TlNiv42De2AIneMXz3qc7Xat13OWhRgkcEC0seTP4fm+rbLiQOsBTJYe1YtFTd3cmeKECmoVcMAaqVvinAtymjRBwtIHwFWDvVv+BxPES5Mk8Haq7BNQ/9WOQwzjFfcqb2/BqubwWKKEEgdT/4cilcL9mawqqUCD+EEVEsFNVqb+2DRpgHjVo/G7kr/FGGTKUIgKwRYOdTNYK3HAVaT6cGEDFxFSICFMasNWUVIDRaQHVp359CgGiwK3JNRKRbVDlxB4DILl8kXmSLEmNWHrCJkihDIDgFWDk2VC6oUC5sCrHl6YCUizlZ13CUPj5UpcseYbdRg9bVpaBJgAVnhV+scMjMtzlR0fDksbj+1xhRhUopRMNUJXO1OGGHRpgHjVikVVCqYVhpMEQL7BRmsnDoyW9WxMw1JTBEmKW7J0A5c7r7pGDBOtUrxrAzWKkXuQGb41TqnDs9W9dTSutxdp9ZadHFPSDeD1enNYBFgYfzq1dJZGay4kzt7EQLpI8DKqcOzUzp+pqG1VkfNdkAGKyEbGaxArSBcTcgUIdJQqxS12hrcpmGqRIAFpI0pwpw6PFvViZWmTpyJm4ySwUpCvGKwE7jaQZjBosgdaahVSlrty2A12oEKFtZoAUgXoy6njsxW5S49eOyMJLbJSUpvDVYnCrCKBFhIQa1S1EpfDVaj3VGV7BWQCQKsnDoyW5UkPfDksiRpgSnCRPSuImx1winCMlOESEG9Wjqr0WizHZC9AjKyp5FnZv/GzL5lZneZ2ZfN7IKe773PzB40s/vN7NV7P1Uk6XAUYN3/BBmsJMUF7e2eKUKK3JGGWqWo1b6tcpodAiwgK3sdeb/n7s939xdK+qKkfy1JZnaVpBslPVfSayT9kZmRp95HjsxNSZLufuy0JFHknpCNDFawsYqQTu5IQb1S0kpfBqvRClQlwAIysaeR5+5LPV/W1e1drRskfcrdG+5+VNKDkq7by2chWYdmwoDqvieWdeHCdHfKEHvTW4PVjlcRUoOFFEwP6IPVIIMFZGbPqwjN7GZJ/1jSaUl/Pzp8oaRbe172aHQM+0S1VNRCraxTqy29/DlHZEYQkIR4FWG742rRBwspqpYKavZsNC7FGSwmD4AsjPzVxsy+ambfGfC/GyTJ3T/g7hdL+rikd8U/NuCtfMAxmdnbzewOM7vj2LFju/13YBfirNXLn3Mk4zOZHKVNW+VQ5I70VEsFNTtBdwcBiRosIEsjM1ju/sptvtcnJP2lpN9QmLG6uOd7F0l6bMj73yLpFkm69tprBwZhGI/Ds1U9fHJVL37WYtanMjGKtGlARqrlotylVsdVKYX3XLPdUZUAH8jEXlcRXtHz5esl3Rf9/QuSbjSzqpldJukKSbft5bOQvJuuu0TvfdWzNcU+ZYnpzWC14kajTBEiBXExe6O9UYfVaAeqlgmwgCzstQbrg2b2bEmBpO9LeockufvdZvYZSfdIakt6p7t3hr8NsvC6518w+kXYkWLPVjnxFCGrCJGGSjfACjQbHWu2A1Vq3H9AFvYUYLn7m7b43s2Sbt7L+wPnmrigvUMfLKSs2hNgxWg0CmSHkQckqLuKMHD6YCFV8WrBRqtvipAAC8gEIw9IULcGq9PTB4sMFlJABgvYXxh5QIJ6VxHGfbDKZLCQgriYvbcXFps9A9nhyQ8kqHcVYSfKYBXJYCEF3SlCMljAvsDIAxLUu4pwI4NFgIXxG9SmgUajQHYYeUCC4oL23k7uJRo9IgXdNg2t8L4LomlqityBbDDygATF04Ft2jQgZf1ThM0owCeDBWSDkQckqGgD+mAxRYgU9E8RxoFWhQwqkAlGHpCg3lWEdHJHmvpXEcaBVpWtsIBM8OQHErTRB2ujyJ0MFtJw1hRh9CebPQPZYOQBCeqtweoEroJJBQIspGDYFCGbPQPZYOQBCertg9UKAlYQIjX9qwib1GABmWLkAQnaXIPl9MBCakoFU8HOniJkFSGQDUYekKD+PlhksJAWM1O1VDx7ipCtcoBM8PQHEhQnrOI+WBS4I03VcoEMFrBPMPKABJmZSgVTJwjU7jhNRpGqaqnQDayanTCTRYAFZIORBySsWDC14yJ3emAhReEUYdQHqxVPEXIPAllg5AEJKxVMnU7YpoEMFtJULRW6NVhslQNki5EHJCzOYLU71GAhXZVSoZu5IoMFZIuRBySsVCyEfbA6gcqsIkSKwgxWFGCRwQIyxcgDEtbNYDFFiJT1tmnY2CqHNg1AFgiwgIR1VxEGriJF7khRb5uGjc2euQeBLDDygIRt1GAFdHJHqja1aWCrHCBTjDwgYWEGy+mDhdT1tmlotgOVi8Zm40BGCLCAhG3UYNEHC+mqlgpqtDa2yiF7BWSH0QckrFQoqNOhyB3pq5Q2b5XDCkIgO4w+IGHdTu4dJ4OFVG3q5N7usNEzkCGe/kDCSsV4L8KwBgZIS7iKcKNNAxksIDuMPiBhcQarE7iKFBgjRdVSQa2OKwhczQ4BFpAlRh+QsHgVYSugkzvSFU8JNjuBGq2AbXKADDH6gISxFyGyEgdUjVZABgvIGKMPSFipEO5FGK4iZIghPXHX9ka7o0abDBaQJUYfkLDeTu5ksJCmuO9Vox2EfbBYRQhkhgALSFh3L0I6uSNl1XIYUDXanXAVIRlUIDOMPiBhxYKp3aHIHemLpwTXW0HYB4uNnoHMMPqAhJWKplYn0Hor0FSZKRqkJw6wmp1AzXagKgE+kBlGH5CwYqGglUbY7LFWIcBCeuI2DY1WQKNRIGOMPiBhpYJpeb0liQAL6WIVIbB/MPqAhBULppVmnMEqZXw2yJNuH6w2GSwga4w+IGG9rRnIYCFNmwKsTsBmz0CGCLCAhPXuPzhNgIUUxQHVaqOtTuBksIAMMfqAhG3KYLGKECmKM1jL621JIsACMsToAxJWLGwMK2qwkKY4gxUvsqDIHcgOow9IWG/3dqYIkaZ4FeESGSwgc4w+IGFFityRkXhrnO4UIY1Ggcww+oCE9dZg1ZkiRIoKBVO5aFqKpwipAQQyQ4AFJIxVhMhStVTs1mCRwQKyw+gDEhZnsEoFowYGqauWCt0pQjZ7BrLD6AMSFq8iJHuFLGwKsMhgAZlh9AEJizNYFLgjC9VyzxQhGVQgM4w+IGHFboBFgTvSVy0Vum0a2CoHyA4BFpCwuA/WNCu4kIFqqaBO4JLIYAFZYvQBCYszWPUqARbS1xtUEWAB2WH0AQmLa7CmmSJEBnqnBdkqB8gOow9IWLyKkI2ekYUqGSxgX2D0AQljFSGy1Nv7igwWkB1GH5CwYneKkAAL6eudIiSDBWSH0QckjAwWsrRpipBGo0BmGH1AwooUuSNDcYBVKRVkZiNeDWBcCLCAhMV9sOpksJCBeFqQbXKAbDECgYR1VxESYCEDcQ0W9VdAthiBQMLog4UsxVOErCAEssUIBBJWpMgdGYrbNJDBArLFCAQSFmcOZqfIYCF98RQhGz0D2SLAAhL2gosW9Ac/+wK9+PLFrE8FOdS7ihBAdvgVG0hYoWD6qWsuyvo0kFNMEQL7AyMQACZIpRhPEfJ4B7LECASACcIUIbA/MAIBYIJ0pwhpNApkihEIABOku4qwzCpCIEsEWAAwQbpThGSwgEwxAgFggsRThPGfALLBCASACdLdi5AMFpApRiAATJAKexEC+wIjEAAmCJs9A/sDIxAAJgh9sID9gREIABNkplrSW37kEv34lUeyPhUg19iLEAAmiJnp5jf+cNanAeQeGSwAAICEEWABAAAkjAALAAAgYQRYAAAACSPAAgAASBgBFgAAQMIIsAAAABKWSIBlZu81MzezQz3H3mdmD5rZ/Wb26iQ+BwAA4Fyw50ajZnaxpJ+Q9HDPsask3SjpuZIukPRVM7vS3Tt7/TwAAID9LokM1ocl/aok7zl2g6RPuXvD3Y9KelDSdQl8FgAAwL63pwDLzF4v6Qfu/s2+b10o6ZGerx+Njg16j7eb2R1mdsexY8f2cjoAAAD7wsgpQjP7qqTzBnzrA5LeL+lVg35swDEfcEw19p0TAAAKKklEQVTufoukWyTp2muvHfgaAACAc8nIAMvdXznouJn9sKTLJH3TzCTpIkl3mtl1CjNWF/e8/CJJj+35bAEAAM4Bu54idPdvu/sRd7/U3S9VGFRd4+5PSPqCpBvNrGpml0m6QtJtiZwxAADAPrfnVYSDuPvdZvYZSfdIakt6JysIAQBAXiQWYEVZrN6vb5Z0c1LvDwAAcK6gkzsAAEDCCLAAAAASZu77pzOCmR2T9P0UPuqQpOMpfM65husyHNdmMK7LcFybwbgug3FdhtvP1+aZ7n540Df2VYCVFjO7w92vzfo89huuy3Bcm8G4LsNxbQbjugzGdRnuXL02TBECAAAkjAALAAAgYXkNsG7J+gT2Ka7LcFybwbguw3FtBuO6DMZ1Ge6cvDa5rMECAAAYp7xmsAAAAMYmVwGWmb3GzO43swfN7F9mfT5ZMrOLzexrZnavmd1tZv88Ov6bZvYDM7sr+t9PZn2uaTOzh8zs29G//47o2EEz+4qZPRD9eSDr80yTmT275564y8yWzOzdeb1fzOyjZvaUmX2n59jQe8TM3hc9d+43s1dnc9bpGHJtfs/M7jOzb5nZ581sITp+qZmt9dw//ym7Mx+vIddl6PjJyz0z5Lp8uueaPGRmd0XHz6n7JTdThGZWlPRdST+hcGPq2yXd5O73ZHpiGTGz8yWd7+53mtmspG9IeoOkn5V0xt0/lOkJZsjMHpJ0rbsf7zn2u5JOuvsHo+D8gLv/WlbnmKVoLP1A0o9I+gXl8H4xsx+TdEbSn7v786JjA+8RM7tK0iclXSfpAklflXTlpO7POuTavErS/3D3tpn9jiRF1+ZSSV+MXzfJhlyX39SA8ZOne2bQden7/u9LOu3uv3Wu3S95ymBdJ+lBd/+euzclfUrSDRmfU2bc/XF3vzP6+7KkeyVdmO1Z7Ws3SPpY9PePKQxG8+oVkv7W3dNoCrwvufv/knSy7/Cwe+QGSZ9y94a7H5X0oMLn0UQadG3c/cvu3o6+vFXSRamfWMaG3DPD5Oae2eq6mJkp/KX/k6meVELyFGBdKOmRnq8fFQGFpDDtKulqSf83OvSuKJX/0bxNhUVc0pfN7Btm9vbo2DPc/XEpDE4lHcns7LJ3ozY/8PJ+v8SG3SM8ezb7RUn/refry8zs/5nZX5vZS7M6qQwNGj/cM6GXSnrS3R/oOXbO3C95CrBswLF8zI9uwcxmJH1O0rvdfUnSH0t6lqQXSnpc0u9neHpZud7dr5H0WknvjFLYkGRmFUmvl/TZ6BD3y2g8eyJm9gFJbUkfjw49LukSd79a0nskfcLM5rI6vwwMGz/cM6GbtPmXuXPqfslTgPWopIt7vr5I0mMZncu+YGZlhcHVx939LyTJ3Z909467B5L+VBOalt6Kuz8W/fmUpM8rvAZPRnVrcf3aU9mdYaZeK+lOd39S4n7pM+we4dkjyczeKul1kt7iUfFvNAV2Ivr7NyT9raQrszvLdG0xfnJ/z5hZSdJPSfp0fOxcu1/yFGDdLukKM7ss+i38RklfyPicMhPNbf+ZpHvd/Q96jp/f87I3SvpO/89OMjOrR0X/MrO6pFcpvAZfkPTW6GVvlfRfsjnDzG36jTLv90ufYffIFyTdaGZVM7tM0hWSbsvg/DJjZq+R9GuSXu/uqz3HD0eLJmRmlyu8Nt/L5izTt8X4yf09I+mVku5z90fjA+fa/VLK+gTSEq1eeZekv5JUlPRRd78749PK0vWSfk7St+MlsJLeL+kmM3uhwnT0Q5L+aTanl5lnSPp8GH+qJOkT7v4lM7td0mfM7G2SHpb0MxmeYybMrKZwFW7vPfG7ebxfzOyTkl4m6ZCZPSrpNyR9UAPuEXe/28w+I+kehdNj75zE1WCxIdfmfZKqkr4Sja1b3f0dkn5M0m+ZWVtSR9I73H27heDnlCHX5WWDxk+e7plB18Xd/0xn13pK59j9kps2DQAAAGnJ0xQhAABAKgiwAAAAEkaABQAAkDACLAAAgIQRYAEAACSMAAtAYszsjWbmZvacPb7Pz5vZf9jhz1xtZh/p+flj0ZYaD5jZX5nZj+7lnMbBzN5lZr+Q9XkASB4BFoAk3STp6wp72KTt/ZL+fc/Xn3b3q939CoU9qv7CzP7OXj8kbnSYkI9K+uUE3w/APkGABSAR0b6W10t6m3oCLDN7mZn9TzP7z2Z2n5l9PNpJQGb2k9Gxr5vZvzOzLw5438Nm9jkzuz363/UDXjMr6fnu/s1B5+buX5N0i6S3R69/lpl9KdrQ+3/HGbfo+K3R5/yWmZ3p+Td8zcw+Ienb0bF/ZGa3mdldZvYnPR2mX2Vmf2Nmd5rZZ6PrIjP7oJndE23s+6HovFYlPWRmed5iCJhIBFgAkvIGSV9y9+9KOmlm1/R872pJ75Z0laTLJV1vZlOS/kTSa939JZIOD3nfP5T0YXf/u5LeJOkjA15zrUZv03OnpHjq8hZJ/8zdXyTpvZL+qOez/jD6rP69366T9AF3vyrKhL1Z4cbgL1TYVfotZnZI0r+S9Mpow/A7JL3HzA4q3Arlue7+fEm/3fO+d0h66YhzB3COyc1WOQDG7iZJ/zb6+6eir++Mvr4t3lMs2prpUklnJH3P3Y9Gr/mkogxTn1dKuipKeknSnJnNuvtyz2vOl3RsxPnFWbMZST8q6bM971mN/nyxwkBRkj4h6UM9P39bz7m+QtKLJN0evce0ws2d/57CIPL/RMcrkv5G0pKkdUkfMbO/lNSbqXtKG4EfgAlBgAVgz8xsUdLLJT3PzFzhfp9uZr8avaTR8/KOwmePaXsKkl7s7mtbvGZN0tSI97la0r3R+52KMk87sdLzd5P0MXd/X+8LzOwfSPqKu9/U/8PRNOArFE6fvkvh9VJ03lv92wCcg5giBJCEn5b05+7+THe/1N0vlnRU0ku2+Jn7JF1uZpdGX795yOu+rDAgkSRFm+P2u1fSDw37IDP7cYXZsT919yVJR83sZ6LvmZm9IHrprQqnIaWtC/X/u6SfNrMj0XscNLNnRj9/vZn9UHS8ZmZXRlmzeXf/rwqnSnv/DVdq9PQmgHMMARaAJNwk6fN9xz4n6R8O+4EoI/VLkr5kZl+X9KSk0wNe+suSro2Kw++R9I4B73WfpPmo2D325qgA/bsKVxi+yd3vjb73FklvM7NvSrpb0g3R8XcrrJm6TeG046Dzkbvfo7DW6stm9i1JX5F0vrsfk/Tzkj4ZHb9V4fTfrKQvRsf+WtKv9Lzd9ZK+Ouw6ATg3mbtnfQ4AcsrMZtz9TLSq8D9KesDdP7zL9/oVScvuPqgIfrvvUZO05u5uZjdKusndbxj1c3v4vKslvcfdf25cnwEgG2SwAGTpn0RF73dLmle4qnC3/liba71240WS7ooyTb8k6V/s8f1GOSTp18f8GQAyQAYLAAAgYWSwAAAAEkaABQAAkDACLAAAgIQRYAEAACSMAAsAACBhBFgAAAAJ+/+efX+VpJqIqgAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAHwCAYAAAB6wRHCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAABvc0lEQVR4nO3dd3Rc1bUG8G9PVe/FKu5y77hgOgRCDKGTBJNQUgkEwiOVJLw03ktPXkJCCIFAAqF3CIQOodvGxr3LVbJk9TLSSFPP+2PuyLItyZLm3rl3Zr7fWl6Wpt2j0ejOnn322UeUUiAiIiIi/djMHgARERFRsmGARURERKQzBlhEREREOmOARURERKQzBlhEREREOmOARURERKQzBlhENGIi8gMR+ZvZ40g2IrJZRE434HH3ikiPiPxziNv8R0S+PMzHc4tIl4gEROR/9RspUfJggEVkESJysoi8LyIdItIqIu+JyOIYH/PzIvLuEZf9I9Y3RaXUz5VSw3ozHimJuFFENolIt4jUisjjIjLHiOMNc0wXisg6EekUkWYReV1EJsT4mEf9HpRSs5RS/4nlcYdwvlLqyuHcUHvdhLQgqktEdovIdf3G6VNKZQF40KCxEiU8h9kDICJARHIAPA/gOgCPAXABOAWAz8xxDUREHEqpoIGHuA3AJwF8BcB7AOwALtYu2zjAeOxKqZBRgxGRKgD3A7gEwBsAsgCcDSBs1DEt4gOl1MkAICLHAXhLRFYopdaaPC6ihMAMFpE1TAUApdTDSqmQUqpHKfWKUmpD9AYi8hUR2SoiHhHZor3pQUS+JyK7+l1+sXb5DAB3AjhBy0K0i8g1AD4H4LvaZf/SblsuIk+KSJOI7BGRG/sd9yci8oSIPCAinQA+r132gHb9BBFRInK1iOzXMjy39Lt/uojcJyJt2vi/KyK1Az0JIjIFwPUALldKvaFlSrxKqQeVUr/UbvMPEfmLiPxbRLoBnCEiM7QprnZtmu2Cfo95rva8eETkgIh8W7u8SESe1+7TKiLviMhA58T5APYopV5XER6l1JNKqf3a49j6/Q5aROQxESnod/xoZrJdRGq07NBgv4e9InKW9rVbRP4gInXavz+IiFu77nQts/ctEWkUkXoR+cIxXmNHPtcfF5FtEsmY3g5ABrutUuojAFsBzBjJMYhSGQMsImvYASCkBSLniEh+/ytF5NMAfgLgKgA5AC4A0KJdvQuRbFcugJ8CeEBEypRSWwFci0gmIksplaeUuguRaZ1fa5edrwUV/wKwHkAFgDMB3CQin+g3hAsBPAEgD4NPC50MYJp2/x9pAR4A/BjABACTAHwcwBVDPA9nAqhVSq0a4jYA8FkAPwOQDWClNv5XAJQA+DqAB0VkmnbbewB8VSmVDWA2IlkoAPgWgFoAxQBKAfwAwEB7h30EYLqI/F5EzhCRrCOuvxHARQBOA1AOoA3AnwFARMYBeBHAn7TjzAewbqDfwwDHvQXAUu0+8wAsAfDf/a4fg8jvvALAlwD8+cjXzWBEpAjAk9rjFSHyGjppiNsvRuRDwOrhPD4RMcAisgSlVCciAYoCcDeAJhF5TkRKtZt8GZE34w+1LEq1Umqfdt/HlVJ1SqmwUupRADsReTMersUAipVStyql/Eqp3doYlve7zQdKqWe0Y/QM8jg/1TJv6xEJ1uZpl38GwM+VUm1KqVoAfxxiLIUA6ocx5meVUu8ppcKIBCBZAH6pjf8NRKZbL9duGwAwU0RytDF81O/yMgDjlVIBpdQ7aoDNWbXn43REApnHADRrWbRooPVVALcopWqVUj5EAuFPiYgDkSzVa1pmMqCUalFKrRvGzwftvrcqpRqVUk2IBM/9a6gC2vUBpdS/AXQhEuAOx7kAtiilnlBKBQD8AcDBI26zVMu6dQFYBeCfiLy2iGgYGGARWYRSaqtS6vNKqUpEMi3liLzxAcBYRLIMRxGRqyRSgN0uIu3afYtGcOjxAMqj99ce4weIZHWiaobxOP3foL2IBD1A5Ofof/+hHqsFkaDnWPo/RjmAGi3YitqHSEAEAJciElDsE5G3ROQE7fLfAKgG8IpEiri/N9jBlFIrlFKfUUoVI5ItPBWRDBMQef6e7vfcbQUQQuT5G/T3Ngzl2s/R/2cq7/d9yxG1cP2f8+E8dt9zqAWWR/5eVmhZzyxEsmWzAPx8mI9PlPIYYBFZkFJqG4B/IBIsAZE3v8lH3k5ExiOSbboBQKFSKg/AJhyqpxloyuvIy2oQqTHK6/cvWyl17hD3GYl6AJX9vh87xG1fB1ApIouO8Zj9x1MHYOwR9VPjABwAAC3rdyEi04fPIJKFglZL9S2l1CQA5wP4poiceawfRin1IYCncPjv5pwjnr80pdQBDPJ7G+BnGEgdIsFb/5+p7ljjG6Z69Ps9iIhgiN+LUqoBkSnFgaYyiWgADLCILEBEpmsFy5Xa92MRmeJaod3kbwC+LSILJaJKC64yEXmjbtLu9wUceuMHgAZEAhbXEZdN6vf9KgCdInKzVpBuF5HZEmOLiH4eA/B9EckXkQpEgsEBKaV2ArgDwMNaIbdLRNJEZPkQGaaVALoRKRh3SqSP1PkAHtHu/zkRydWmwjoRyS5BRM7Tnkfpd/lRqxG1IvWviEiJ9v10RGrgor+bOwH8TPt9QESKReRC7boHAZwlIp8REYeIFIrIfO26I38PR3oYwH9rj1cE4EcAHhji9iPxAoBZInKJNpV5IyJZqgGJSCEiKzk363R8oqTHAIvIGjwAjgewUiIr41Ygkon6FhCps0KkqPsh7bbPAChQSm0B8DsAHyDyhj0HkdYGUW8g8qZ4UESatcvuQaQmqV1EntFaHJwPbbUcgGZEArpcnX62WxEpJt8D4DVEiuWHaj9xI4DbESkUb0dkiu1iRArZj6KU8iMS8JyDyNjvAHCVlgUEInVLeyWyAvJaHCqyn6KNpwuR5++OQXpQtWuPv1GrR3oJwNMAfq1dfxuA5xCZavQg8rs7XhvbfkSmJ78FoBXAOhyqTTvs9zDAcf8XkaLyDYi0p/hIuyxmSqlmAJ8G8EtEpmWn4PDXDXBo9WkXItOeTYgsICCiYZABajqJiAwjkYaVy5VSp5k9llQhItsRqW17Wil1tQ6P50YkoHcisvjip7E+JlGyYaNRIjKUiJQhMhX2ASKZkm8hkqGiOFFKDXd14XAfz4dIyw4iGgQDLCIymgvAXwFMRGS67RFEpvGIiJIWpwiJiIiIdMYidyIiIiKdMcAiIiIi0pnhNVgisheRZeUhAEGl1KANBIuKitSECROMHhIRERFRzNasWdOs7fBwlHgVuZ+h9V0Z0oQJE7B6NfcSJSIiIusTkX2DXccpQiIiIiKdxSPAUoh0OF4jItfE4XhEREREporHFOFJSqk6bR+vV0Vkm1Lq7eiVWtB1DQCMGzcuDsMhIiIiMpbhGSylVJ32fyMi+3ctOeL6u5RSi5RSi4qLB6wTIyIiIkoohgZYIpIpItnRrwGcjcgGtkRERERJy+gpwlIAT4tI9FgPKaVeMviYRERERKYyNMBSSu0GMM/IYxARERFZDds0EBEREemMARYRERGRzhhgEREREemMARYRERGRzhhgEREREemMARYRERGRzhhgEREREemMARYRERGRzhhgEREREemMARYRERElld5ACA2dvaaOgQEWERERJYVAKIwHV+7D6b/5D25+coOpYzF6s2ciIiIiw72xrQE//dcW7GvxYuH4fHz11MmmjocBFhERESWsli4fbn1+C55dV4cpJVm49/OLcMa0EoiIqeNigEVEREQJacXuFtzw0Fp09Phx01lT8LXTq+ByWKP6iQEWERERJRSlFO56ezd+/fJ2jC/IwD+/tAQzynLMHtZhGGARERFRwvAHw7j5yQ14eu0BnDtnDH516VxkpznNHtZRGGARERFRQujyBXHdA2vwzs5mfOvjU3HDx6pMr7UaDAMsIiIisrwObwBX3rsSm+s68etL5+Izi8eaPaQhMcAiIiIiS+vsDeCqe1diW70Hf71iIc6aWWr2kI7JGqX2RERERAPo8gXx+XtXYXNdJ+743HEJEVwBzGARERGRRQVCYVz7zzVYX9uBP392QcIEVwAzWERERGRBSil8/6mNeLe6Gb+4ZA6WzS4ze0gjwgCLiIiILOePr1fjiTW1+K8zp+Azi6xd0D4QBlhERERkKS9tqsfvX9uBS46rwE1nTTF7OKPCAIuIiIgso7qxC99+fAPmj83DLy6ZY9k+V8fCAIuIiIgsodsXxLUPrIHbYcNfrjgObofd7CGNGlcREhERkSXc8vRG7G7qwgNfOh5luelmDycmzGARERGR6Z5ZewDPrKvDTWdNxYlVRWYPJ2YMsIiIiMhUNa1e/PCZTVg8IR/Xn1Fl9nB0wQCLiIiITBMKK3zzsXUAgP/7zHzYbYlZ1H4k1mARERGRaf7+3h58uLcNv79sHsYWZJg9HN0wg0VERESm2NfSjd++sh1nzSjBRfMrzB6OrhhgERERUdwppfC9JzfCabPhfy6anbD9rgbDAIuIiIji7tEPa/DB7hZ8/9wZCd+SYSAMsIiIiCiu2rr9+OVL27BkYgGWL068fQaHgwEWERERxdVvX9kOT28Q/3PhbNiSZNXgkRhgERERUdxsOtCBh1btx1UnjMe0MdlmD8cwDLCIiIgoLsJhhR89uwmFmS7cdNZUs4djKAZYREREFBf/2lCHj/a347vLpiM33Wn2cAzFAIuIiIgM5wuG8NtXtmNmWQ4+dVyl2cMxHAMsIiIiMtwDK/ajprUH3ztnetIWtvfHAIuIiIgM1dETwO1v7MQpU4pw6tRis4cTFwywiIiIyFB3vrULbd4Abl423eyhxA0DLCIiIjJMc5cP/3hvLy6cX47ZFblmDyduGGARERGRYe5+ezd8wRBuPHOK2UOJK8MDLBFZJiLbRaRaRL5n9PGIiIjIGpq7fLj/g324cH4FJhdnmT2cuDI0wBIRO4A/AzgHwEwAl4vITCOPSURERNZwl5a9+vrHqsweStwZncFaAqBaKbVbKeUH8AiACw0+JhEREZkskr3ai4vmV2BSimWvAOMDrAoANf2+r9UuIyIioiR277t74AuGcX0KZq8A4wOsgTqJqcNuIHKNiKwWkdVNTU0GD4eIiIiM1uUL4p8r9mHZrDEpV3sVZXSAVQtgbL/vKwHU9b+BUuoupdQipdSi4uLUaD5GRESUzB5ZtR+e3iCuPW2y2UMxjdEB1ocApojIRBFxAVgO4DmDj0lEREQm8QfDuOfdPVg6qQDzxuaZPRzTGBpgKaWCAG4A8DKArQAeU0ptNvKYREREZJ7n1tehvqMXX03h7BUAOIw+gFLq3wD+bfRxiIiIyFxKKdz99m5MH5ON01Nkz8HBsJM7ERER6eKD3S3Y3uDBF0+eCJGB1rmlDgZYREREpIv73t+L/AwnLphXbvZQTMcAi4iIiGJW2+bFq1sasHzJOKQ57WYPx3QMsIiIiChmD6zYDwC4Yul4k0diDQywiIiIKCa9gRAe+XA/Pj6zFBV56WYPxxIYYBEREVFM/rW+Du3eAK4+cYLZQ7EMBlhEREQUk0c+rMGk4kycMKnQ7KFYBgMsIiIiGrWdDR6s2deG5YvHpnxrhv4YYBEREdGoPfJhDZx2wSXHVZo9FEthgEVERESj4guG8NRHtfj4zFIUZbnNHo6lMMAiIiKiUXllcwPavAFctnic2UOxHAZYRERENCqPfliDirx0nFJVZPZQLIcBFhEREY1YXXsP3tvVjE8trITNxuL2IzHAIiIiohF7dl0dlAIuOa7C7KFYEgMsIiIiGhGlFJ5eW4vjxuVhfGGm2cOxJAZYRERENCJb6juxo6ELF7M1w6AYYBEREdGIPLP2AJx2wXlzysweimUxwCIiIqJhC4UVnl1Xh9OnlSA/02X2cCyLARYREREN2we7WtDo8eHiBSxuHwoDLCIiIhq259YfQLbbgY9NLzF7KJbGAIuIiIiGJRAK45UtDThrZinSnHazh2NpDLCIiIhoWN7f1YJ2bwDnsrj9mBhgERER0bD8e0M9stwOnDKFW+Mci8PsAVDqCITCWFfTjtV727Cz0YNdTd1o6/ajJxBCMBRGfqYLRVluTC7OxHHj8rFoQgEmFrGBHRGRFQRCYby85SDOnFHC6cFhYIBFhgqGwnhrRxOe/KgW7+xohscXBACU5rhRVZKFiYV5SHfZYbcJWrv9aPL48MKGejy8qgYAMKs8B5ceV4mLF1RwOTARkYk+4PTgiDDAIkN0eAP4x/t78cDKfWjy+FCY6cJ588pw6pRinDC5EHkZgwdL4bDC7uYuvLOzGU99dAC3Pr8Fv3tlO758yiR8+ZSJyE5zxvEnISIiAPj3xnpkuuw4bWqx2UNJCAywSFee3gDufGsX7nt/H7p8QZwxrRiXLxmHM6aXwGkfXsmfzSaoKslGVUk2vnDSRGyt78Sf3tiJ217fiX+u2IefXDALF8wrN/gnISKiqGAojJc3H8SZM7h6cLgYYJEuwmGFx9fU4Dcvb0dzlx+fnFOG68+owszynJgfe0ZZDu743EKsr2nHj5/bjBsfXos3tjbgpxfORm46s1lEREZbs68Nbd4Als0eY/ZQEgYDLIrZrqYufOfx9fhofzsWjs/HvZ9fjLmVebofZ97YPDxx7Qn485u78Mc3duKj/e2474tLWAhPRGSw17Y2wGW34VRODw4b2zTQqIXDCn97ZzfOve0d7Grqxv99Zh6euPYEQ4KrKIfdhv86awoe++pSdPmCuPQv72NdTbthxyMiSnVKKby6pQFLJxciy828zHDxmaJRaeny4RuPrcfbO5rw8Zml+NnFs1GSnRa34y8cX4AnrzsRV9+7Csvv+gD3XL0YJ1WxL0usOnoC+PfGerxb3YzdTd3w+oPIcjswrTQbp00rxsdnliLDxdMGUSrZ1dSNvS1efOnkiWYPJaHwTEkjtmZfK65/cC1avX787OLZ+OyScRCRuI9jYlEmnrzuRFx5z0p85f7VePgrSzFvbF7cx5EMPL0B3P5mNe5/fx96AiGU5aZhZlkOstIcaPcG8PbOJjy19gDyMpy45tRJ+PLJk+ByMAFOlApe39oAADhzRqnJI0ksDLBoRJ5eW4ubn9iIsrw0PHXdiZhdkWvqeIqz3bj/i0tw6Z3v4wv/+BCPffUEVJVkmTqmRLNqTytuemQt6jp6cfGCCnzxpImYXZFzWNAcDius2tuKv761C79+aTueXVuH2z+7AFNKs00cORHFw2tbGzCzLAfleelmDyWh8CMoDYtSCv/36g5849H1WDg+H89ef5LpwVVUSU4a/vnF42ET4Op7V6Gt22/2kBLGox/ux+V3r4DLYcPTXzsRv79sPuZU5h6VkbTZBEsnFeLvX1iCe65ehJZuHy7683t4c1ujSSMnonho6fJhzb42nDWT2auRYoBFx9QbCOG/HlmHP76+E59eWIn7vrhkyEahZphQlIl7rl6MJo8P33xsHcJhZfaQLO+ed/fg5ic34qSqIvzr6ydjwbj8Yd3vzBml+NfXT8bE4kxc88/VeGlTvcEjJSKzvLm9CWEFfJzTgyPGAIuG1O0L4gt//xDPra/Dd5dNw68/NdeytTfzxubhh+fNwJvbm3Dn27vMHo6lPfZhDf7n+S04Z/YY3HP1ohF3xy/LTcdDX1mKORW5+PrDa/F+dbNBIyUiM725rREl2W7Mroi9p2GqseY7JVlCZ28AV927Cqv2tuL3l83D106vMqWYfSSuWDoe588rx29f3o5Ve1rNHo4lfbCrBT94eiNOnVqM25YvGHaH/SPlpDnx989H+pB99Z9rsLupS+eREpGZQmGFd6ubcerUYsuf+62IARYNqK3bj8/dvRLra9px++ULcPGCSrOHNCwigl9cMgdjCzLwnSfWozcQMntIltLY2YsbHvoI4wszcPtnF8ScjczNcOLezy+Gwy647oGP4PUHdRopEZltfW07OnoCbC46Sgyw6CgtXT5cfvcKbG/w4K6rFuKcBNs5PcvtwC8unoN9LV7c9vpOs4djGeGwwjceWwevP4S/XrkQOTptml2Zn4Hbli/A9gYPfvniNl0ek4jM9/aOJogAp7DH4KgwwKLDdPQEcOU9q7C3pRv3Xr0YH5uemIWNJ1YV4TOLKnHX27uxua7D7OFYwoMr9+G96hb86PyZqCrRt73CqVOL8cWTJuL+D/bh3Z2sxyJKBm/vaMLcilzkZ1prUVOiYIBFfSIF7auws9GDv165CCdPSexPLT84dwbyM1z43pMbEUrxVYV17T345YvbcMqUIixfPNaQY3x32TRMKsrED57eyKlZogTX4Q1gXU07pwdjwACLAERaMXz1n2uwrqYdf7p8AU5Lgj+qvAwXfnjeDGw80IGn1x4wezim+tm/tyKkFH5+8RzDilXTnHbceuFs7G/14i//4SpOokT23q5mhBUYYMWAARYhGArjxofX4t3qZvz6U/OwbHZi1VwN5fy55ZhbmYv/e2V7ymZVVuxuwQsb6nHdaVUYW5Bh6LFOnlKE8+aW4c63dqG+o8fQYxGRcd7e0YRstwPzuf3YqDHASnFKKfzouc14ZUsDfnrBLHxqYWKsFhwum03wvXOmo66jF/e9v9fs4cSdUgq/fHEbynPTcM2pk+JyzJuXTYdSwO9f3RGX4xGRvpRSeHtHE06qKhp1GxdigJXy7nxrNx5auR/XnT4ZV584wezhGOLEyUU4bWox/vxmNdq9qbWNzts7m7Guph03fGwK0l32uBxzbEEGrjphPB5fU4vqRk9cjklE+tnd3I26jl6cMjWx63DNZliAJSI/EZEDIrJO+3euUcei0Xl23QH86qVtuGBeOb5z9jSzh2Oo750zHR5fEHe+tdvsocSNUgq3vbYDFXnpcc9MXnf6ZKQ57Lj9jeq4HpeIYrdidwuAyIdTGj2jM1i/V0rN1/792+Bj0Qis3N2C7zy+AUsmFuA3n54Lmy25u/TOKMvBuXPK8OCKfejsDZg9nLh4Z2czPtrfjutOnxz37Y0Ks9y46oTxeG59HTu8EyWYD3a1YExOGiYUGluzmew4RZiC9rV045p/rkFlQTruunIh3I74TB2Z7dpTJ8PjC+KhlfvNHorhlFK47fWdKMtNw6cXmVNX9+VTJsFpt+Hud/aYcnwiGjmlFFbsbsXSSQXcHidGRgdYN4jIBhG5V0TyDT4WDUOXL4iv3L8aIsDfP78YeRmp00BuTmUuTqoqxL3v7oEvmNwrClfva8OafW342umTTQugi7PduOS4Sjz1US1aunymjIGIRmZXUxeau3w4YXKh2UNJeDEFWCLymohsGuDfhQD+AmAygPkA6gH8bpDHuEZEVovI6qampliGQ8cQDit889F12NXUjT9/9jiML8w0e0hxd+1pk9Ho8eGZJO+L9c8P9iE7zYFLTV4V+qWTJ8AXDOOBFcmfNSRKBh/sitRfLZ3EACtWMQVYSqmzlFKzB/j3rFKqQSkVUkqFAdwNYMkgj3GXUmqRUmpRcTEbmhnpttd34pUtDbjl3Bk4KUX3ljq5qgizynPw17d3I5yk3d2bPD68uKken1pYiQyXw9SxVJVk47SpxXho1T4EQmFTx0JEx7ZidyvKc9MwzuCeeanAyFWE/btVXgxgk1HHomN7aVM9bnt9Jz61sBJfOGmC2cMxjYjgmlMnYXdTN96pTs498x5bXYNASOFzx483eygAgCuWjkdDpw+vb200eyhENIRI/VULlk4uZP2VDoyswfq1iGwUkQ0AzgDwDQOPRUPYdrAT33xsPeaPzcP/XjQ75f9wls0eg4JMFx5OwmL3UFjhoZX7ccKkQlSVZJk9HADAGdOKUZabhgdX7jN7KEQ0hJ2NXWjp9nN6UCeGBVhKqSuVUnOUUnOVUhcopeqNOhYNrsMbwFfuX40stwN/vXIh0pypsWJwKG6HHZ9aWInXtjagyZNcxdf/2d6IA+09uGKpNbJXAOCw23DZ4rF4t7qZ2+cQWVi0/uoEBli6YJuGJBYOK3zr8XU42NGLO69ciNKcNLOHZBmXLR6LYFjhiTW1Zg9FVw+v2o/ibDfOnlVq9lAOc9H8CigFPLeuzuyhENEgVu5pQUVeuuF7lqYKBlhJ7K53duO1rY245dwZOG4cu2T0N7k4C8dPLMAjH+5PmmL3dq8fb+1owsULKiy3f9iEokzMH5uHp5N89SZRolJKYc2+NiyewPcKvZi7xIgMs2J3C37z8nZ8ck5Z0u4xGKvLl4zDTY+uw4rdLTgxCVZVvrz5IAIhhfPnlps9lAFdNL8cP/nXFmw/6MG0MdlmDyfudjd1YeWeVuxp7kaPP4TcdCemjsnG0kkFKMlmdpnMVdvWg4ZOHxaOZ4ClFwZYSajR04uvP7wW4wsy8MtL56R8Uftgls0eg9znnHjkw5qkCLD+tb4eEwozMLsix+yhDOi8eeX4nxe24pl1B3DzsulmDyculFJ4bWsjbn9jJ9bXdgAA3A4bMlx2dPQEEFaATYBTphTjutMns7iYTPPR/jYAwHEMsHTDACvJBENh/NfD6+DpDeCfX1qC7DSn2UOyrDSnHefOKcOz6w6gxx9CuitxFwA0eXx4f1czrj+jyrIBdVGWGydXFeG5dXX4ztnTkn7/y8bOXnzvqY14Y1sjxhdm4L8/OQNnzSjF+MIMiAiCoTC21nvwypaDeOTDGiy/awU+PrMUt144C2W56WYPn1LM6r1tyHTZMX2MNT+gJSJrFWpQzH7/2g58sLsF/3vRHP6hDMP5c8vg9Yfw5vbE7tH04qZ6hBVw/jxrTg9GXbygAgfae7B6X5vZQzHUhtp2nPend/H+rmb88LyZeP2bp+HLp0zChKLMvgDYYbdhTmUuvnX2NLzz3TNw87LpeGdnE8657R28sa3B5J+AUs2afW1YMC4f9iT/4BNPDLCSyFs7mvDnN3fhskVj8SmTt0hJFMdPKkRRlhvPb0js1W3PravD9DHZmFpq7dqmj88shdthw783Jm/XljX72vDZu1fCabfh6a+dhC+dPBGOYyw6SHPacd3pk/Hif52K8tx0fOm+1bj3XW6STfHR5Qti28FO1l/pjAFWkmjy+PCtx9ZhamkWfnrhLLOHkzDsNsG5c8bgjW2N6PYFzR7OqNRpGSGrZ68AINPtwMlVRXh9WwOUSo7Vm/1tP+jB5+9dhaIsF5687kTMKBtZFnliUSaevO5EnD2zFLc+vwV3/KfaoJESHbJufzvCCgywdMYAKwlE+l2th6c3iD9dfhybiY7QeXPL0RsI47WtiTkt87o27nNmjzF5JMPzsRklqGntwc7GLrOHoquWLh++dN+HSHfZ8dBXlmJM7uhWBqa77Ljjcwtxwbxy/Pql7bjv/b36DpToCGv2tUEEmD8uz+yhJBUGWEngb+/uxts7mvDD82am5PL3WC0an48xOWl4fkNiTlu9ub0JEwozMKnYGlvjHMuZ0yNNUJNpb0KlFL79+Ho0eny4+6pFKM+LrUjdbhP87jPzcNaMUvz4uc14Mska4pK1rNnfhmml2cjhoihdMcBKcOtr2vHrl7bjE7NK8bnjx5k9nIRkswnOnVOGt7Y3obM3YPZwRqQ3EML7u5px+rQSs4cybGNy0zCrPKcv85YM7nt/L97c3oRbzp2BeWPzdHlMp92G2z+7ACdOLsT3n9qIdTXtujwuUX+hsMLafW2cHjQAA6wE1uUL4sZH1qIk241fXTrXssvzE8G5c8bAHwrj7R1NZg9lRD7Y3YLeQBhnTE+cAAsAzpxRio/2t6G122/2UGJ2oL0Hv355O06bWoyrTtB3D8g0px1//uxxKM5242sPrEmK54uspbqxCx5fkLt9GIABVgL70TObUNPqxR+WL0Behsvs4SS0BePykZfhxJvbEivA+s+2RqQ5bTh+YoHZQxmRM6eXIKwim1Mnuh8/uxlKAf970WxDPuTkZ7pw5xUL0dztx40Pr0UoSbZ2ImtYX9sOgPVXRmCAlaCe+qgWT609gBvPnIIlCfbmakV2m+DUKcV4a0djwuxNqJTCm9ubcNLkooRb2DCnIhfF2W68vi2xA6z3qpvx2tYG3HjmFEM3yJ1TmYtbL5iFd6ubcdfbuw07DqWeDbXtyHY7MLEw0+yhJB0GWAloT3M3fvjMJiyZUIAbzqgyezhJ44zpxWju8mNTXYfZQxmW3c3d2N/qxekJNj0IROrePjatBG9vb0IgFDZ7OKMSDiv8/N9bUZGXji+cNMHw4122eCyWzRqD37+6AzsbPIYfj1LDxtoOzK7ITfqdFczAACvB+INh3PjwWjjsNvxh+fxjNjCk4Tt1SjFEkDDThG9q2Z/TpxabPJLROW1aMTy+IDZoUxSJ5t+b6rG5rhPfXTYtLhlEEcH/XDQbmW47vv3EBgQTNDAl6/AHI9s1za3MNXsoSYnvzgnmNy9vw8YDHfjVpXNjXgpOhyvMcmNeZV7CbJvzn+1NmFKSZejUlJFOmFQIEeC96hazhzJi4bDC7W9UY3JxJs6bG78Gr8XZbvz0wtlYX9OOu99hp3eKzfaDHvhDYcytzDN7KEmJAVYC+c/2Rtz9zh5csXQcliVIU8lEc8a0EqyvbUdLl8/soQzJHwxj9b5WnFRVZPZQRi0/04WZZTl4t7rZ7KGM2KtbG7DtoAdf/9iUuO/ddv7cMnxiVin+8NoO1LZ543psSi4bDrQDADNYBmGAlSCaPD58+/H1mFaajf/+5Eyzh5O0zpheDKWAt3dae5pw44EO9AbCWDopsRc4nFxVhLX72+D1J9Y2RX97Zzcq89Nx3tyyuB9bRPCj82dBBPj5v7fG/fiUPDbWdiAvw4nKfM6GGIEBVgLovxXOHy9fkHArxhLJ7PJcFGW5LV+HtXJPZFpt8YTEDrBOrCpCIKTw4d42s4cybBtq2/Hh3jZ8/sQJptVAVuSl42unV+HfGw/i/QTMAJI1bKjtwJyKXPZQNAgDrARw73t78PaOJvw3t8IxnM0mOLmqEO/varH0ZsSr9rRiSkkWCrPcZg8lJovG58NuE3y4p9XsoQzbP97biyy3A5ctHmvqOK45dRIq89Pxk39tZsE7jVhvIITtDR7MY/2VYRhgWdymAx341Uvb8PGZpbiCW+HExfGTCtHc5cPu5m6zhzKgUFhh9d62pOh/lul2YHZ5DlYlSIDV4Q3ghY31uHhBBbJN3rctzWnHD8+biR0NXXh41X5Tx0KJZ0t9J0JhhTmsvzIMAywL8/ojW+EUZLq4FU4cRbuir9xtzTf9LXWd6PIFkyLAAoAlEwuwrqYdvYGQ2UM5pmfWHYAvGMbyJeZmr6LOnlmKJRMK8Mc3qhOujo3MtbE20u+PBe7GYYBlYT99bgv2NHfj95fNR0Emt8KJl4lFmSjKcvfVOVlNdFzHTyw0eST6WDKxEP5QGBtqrd3gVSmFh1ftx9zKXMwqt8abkojgu8umocnjwz/e32v2cCiBrK9tR3G2G2Ny0sweStJigGVRL2yox6Ora3DdaZNx4uTEXYqfiEQEx08qwMrdrZasw1q1pxXjCzMwJjc5ToyLJ0Q2mV1l0YA2attBD7Yd9ODTCyvNHsphFk0owMeml+DO/+xChzdg9nAoQWyp68Ts8hzOjBiIAZYF1bZ58b2nNmD+2Dx84+NTzR5OSlo6sQAHO3tR09pj9lAOEw4rfLi3FUsSfPVgf3kZLkwpycKafdZeSfjMugNw2ASfjGNj0eH69tnT0NkbxF/f3mX2UCgB+INhVDd2YUZZjtlDSWoMsCwmGArjG4+ug1LAH5cvgJNb4Zji+EmR6bcVFsuq7GzsQps3kDT1V1HHjcvH2pp2S2YMgUhg+691dTh1arElp+tnlufggnnl+Pt7e9Ha7Td7OGRx1Y1dCIYVpjPAMhTfvS3m9jer8eHeNvzvRbMxrjAxt0BJBlNKslCQ6bJcoXs0y5Po/a+OtGBcHtq9Aeyx6MrNNfvbUNfRiwvmWS97FXXjmVXoDYZw77vcQoeGtu1gJwBgBtv+GIoBloV8uLcVf3x9Jy5eUIGLFlSYPZyUJiJYMqHAcoXuGw+0IzfdifFJFnwfNz5Sh7V2f7u5AxnEixsPwuWw4ayZpWYPZVBVJdk4d3YZ7nt/Lzp6WItFg9ta3wmXw4aJRZlmDyWpMcCyiA5vADc9sg6V+Rm49cJZZg+HABw/qQC1bT040G6dOqwNtR2YW5l8nZerirOQ7XZgbY316rCUUnh580GcUlWELLfD7OEM6fozquDxBXE/VxTSELYd9GBqaZZpOxGkCj67FqCUwg+e3oiGzl788fIFpjcwpIhondPqvdaYJuwNhLD9oAdzKqzRIkBPNptg/rg8fLSv3eyhHGVzXScOtPfgE7Osv8H6zPIcnDWjBPe8twfdPvbFooFtre/EjDGsvzIaAywLeHDlfrywsR7fPHsq5o/NM3s4pJlWmo10p90y01bbDnoQDKukbQw4tzIXOxo8lms4+sqWBtgEOHNGidlDGZbrz6hCuzeAh1ayuzsdrcnjQ3OXnwXuccAAy2SbDnTg1ue34LSpxbj21MlmD4f6cdhtmFORi3U17WYPBQCwsbYdADAnSfcOm1ORh2BYYdtBj9lDOcyb2xpx3Lj8hNn3ccG4fCydVIC/v7eHexTSUbbWawXuZSxwNxoDLBN5egO44aGPkJ/hxP99Zh5stuSqq0kGC8blYUtdJ3xB87MqG2o7UJjpQnmSNBg9UnRPtGggaQVNHh82HujA6dOKzR7KiHz55Emo6+jFi5sOmj0UsphDKwiZwTIaAyyTKKXw/ac2Yn+rF3+6/LiE+XScauaPzYM/FMbWevOzKhsPdGBOEha4R5XnpqEw02WpLXPe3tEEADh9WmJMD0Z9bHoJJhZl4m/v7LZsbzEyx9Z6D8bkpCHfgv3ckg0DLJM8uHI/nt9Qj2+dPS3pmkYmk/nj8gAA6/abu7qtxx/CjgYP5iZhgXuUiGB2RS42HrBOgPXm9kYUZ7sxqzyxPu3bbIIvnjwR62s7LN8hn+Jra30npnN6MC4YYJkgWnd16tRiXHca666srCw3HSXZbqw3Oauypb4DYZW89VdRcypysbOxCz1+86dkw2GF96qbceqU4oTMGl56XAXyMpz42ztsPEoR/mAYu5q6MJ3Tg3HBACvOOnoO1V39nnVXCWFORS4215kbYEWnzZJ1BWHU7IochMIK2xvMn5LddtCDNm8AJ1UVmj2UUclwOfC548fh5S0Hsa/Fmh3yKb52NXUhEFIscI8TBlhxFA4rfPPRdaht62HdVQKZVZGL6sYueP3m9RXaWNuBkmw3SnOSs8A9Krr5bHSlk5ne39UMADhhcmIGWABw1QkT4LAJ/v7eXrOHQhawQ/vgMo1b5MQFA6w4+uMbO/H6tkb89ydnsO4qgcwuz0FYwdRC9w0HOpKyweiRxuZnINNlt0iA1YJJRZkoy003eyijVpqThvPnleOx1TXo8HL7nFS3q7ELNgG3yIkTBlhx8vrWBvzhtZ24ZEEFrj5xgtnDoRGItg8wa5qwNxDC7qauhCu0Hg2bTTC9LMf0ACsYCmPVntaEzl5FfenkifD6Q3h8TY3ZQyGTVTd1YVxBBtwOu9lDSQkMsOJgT3M3bnp0HWaV5+Dnl8xJyILZVDYmJ9I+YKNJhe7VjV0IK2BaihSmzijLxrZ6j6ntBbbUd6LLF8TxkxI/wJpVnouF4/Px4Mr9CIfZsiGVVTd2oaoky+xhpAwGWAbr9gVxzf2r4bAJ7rxiIdKc/OSQaKLtAzbVmZNViXY2T5W6iRllOfD4gqhtM2+T7dV7I60NFk/IN20Merpy6Xjsae7Ge1pdGaWeYCiMvc1eTC5mgBUvDLAMpJTCd5/YgF1NXfjT5cdhbEGG2UOiUZpRloPqRg8CJmw9sv1gJ1wOGyYUpsbrJ1rovsXEacLV+1pRkZee0PVX/Z0zZwwKM124/4N9Zg+FTFLT1gN/KIzJzGDFDQMsA932+k68sLEe3102HSdPKTJ7OBSD6WOyEQgp7GmO/3L3bQc9mFqaBYc9Nf5cp5VGMnU7TNqTUCmF1XvbkiZ7BQBuhx2XLR6L17c24EC7eZlBMk91YxcAcIowjlLjjG2CZ9cdwB9e24lLj6vEV0+dZPZwKEbRzsdmFF9vP+jBtNLUqL8CgEy3AxV56dihvSHEW01rDxo9PiyckFwrfT97/DgoAA+v3G/2UMgEu5oif0+cIoyfmAIsEfm0iGwWkbCILDriuu+LSLWIbBeRT8Q2zMSyZl8bvvPEBiyZUICfXzKbRe1JYFJRFpx26auHipe2bj8aPT5MT5H6q6ippVnYaVKz0TX7WwEAi8YnTwYLACrzM3Dm9BI88uF++IPxn+omc1U3dqE4243cdKfZQ0kZsWawNgG4BMDb/S8UkZkAlgOYBWAZgDtEJCWqu2tavbjm/tUoy03DnVcu5HLYJOFy2DC5OAvb4pzB2qllcaaUptanziml2djd1I2gCTVv62s6kOGyY2pp8gW1Vywdj+YuP17afNDsoVCcVTd2oYrZq7iKKcBSSm1VSm0f4KoLATyilPIppfYAqAawJJZjJYJ2rx9f/MeHCITCuOfqxSjgbuVJZfqYbGyPcwYrVesmppRkwR8KY1+rN+7HXlfTjtkVubAn4TZWp04pxriCDDzAYveUopTCria2aIg3o2qwKgD072pXq112FBG5RkRWi8jqpqYmg4ZjvB5/CF++bzX2tXhx55UL+UJOQtPLclDX0RvXjtjVjV1Id9pRniSr2YYrmj3a2RDfOix/MIwtdZ2YPzYvrseNF5tNcMXScVi1txXbDprfLd+K/MEw9jZ3Y2t9J2pavQglQe+wJo8Pnt4gJhezg3s8OY51AxF5DcCYAa66RSn17GB3G+CyAV+lSqm7ANwFAIsWLUrIV3IwFMYND32ENfvb8OfPHocTJ3PFYDKaqk3TVTd5sHB8fAqgq5u6MLkkM+U2BY9+QNnZ4MGy2QOdfoyx/aAH/lA4qTfV/vTCsfjdKzvwwIp9+N+L5pg9HEvo8AbwzLoDeGFDPT7a34Zgv6Aq3WnHSVVFuGzxWJw5vSQh/xYPZcKTb9rbyo4ZYCmlzhrF49YCGNvv+0oAdaN4HMtTSuH7T23E69sa8T8Xzca5c8rMHhIZpKr4UFYlXgHWrsaupGoXMFzRlYQ747yScF1tOwBgXmVeXI8bT/mZLpw/rxxPf3QANy+bjuy01C169gVDuPM/u3H3O7vR5QtiRlkOvnTyREwpzUaW2452bwCb6zrx6pYGvLa1AbMrcvDzi+dgboK9PqqbUrPUwGzHDLBG6TkAD4nI/wEoBzAFwCqDjmUapRR++eI2PL6mFv915hRcuXS82UMiA1XkpyPNaev7NGg0rz+IA+09WF489tg3TkKTijPj3ndsQ007CjJdqMxP7inZK5eOxxNravH02gO46oQJZg/HFBtrO/Ctx9dhR0MXls0agxs+VoXZg2yo/uPzZ+K59XX45YvbcMkd7+NH58/ElUvHJ8wK8V2NXchyO1Ca4zZ7KCkl1jYNF4tILYATALwgIi8DgFJqM4DHAGwB8BKA65VSoVgHayVKKfzulR3469u7ceXS8bjprClmD4kMZrcJJhVl9X0aNNrupkhwkaqfOicVZWJ3U1dc9yTcUt+JWeU5CfPGOVrzxuZhTkUuHlixz9Q9H82glMJdb+/CRXe8h46eAP7+hcW488qFgwZXAOCw23DJcZV49Zun4bSpxfjRs5vx21e2J8xzV93UhcnFmUn/uraaWFcRPq2UqlRKuZVSpUqpT/S77mdKqclKqWlKqRdjH6q13Pb6Ttz+ZjWWLx6Ln14wiy/cFFFVkhW3DFaqriCMmlSchW5/CE0eX1yO5w+GsaPBg5nlqdHU9cql47GjoQur9rSaPZS4CYbC+OGzm/Dzf2/D2TNL8cpNp+GMaSXDvn9uuhN3X7UIly8Zhz+/uQu3vb7TwNHqZ09TNyaxRUPcsZP7KPzp9Z34w2s78amFlfj5xXMSsuiRRmdKSRZq23rg9QcNP9bu5m7YBBiXInsQHmmStuJpV1N8pgmrG7sQCCnMKk/eAvf+zp9Xjpw0B/65IjVaNvQGQrj2gY/wwIr9+Oppk/Dnzx6H3IyR15/ZbIKfXzwblx5XiT+8thPPrD1gwGj14wuGUN/Zi3HcCzfuGGCNgFIKf3p9J3736g5csqACv7p0LoOrFBPNJu2Ow5v+vpZuVOSnp2yz2olFkQArXnVY0c2lZ5alRgYr3WXHpxaOxcubD6LR02v2cAwVCIVxw0Nr8drWBvz0gln4/jkzYjp3iwh+cckcLJlYgO8/tTFuWe3RqGntgVLA+BT9oGYmBljDpJTCz17Y2hdc/ebT85KyESENLRpgxeOEure5GxMKU7dvTXluOtwOG/Y0x+fNa0tdJ9Kctr7ALhV8buk4BEIKj31Yc+wbJ6hQWOFbj63Ha1sbcOuFs3D1iRN0eVyXw4Y/Xb4AaU4bbnx4LQIm7DowHPtbIx9QxqfwucQsDLCGIRgK4+YnN+Bv7+7B50+cgN8yuEpZ4wozYJPI9J2RlFLYk+IBls0mmFiUGZdsIQBsqe/A9DE5KfW3Pbk4CydVFeKhlfuToqHmQH76r814bn0dvrtsmu4rJktz0vCLS+ZiS30n/vbOHl0fWy/7WiK7ITCDFX8MsI7BFwzhhofW4rHVkVYMPz5/JqcFU5jbYUd5Xjr2GhxgtXsD6OwNpvxJcVJxpuHBLBAJaLfWezAjRaYH+7ty6XjUdfTijW2NZg9Fd/d/sBf3f7AP15w6CV87vcqQYyybPQZnzyzFba/vQI0JWzsdy74WLzJddhRy67a4Y4A1hNZuP67420q8tPkgfnTeTHzj41O5WpAwsSgTe1uMfdPfoz1+Kk1XDWR8YWZctitp8vjQ0RPo69afSs6aUYrSHHfSFbu/u7MZP/3XFpw1owQ3L5tu6LF+csEsKAX87pWBtuY1176WbowrZIsGMzDAGkR1YxcuvuM9rK/twO2fXYAvnjzR7CGRRUwsijTANLIHzr4W1k0AwPiCDATDCnXtPYYeZ4e252F0D8RU4rDbcPmScXh7R1Pf6y7R7WvpxtceXIOq4iz8YfkCw6d9y/PS8cWTJ+KZdXXYdKDD0GON1L5WL8ZzBaEpGGAN4P3qZlxyx3vo6g3ikWuW4ry55WYPiSxkQmEmPL1BtHb7DTvGnmZvpEVDip8Yoz//foOnXnY0eAAAU1IwgwUAly8ZB7tN8ODK/WYPJWa9gRCuf+gjiAj+dvUiZLmN2rDkcNeeNhl5GU784bUdcTnecITCCrWtPRhflNrnEbMwwOpHKYW/v7cHV927CqU5aXjm+pNw3LjU2weOhhadtjNymjDaosHlSO0/0WgPMKMDrJ2NHuRlOFGclZpbiZTmpOHsmaV4bHUNegOJvenGz17Yik0HOvG7T8/D2Dh+QMlNd+ILJ07Ea1sbse1gZ9yOO5SDnb3wh8IYX5DamXCzpPbZux+vP4j/emQdfvqvLTh9WjGe/NqJcf3jpMQxoa8/k3Fv+vtbvSmfvQKAstx0OO3StxLKKDsaujC1JDul61SuXDoe7d4AXthQb/ZQRu1f6+vwzxX78JVTJuKsmaVxP/7VJ45HpsuOv/xnV9yPPZB9zdFSA55LzMAAC8Dupi5c/Of38fyGOnznE9Nw15WLkJPCO8zT0Crz02G3iaErCWtaezA2nydFu01QmZ9h6OospRR2NHhSdnow6oTJhZhUnIkHViZmsXtdew9+8PRGLBiXh+8aXNQ+mLwMF5YvGYcXNtSjsdP85q37tL8bflgzR0oHWEopPLmmFhfc/h4aPb2474tLcP0ZVWzDQENy2m0Ym5/et9JPbz3+EJq7fKjMTzfk8RPNuIIM7Gs1Lpht9Pjg6Q2mZIF7fyKCK44fj7X72y1XqH0s4bDCtx9fj1BY4Q+XzYfTbt5b25VLxyOkFB5aZX49274WL5x2QXkezyVmSNkAq8MbwA0Pr8W3Hl+PmWU5eP7GU3DKlGKzh0UJYmxBBmoNyqocaPf2HYO0AKvFa9iqzV0pvql2f5curESa04Z/fpBYWaz7PtiL93e14IfnzTR95e2EokycNrUYD67cb3p39/2t3ajMz0ip5rlWkpIB1vu7mrHstrfx8qaD+M4npuHha5aighE+jUBlfgZq2oxpHVDT2tN3DIrUj3h6g+joCRjy+NFGptHNpVNZbroTFy+oxDPrDqCly2f2cIalutGDX764DR+bXoLli8eaPRwAwBXHj0eTx4f/bG8ydRz7WrysvzJRSgVY/mAYv3hxKz73t5VId9rx1NdOxPVnVDG6pxEbW5CO1m4/un1B3R+7tk3LYHGKEMChTJ5RKwn3NHcj3WlHaXaaIY+faL508gT4guGEaNkQCIXxjUfXI8Nlxy8vnWOZRQqnTStGUZYLT66pNW0MSinsb2EPLDOlVIDV3OXDQyv3Y/nicXj+xpMxtzLP7CFRgooWoNe06f+mX9PWA7fDhuLs1GwZcKRodvmAQRnDPc3dmFCUydpLTVVJNk6fVoz7P9hr+ZYNt79RjY0HOvDzi+egxEIBstNuw4XzK/D6tga0Gdgvbyit3X54fEGMS/FmxWZKqQCrPC8dr3/zNPzikjnIcMWn+Rwlp2hWJTqdp6faNi8q8tMt82ncbNFi/wMGdXPf3dSFSSm+JdGRvnzyJDR3+fHc+jqzhzKodTXtuP3NalyyoALnzCkzezhHufS4SgRCCs9vNKftRXQFITNY5kmpAAsASnKs8ymHEld0+q7WiAwWWzQcJjfdiUyX3ZAAyx8Mo6atJ+X3fDzSSVWFmD4mG/e8s8fQLaFGq8cfwjcfW4eSbDd+fMEss4czoBll2ZhcnIkXTQqwoq1NWINlnpQLsIj0UJDpQobLblgGiy0aDhERVOSnGzJFWNMW2UiaBe6HExF86eSJ2N7gwVs7zC3UHsivXtqG3U3d+O2n5yE33Zo9C0UE584pw4rdLWg2YcFA9ANJBc8lpmGARTQKIoKx+Rm612B5/UG0eQM8KR6hIi/dkAzWnqbICkJmsI52wfxylOWm4fY3qi2VxXpnZxP+8f5efOGkCTipqsjs4Qzp3DllCCvg5c0H437suvYe5GU4WQ5jIgZYRKNUmZ+ue4fx+o5I9+fyXAZY/VXkGxNgRfeTZIB1NLfDjq+eOgmr97Vhxe5Ws4cDAOjoCeA7j2/A5OJM3GxSt/aRmD4mGxMKM/Dy5oa4H7uuvZfnEZMxwCIapbEFGbpPW9W3RwKsMbmsFeyvPC8d7d6A7m0x9rd6kZPmQF6GS9fHTRbLl4xDUZYbt7+50+yhAAB++MwmNHf58PvL5iPNaTd7OMckIjhzRilW7G6B169/S5eh1LX3sIO7yRhgEY1SWW4aPL4gPL36NcCs64gEbPzkebi+Vg06Z7H2t3oxjkXAg0pzRrJY71W3YM2+NlPH8szaA3hufR1uOmtKQrXY+dj0EviDYbxX3RLX40YCLH5QMxMDLKJRKtPe9KPTenqIZrBKc9kDqz+jWjXsb/VyxeYxfPb4ccjPcOKPr5uXxapp9eKHz2zCovH5uO70KtPGMRqLJxQgy+3AG9viN03o6Q2gszfIDJbJGGARjVK5No1Xp+Ob/sHOHhRlueB2WH/6I54q8iJBkJ5TsuGwQm1bD8axT9CQMt0OXHvaZLy1ownvVTfH/fihsMK3HlsPBeD3l81PuJ03XA4bTplShDe3NcVtsUBfLScDLFMxwCIaJSMyWHXtvSjj9OBRirPdsNsE9R36BViNHh/8wTA31R6Gq0+cgIq8dPzsha0Ih+O7ovDOt3Zh1d5W3HrhrIT9XZ0ypRgHO3uxS1u1arToh75y1nKaigEW0SiVZrthE6BexwxWfUcPynhSPIrdJijJduNgh379hKJ7Gybqm3Y8pTnt+O6yadhS34mn1x6I23HX7m/D71/dgU/OLcPFCyridly9nVRVCAB4f1d8MoB17cxgWQEDLKJRcthtKMlOQ52eNVgdvQywBjEmNw0Nnfo919EAi1OEw3P+3HLMq8zFb1/Zjh6/8XsUtnT58LUHP0JZXhp+fpF1NnIejXEFGajIS4/bFGtde0/fhxIyDwMsohiU5aXpNm3V5QvC0xvsm3qkw43JScNBHQOsmlYvRA6tUKSh2WyCH5w7A/UdvfjjG8YWvIfCCjc9ug4t3X785XMLkZthzW7twyUiOKmqEB/sakEoDlOsdR09KM12w2HnW7yZ+OwTxaA8N71v5V+solONzGANrDQnDQ06ZgtrWr0oz02Hy8HT4HAdP6kQn1lUib++tQvra9oNO84fXtuBd3Y249YLZmF2Ra5hx4mnk6qK0NkbxJa6TsOPxR5Y1sAzC1EMynLTUNfRo8vqoGh2Zgw3JB/QGK3vWJdOzUZr23qYvRqFWz45EyXZafjOE+vhC+o/VfjEmlr86Y1qXLZoLC5bPFb3xzfLkokFAIDV+4zvil/X3ssAywIYYBHFoCwvHb2BMNq9sTcbbeyMFHCXMsAaUDTwPKhTFquug40YRyM33YlfXDIHOxq6dO+N9X51M7735AacVFWI/7lodkLXXR2pLDcdFXnpWL3X2Iat4bBCfQczWFbAAIsoBn29sHSow2r0RAKsYhamDigaeOpR6B4KKxzs4Kf80Tpjegk+vbASd/xnF97a0aTLY2460IGvPrAGk4ozccfnFibl1O2iCfn4cG+rof2wmrt9CIQUPzxYQPK9goniqCQnEgxFg6NYNHp6kemyI9PtiPmxklF0f0Y9MljNXT4Ew4oLCmLw0wtnYVppNm58eC2qG7tieqy1+9vw2btXICfNiXs/vxi56Yld1D6YRRMK0OjxoaZV/43Lo/paNLCfnukYYBHFoCQ78qbf1KlHgOVDCacHB9U3RahDBiu65U4FP+WPWobLgbuuXASnXXDVPStHvY3Rit0tuOJvK5Gf6cKjX12KyiTeumjxhHwAwId7javD6msyyg8PpmOARRSD6HSeHtNWTZ0+Tg8OId1lR266U5cMVnTlJ7vmx2ZcYQb+8YUl8PiC+NRf3sfOBs+w76uUwoMr9+HKe1aiLC8dj331hKQOrgBgakk2stwOrK9tN+wYhwIsfngwGwMsohikOSNv+npNEbIx4ND06oXFT/n6mV2Ri0euWYpASOGiP7+HJ9bUHrPG6EB7D75y/xrc8vQmnDC5CE9ce0JKLO6w2QSzK3IMbXFR196LDO3DCJmLARZRjEqy3Wj0xP6m3+jx9U050sBKctxo0iGYrevoQabLjpw01rvpYVZ5Lv719ZMwqzwX3358PT515wd4cWM9vP5DLTVCYYV1Ne245emNOOO3/8E7O5vw35+cgb9/fjHyMlwmjj6+5lXmYWu9B/5g2JDHj/bASqYVmImKZxeiGJXkuGPOYHX5gvD6Q31F8zSw4iw3duuwYW5dew/K+Cakq7LcdDx8zVI8vroGt72+E9c9+BHsNkFFXjocdkFDRy+6/SG4HTZcPL8CN541JSX7kM2tzIM/FMa2g52YW5mn++PXsUWDZTDAIopRSXYaVu2JrWi1UZv24hTh0Iqz3Wjq8kEpFVNwVM8WDYaw2wTLl4zDpxeNxfu7mrFidwtq23oQCIVx6pRiLBiXh9OmFqdUxupI88ZGOtOvr2k3JsBq78XMshzdH5dGjgEWUYxKsiPTVrG86UczYJwiHFpxthv+YBgeXxA5aaOvMalr7+GbkIHsNsEpU4pxypRis4diORV56SjMdGF9bQeu1PmxA6EwWrp9KVHPlghYg0UUo+JsN/yh2Lq59wVYnCIcUlFW5PmJpQ7LHwyjucvf11eLKJ5EBLMrcrHpQIfuj93c5YNS3A3CKhhgEcUoejKLpQ6LU4TDE21jEUuA1dTFLYnIXDPLc7CrqUv3QveGzmgmnOcRK2CARRSj6MkslpWETV0+OO3CpdXHoEeAFQ1mS5ktJJPMKMtBIKRi7oB/pIa+1zY/PFgBAyyiGEW7rzfG0M29tcuPwkw3V7UdQ3SKsLlr9M/1oU/5fBMic8wsywYAbK3v1PVxo1l0fniwhpgCLBH5tIhsFpGwiCzqd/kEEekRkXXavztjHyqRNR3KYMUQYHX7UZCZuiurhisv3QmHTWKbItQyjax3I7NMKMyE22HTP8Dq7IVNgMIsvratINZVhJsAXALgrwNct0spNT/GxyeyvAyXHWlOG1q7R/+m39ztR2EWA6xjsdkERVmxNRtt6PRF3oQy+SZE5nDYbZg+JhtbdA6wGjp7UZztht3GTLgVxJTBUkptVUpt12swRIlIRFCY6UZLt3/Uj9Ha7WMGa5iKsl0xTRE2evgmROabUZaDrfWdx9xWaCQaOtmiwUqMrMGaKCJrReQtETnFwOMQma4wy4WWrhgCLK0Gi46tOMvdtxJwNLglEVnBtDHZaPMG0BzDeeNIDZ29fG1byDEDLBF5TUQ2DfDvwiHuVg9gnFJqAYBvAnhIRAbs6ici14jIahFZ3dTUNLqfgshkBZkutI4yg9UbCKHbH+IU4TDpMUXIImAy25SSSKH7zkaPbo/Z6OFr20qOGWAppc5SSs0e4N+zQ9zHp5Rq0b5eA2AXgKmD3PYupdQipdSi4mJ2/aXEVJDpQssosyrRqUVOEQ5PcbYbzV1+hMOjm1pp8vSimJ/yyWRVJVkAoFurBl8whNZuP6cILcSQKUIRKRYRu/b1JABTAOw24lhEVlCUFanBGk09RWsXA6yRKMh0IRRW8PQGR3zfQCjSxZ2f8slspTluZLsdugVYTWzRYDmxtmm4WERqAZwA4AUReVm76lQAG0RkPYAnAFyrlIptN1wiCyvIdMEXDMPrD434vi3a6sMiThEOS3QqtdU78inZaHE861TIbCKCqtIs7GzQJ8CKtokpZhd3y4ipTYNS6mkATw9w+ZMAnozlsYkSSaGWfWrp8iPTPbI/q9a+KUKeGIcjP0MLsLp9mFiUOaL7cisRspIpJVl4Y5s+tcfN0QArix8erIKd3Il0EM2qtIyiF1YLpwhHJPo8tXaPfHPtaJ0cP+WTFVSVZKG5y4e2GFq8REVXI/K1bR0MsIh0EG2xMJqVhC3dfjjtgpy0WPv+poZoBms0b0rRYJYrNskKoisJq5tinyaM1mDxtW0dDLCIdFDQb4pwpKJNRrkP4fAcyhaOogZLyzCy5xhZQXSKe09Td8yP1dzlQ16GE04739atgr8JIh3E8qYf2YeQb/jDle60w+2woW0URe4tXX5kuOxId9kNGBnRyFTmp8NhE+xtiT3AavL4UMw9CC2FARaRDjJcDqQ77aPaj7Cl299XJE/HJiKjbuzayj0fyUIcdhvGFmToEmA1d/lQxADLUhhgEekk0mx05G/6Hd4A8jKcBowoeRVkukZVg9Xc5eP0IFnKhMIM7Gn2xvw4zV0+FrhbDAMsIp0UZblGNUXY3sMAa6QKMkf3XLd0MVtI1jKhKBP7Wrpj3vS5ycMMltUwwCLSSV6GC+09I2sdoJRCR08AuekMsEYiP8M1uhqsbh+nCMlSJhZlwusP9TUKHY0ef2Q/06JsvrathAEWkU5y053oGOGbfpcviFBYIS+dJ8aRGE0NllJKq8Hip3yyjgmF2krC5tHXYUV3KGCRu7UwwCLSSV6Gc8QZrHZv5Pa5nCIckYJMFzy9QfiD4WHfp7M3iEBIcYqQLCXaqmFvDAFWNPtVxBosS2GARaSTvHQnOnsCCIeHX0vRoQVkeZwiHJF8LUhqH0HGMNrFnVOEZCXleelw2gV7W0Zf6M4MljUxwCLSSW6GC2EFeHzBYd+nL4PFAGtEolmokWz4HC2K5ypCshK7TVCRl46attEHWE3c6NmSGGAR6SQaJHV4hz9N2JfBymBWZST6NnweQVsMbpNDVlWZn4Hatp5R35/7mVoTAywinUSn+dp7hv+mH70t2zSMTPT56hhBzVsLt8khixpbkI7a1tFnsFq7fchJc3CbHIvhb4NIJ6N50+cU4ej0ZQtHEmDxUz5ZVGV+Blq6/fD6h19e0F8LV8daEgMsIp1EA6z2EU4RpjltSHNyb7yRyO3LFg7/uW7z+pHtdsDl4GmPrKUyPx0ARj1N2MrttiyJZxoineSM4k2/w8smo6OR4bLDYZMRZwvZDoOsaGxBBgCgdpSF7pEN4xlgWQ0DLCKdHCpyH1kNFpuMjpyIRBq7jijA8rPWjSwpmsGqaR1dBqu5i5uYWxEDLCKduB12ZLjsI5oiZFZl9HIzRhhg9QT6Vh8SWUlxlhtuh21UGaxwWKHNywyWFTHAItJR3gizKh09ATYZHaVcrbHrcHE6lqxKRFCZnz6qDFZnbwChsEIBV8daDgMsIh3lpI9suxxu9Dx6uenOEWUL2zhFSBY2tiADte0jz2AdaqDLDJbVMMAi0lFehnNEjUbbvQG+6Y/SSGqwwmGlZQv5JkTWVJabjvr23hHfL7rpOacIrYcBFpGO8tJdw2406guG0BMIsYv7KI0kwPL4gggrNnQl6yrLTUNLtx+9gdCI7sf+btbFAItIR3kjKLzu7Ik0FcxOcxg5pKSVl+5EZ+/wNteOZhUZzJJVleWmAQAaOkeWxYruUFDERqOWwwCLSEe56U60DXOKsMvHACsWOelOqGFurt2mtc7gggKyqvK8SKuG+o6RBVjR/TjzM/nathoGWEQ6ykl3wh8Mwxc8dpq/qzcSGGS5eWIcjejigOGsJGzv21SbzzVZ0xgtg1XfMbKVhC3dkR0K3A7uBmE1DLCIdBTNRkWDp6F4fIHD7kMj07ddzjAyhu1ebqpN1lbWF2CNMIPV7UcBm4xaEgMsIh1luSPBkmcYAdahDBYDrNEYyYbPHT2swSJry3A5kJvuHPFKwtZuPxvoWhQDLCIdRYOlrmHUBUWDMGawRifaAX84AVZbd+Q27DlGVlaWmzbiDFZ7D7u4WxUDLCIdZaWNIIPlYwYrFtGeVsMJsNp7/MhyO+C085RH1hUJsEZWg9XWzd0grIpnGyIdZWsF68PJYPUFWMxgjcqIpgi5TQ4lgLK89BFnsDp6Apz6tigGWEQ66ity9x37Td/TG4TLYePqn1FKc9rgstuG1di1vYcd88n6ynLS0DqCZqP+YBhdviBf2xbFAItIRyOZIvT0BpDN6cFRExFkpzmGtWKznfsQUgIo1VYSNnb6hnX7aPY2n69tS2KARaSjEa0i9AU5PRijrDTHsKZjO3oCyEnjmxBZW0l2pBt7o2d404TR9iO5nCK0JAZYRDpyO2xw2mV4NVi9QRa4x2i4GSxPb5CrNcnySrK1DJZneBms6K4RzGBZEwMsIh2JCLLcw3zT9zHAilWW2zGsrXIiARbfhMjaSnK0DNYw9yOMZrDYB8uaGGAR6Sw7zTnsPlh8049Nltt5zOnYQCiMnkCIGSyyvIIMFxw2GXYGK7qLAVfIWhMDLCKdZbkd8PQeexVhly/AN/0YZac5jrlis6uvoSvfhMjabDZBUZZ7+AFWT3SjZ2awrIgBFpHOstIcw94qh1OEsRnOdGz0d5HDYJYSQGnO8AOsNm8ADpsg08VWL1bEAItIZ9nuY69sU0pxFaEOsrVVhEqpQW/T2RvdVJsZLLK+4uy0EdRgRZqMiojBo6LRYIBFpLPhtA7wBcMIhBSnCGOUleZAIKTgC4YHvQ0zWJRISnLcaBp2DRb7u1kZAywinY1k2oqNRmOTPYy+Yx5msCiBlGS70dLtRyA0+IeGqHZvgC0aLIwBFpHOstOOvbKN+xDqI6tva6KhAqxokTufa7K+aC+s4WSx2rx+7kNoYQywiHSWneaAPxSGLzj4fmLRDFeWm58+Y9G3ufawMlgMsMj6DnVzP3aA1e4NII8tGiyLARaRzqIrA4fzps9VhLHp2/txiFYNHrZpoAQykmaj7T1+tmiwsJgCLBH5jYhsE5ENIvK0iOT1u+77IlItIttF5BMxj5QoQfQFWENNW/k4baWHYQWzviDcDhtcDn6eJOsr1jJYzV3+IW/XGwihNxBmk1ELi/WM8yqA2UqpuQB2APg+AIjITADLAcwCsAzAHSLCRh2UEvqyKkO86Xv9kesy2L8mJtnDeK49vQFmryhhFGZGAqyWrqGnCNv79iFkBsuqYgqwlFKvKKWiZ7YVACq1ry8E8IhSyqeU2gOgGsCSWI5FlCiib/qdQ3Rz9/oj9VkZLmawYjGcbGFnb5AtGihhuBw25KQ50NI9dAarTduHkG0arEvPnPkXAbyofV0BoKbfdbXaZURJL1MLmnr8gxe5R69LZwYrJsNdRcipWEokRVluNA0zg8UAy7qOedYRkdcAjBngqluUUs9qt7kFQBDAg9G7DXD7AVsti8g1AK4BgHHjxg1jyETWFg2avMMIsDhFGBu3ww6Xw8YpQkoqRVnuYUwRahmsdE4RWtUxAyyl1FlDXS8iVwM4D8CZ6tB+FbUAxva7WSWAukEe/y4AdwHAokWLBt/vgihBpDsjQdNQGSxvIASnXeC0s/A6VpGtiYZeRTgmJy2OIyKKTWGWCzsbu4a8TXuPVoOVyQ8PVhXrKsJlAG4GcIFSytvvqucALBcRt4hMBDAFwKpYjkWUKKJZqZ7A0BmsaCBGsTnW5tqRDBanCClxFGa5jpnBitZgscjdumI969wOwA3gVW2zyRVKqWuVUptF5DEAWxCZOrxeKTX4uw1REokWrg81Rej1B1l/pZPstKG3JorUYPFTPiWOoiw32rwBBENhOAbJcnd4A3A7bEjjBzXLiinAUkpVDXHdzwD8LJbHJ0pEbq3fUo9/qDYNIa4g1EmW29HXV+xIwVAYXn+IGSxKKIVZkVYNrd1+lAwyvd3m9TN7ZXEsACHSmc0mSHfah5wi7A1wilAvWe7B937s9kV+B8xgUSIpzooETkM1G23zBriC0OIYYBEZIMNlP8YUYYgrCHWS4bIPmi3s9kf3fORzTYkjmsFq6R68DquDAZblMcAiMkC6yz70KkJ/iDVYOsl0Dx7MdvuiHfM5RUiJozAzmsEaPMBq8/rZosHiGGARGSDdOXQGi6sI9ZPudAwazHZrl3NTbUokRdnR7XIGnyJs7wmwRYPFMcAiMkCGa+gaLG8gyClCnWS47Oj2B3GoDd8hhzJYfK4pcWS7HXDZbYPWYCml0O71I49F7pbGAIvIAMeaIuzxh5DOaStdZLjtCCvAFwwfdV00wMpkBosSiIigMMs16BSh1x9CIKSQl84MlpUxwCIyQIbLAW9g8DYNPSxy102Gc/CtiaKXMcCiRDPUdjlsMpoYGGARGSB9iFWESil4Awyw9HKosevRAW10E+hMPteUYCIZrIGnCKMbPedyFaGlMcAiMkC6047eQQIsXzAMpcAOzDrJcA++92M06GIGixJNYebgGaxogMUMlrUxwCIyQIbLDu8gRe7RzBYzWPqIPo/dAwRYXVqjUa7YpERTlO1Cc7d/wMUb0SlC9sGyNgZYRAYYaoowmlVhgKWPoaYIvb7Iak2bTeI9LKKYFGW64Q+GB9wGqr0nksFigGVtDLCIDJDhdMAfDCMUPvrTZ6+W2eIqQn1EA9WBpgi7/SFOD1JCKsqOTP8N1AurvVvLYLHRqKUxwCIyQLpL2/B5gGnCvilCTlvpYqgpwm5fkAXulJAKM6PNRo+uw2rvCSDTZYfLwbdwK+Nvh8gA6UNNW/mjGSy+8eshOkU40H6EXn+Q2+RQQirMGny7nDY2GU0IDLCIDBDNTg00bdXDAEtXfRks30BF7kFuk0MJqVjb8HmgVg3c6DkxMMAiMkBfXdBQU4QMsHSRfoznOtrGgSiR5A+x4XOb188WDQmAARaRAdJcg3cXjwYCGU5mVvTgstvgsMmA07GRGiw+z5R4nHYb8jKcAxe59wTYZDQBMMAiMsDQU4SRQIBThPoQEaS77ANOEXb7QshkBosSVFGWGy3dAxS5ewPIZ4BleQywiAxwqPCaU4TxkDHI5trdLHKnBFaY6UKz5/AMVjis0M4pwoTAAIvIANHs1EDd3KMBFrfK0U+my3HUc62UQjeL3CmBFWW50XxEBsvjCyKsgNx0ZrCsjgEWkQH6Cq8HqAvqCYTgdthgZ3dx3aS77PAe0fHaFwwjrMAid0pYRVmuo2qw2rVtcpjBsj4GWEQGiNZgDVjk7g9xelBnmS7HUc91txZwscidElVhlhsdPQH4g+G+y6IbPbNNg/UxwCIywFCtA3oDIU4P6ix9gM21o0Xv3CqHElWR1gurtftQFuvQRs/MYFkdAywiA7gdNthk4CJ3XzAMN7e40FXGAFOE3f5oBovBLCWmgbq5d3Cj54TBszyRAUQE6c6BV7b5g2HuIaazjAGmCKN9sTKYwaIEVTRAgNXWzRqsRMGzPJFBXA4b/KHwUZf7giG4Hcyq6CnDZT+q0WiXNkWYxSJ3SlDRKcL+he7tWgYrJ40fHKyOARaRQdwOO3yBowMsf4hThHqLBFhHZLC0KcN0dsynBFXYtx/hoQxWc5cP+RlOOOw8h1gdf0NEBhk0gxXgFKHeMlwO+IJhhMKq77Juf7TInRksSkyZLjvcDhta+hW5N3b6UJKdZuKoaLh4licyiNthgy/IIvd4yOjb+/HQNGG0Bxk7uVOiEpFIs9F+GaymLh+Ks90mjoqGi2d5IoO4HLbD+tdEschdf4caux4KaLklESWDoiwXmruOzGAxwEoEPMsTGcTlsME3QIDFInf9RacBvQMEWOnsOUYJrCjLjRYtg6WUQpPHh+IcBliJgAEWkUHcgwRYzGDpL1rI3t1vitDrDyLNaYONWxJRAivst11OR08A/lCYNVgJgmd5IoO4HPYBpwhZg6W/aAbryClC1l9RoivMcqOl2welFBo9kUwWa7ASA8/yRAYZKoPFKUJ9ReusuvsFWD3+EKcHKeEVZbkRCCl09gTRpAVYrMFKDAywiAwSKXIfeBUhpwj1FZ0i7DlsijDEFg2U8KLd3Bs8vWj09AJggJUoeJYnMshAGaxwWLHRqAEGLHIPhJDOKUJKcJOKsgAAu5u60NjJKcJEwrMPkUHcA7RpiDYeZQZLX+kDThEGkcEpQkpwk0syAQA7G7rQ3hNAutOOLO6vmRD4WyIyiNthPyqDFf2eGSx9RYvZj5wiHJPjNGtIRLrIcDlQmZ+OnY1dUABKctwQ4crYRMAAi8ggAzUa9TPAMkS0mP3IPljpbDJKSWBKSRZ2NnYhJ83B+qsEwrM8kUFc9qO3yol+z1WE+rLbBGlO2xEBVhCZrMGiJDClNBu7mrqwvrYd08Zkmz0cGiaefYgM4nbYEFZAMBTu2/m+L4Pl5GcbvWW4HIftRcgMFiWLqpKsvnPHZxaNNXk0NFw8yxMZJFrI3r8OK/q1y84/Pb1luOyHZbB6/CHuQ0hJYUpJZCXhzLIczKnINXk0NFw8yxMZJFpn1b8Oixks42S47PD6IgGWPxhGMKwYYFFSmFqajYJMF758ykQWuCcQThESGcSl1VlFWzMA/TNYfOPXW4bLAW8gEmBFt8xhHyxKBpluB1bfchb31Uww/BhNZJBoBssX6B9gaUXuzGDpLpLBitRgRTd9ZgaLkgWDq8TDszyRQaI1WP7QobogP2uwDNO/Biv6PwMsIjJLTGd5EfmNiGwTkQ0i8rSI5GmXTxCRHhFZp/27U5fREiWQaIDVGzh6ipAZLP1luBzoOWKKMINThERkkljP8q8CmK2UmgtgB4Dv97tul1Jqvvbv2hiPQ5Rw+orcQwMUubMPlu4yXHZ0a1OEXk4REpHJYgqwlFKvKKWijWdWAKiMfUhEycE1RA0W9yLUX7rL3pe5iha7sw8WEZlFz7P8FwG82O/7iSKyVkTeEpFTBruTiFwjIqtFZHVTU5OOwyEyl3uAVYTcKsc4mdoqQqVUvylCBlhEZI5jFiiIyGsAxgxw1S1KqWe129wCIAjgQe26egDjlFItIrIQwDMiMksp1Xnkgyil7gJwFwAsWrRIje7HILKeQ6sIDxW597VpYIClu3SXHaGwgi8Y7ity51Y5RGSWY559lFJnDXW9iFwN4DwAZyqllHYfHwCf9vUaEdkFYCqA1TGPmChBDFSD5WMGyzDRbFWPP9RXg8UpQiIyS6yrCJcBuBnABUopb7/Li0XErn09CcAUALtjORZRohm4BottGowSzVZ5AyG2aSAi08WaP78dgBvAq1r7/hXaisFTAdwqIkEAIQDXKqVaYzwWUUIZqAbLFwzB5bBxuwsDRLNVXl+wL8BK42pNIjJJTAGWUqpqkMufBPBkLI9NlOhcA9Rg+YNhTg8aJNOtBVj+EHr8QaQ77ex+TUSm4ZmeyCCuQWqwGGAZI90Z+bzY7Y9ksDg9SERm4pmeyCB9Re7Bw9s0sMmoMfoXuXf0BJCT7jR5RESUyhhgERnEYROIHCpsByJfs0WDMaJThN3+ENq9AeRlMMAiIvPwTE9kEBGB22E7LIPlC4Q4RWiQ3HQXAKDd60eb14/8DJfJIyKiVMYzPZGBXHbbYRksf4gZLKPkaxmrli4/M1hEZDqe6YkM5HbaD58iDLDI3SgOuw35GU60dPuYwSIi0/FMT2SgSAarX5uGEIvcjVSQ6cLBjl54/aG+jBYRkRkYYBEZ6KgaLK3RKBmjMMuNXU3dAIA8ZrCIyEQ80xMZyOU4ogaLfbAMVZjpwr6WSIDFKUIiMhPP9EQGOjqDxSJ3IxVmuRBWka85RUhEZuKZnshAbof9sBqsQDAMJzd6NkxBprvva04REpGZeKYnMpDriAxWIKzgtHN/PKMUZR0KqvIzmcEiIvMwwCIykPuIGqxgKAyHjX92RinI7BdgMYNFRCbimZ7IQE67DYFQ/wBLwcEMlmGiAVaa04Y0J9thEJF5GGARGchuFwSjVdcAAmHWYBmpKCtSg8XsFRGZjWd6IgM5bYJg6FCAFQwpOGzMYBklmsFigTsRmY0BFpGBHHYbgtoUoVIKwbCCgxksw+RnuCDCFg1EZD6e6YkM5LQLAtoUYXSq0MkMlmHsNkF+hotThERkOofZAyBKZg7boQxWdKqQGSxj3XTWFEwqyjJ7GESU4hhgERnIYT9UgxUIRwIt9sEy1lUnTDB7CEREnCIkMpLTbusLrKKBlp1ThERESY8BFpGB7DZBqK8GKxJocYqQiCj58UxPZCCnTRAIqcgKwhCL3ImIUgUDLCIDRbNVobBikTsRUQrhmZ7IQNFtcYJhxSJ3IqIUwgCLyEBObWPnQCh8KIPFzZ6JiJIez/REBurLYIVU36bP3OyZiCj5McAiMlB038FgWB3q5M4Ai4go6THAIjJQtKA9GA73dXTnFCERUfLjmZ7IQH0ZrJBCoG8VITNYRETJjgEWkYGc9n5F7mFmsIiIUgXP9EQG6t+mIcgMFhFRymCARWQgR/82DdEid2awiIiSHs/0RAZy9mvTEGSbBiKilMEAi8hAdlv/Tu5s00BElCoYYBEZKFrkHgyxTQMRUSrhmZ7IQIc1GmWROxFRymCARWQgR782DYc2e+afHRFRsuOZnshAhxe5Rzd7ZgaLiCjZMcAiMlC03ioYDvfb7Jl/dkREyY5neiIDHdZoNMwMFhFRqmCARWSg/nsRsg8WEVHqYIBFZKD+exFGN3tmJ3ciouTHMz2RgfpPEYbCCjYBbJwiJCJKegywiAzUV+SutWlggTsRUWqI6WwvIv8jIhtEZJ2IvCIi5f2u+76IVIvIdhH5ROxDJUo80TYNAa1Ng5PZKyKilBDrx+nfKKXmKqXmA3gewI8AQERmAlgOYBaAZQDuEBF7jMciSjjRjFUwHNkqhxksIqLUENPZXinV2e/bTABK+/pCAI8opXxKqT0AqgEsieVYRInIccRmz9zomYgoNThifQAR+RmAqwB0ADhDu7gCwIp+N6vVLiNKKUe2aeBGz0REqeGYZ3sReU1ENg3w70IAUErdopQaC+BBADdE7zbAQ6kBLoOIXCMiq0VkdVNT02h/DiJLsvcFWGEEQ4o9sIiIUsQxM1hKqbOG+VgPAXgBwI8RyViN7XddJYC6QR7/LgB3AcCiRYsGDMKIEpWIwGkXBLQpQnZxJyJKDbGuIpzS79sLAGzTvn4OwHIRcYvIRABTAKyK5VhEicphs2kZLBa5ExGlilhrsH4pItMAhAHsA3AtACilNovIYwC2AAgCuF4pFYrxWEQJyWEXBEIKgRAzWEREqSKmAEspdekQ1/0MwM9ieXyiZOCwCUJhhWA43Ld1DhERJTee7YkM5rDbEAyHEQqzyJ2IKFUwwCIymNMWnSIMc6NnIqIUwbM9kcEcdhvbNBARpRgGWEQGc/Rv08AaLCKilMCzPZHBnP3aNHCzZyKi1MAAi8hgDru2ipBThEREKYMBFpHBHNEi9zD3IiQiShU82xMZLNqmgRksIqLUwQCLyGDRDFYwxAwWEVGq4NmeyGBOrU1DIKzgZAaLiCglMMAiMpjDLgiGtQwWAywiopTAAIvIYA6bLTJFGFacIiQiShE82xMZLLLZc6TInVOERESpgQEWkcEcdkEwpBAMh9nJnYgoRfBsT2Qwp92GQDiMQEixkzsRUYpggEVkMIdN4AuEI18zg0VElBJ4ticymMNuQ08gBACwM4NFRJQSGGARGcxpF/RqARaL3ImIUgMDLCKDRds0RL8mIqLkx7M9kcH6NxdlBouIKDUwwCIymKNf3RWL3ImIUgPP9kQG6x9UOVjkTkSUEhhgERmsf++r3HSniSMhIqJ4YYBFZLBoBksEOHlKkcmjISKieGCARWQw0RJYp00tRobLYe5giIgoLhhgERlsR4MHAHDO7DEmj4SIiOKFH6eJDHbNqZMAABfOrzB5JEREFC8MsIgMNn1MDv7vM/PNHgYREcURpwiJiIiIdMYAi4iIiEhnDLCIiIiIdMYAi4iIiEhnDLCIiIiIdMYAi4iIiEhnDLCIiIiIdMYAi4iIiEhnDLCIiIiIdMYAi4iIiEhnDLCIiIiIdMYAi4iIiEhnDLCIiIiIdMYAi4iIiEhnDLCIiIiIdMYAi4iIiEhnDLCIiIiIdMYAi4iIiEhnopQyewx9RKQJwL44HKoIQHMcjpNo+LwMjs/NwPi8DI7PzcD4vAyMz8vgrPzcjFdKFQ90haUCrHgRkdVKqUVmj8Nq+LwMjs/NwPi8DI7PzcD4vAyMz8vgEvW54RQhERERkc4YYBERERHpLFUDrLvMHoBF8XkZHJ+bgfF5GRyfm4HxeRkYn5fBJeRzk5I1WERERERGStUMFhEREZFhUirAEpFlIrJdRKpF5Htmj8dMIjJWRN4Uka0isllE/ku7/CcickBE1mn/zjV7rPEmIntFZKP286/WLisQkVdFZKf2f77Z44wnEZnW7zWxTkQ6ReSmVH29iMi9ItIoIpv6XTboa0REvq+dd7aLyCfMGXV8DPLc/EZEtonIBhF5WkTytMsniEhPv9fPnaYN3GCDPC+D/v2kymtmkOfl0X7PyV4RWaddnlCvl5SZIhQRO4AdAD4OoBbAhwAuV0ptMXVgJhGRMgBlSqmPRCQbwBoAFwH4DIAupdRvzRyfmURkL4BFSqnmfpf9GkCrUuqXWnCer5S62awxmkn7WzoA4HgAX0AKvl5E5FQAXQDuV0rN1i4b8DUiIjMBPAxgCYByAK8BmKqUCpk0fEMN8tycDeANpVRQRH4FANpzMwHA89HbJbNBnpefYIC/n1R6zQz0vBxx/e8AdCilbk2010sqZbCWAKhWSu1WSvkBPALgQpPHZBqlVL1S6iPtaw+ArQAqzB2VpV0I4D7t6/sQCUZT1ZkAdiml4tEU2JKUUm8DaD3i4sFeIxcCeEQp5VNK7QFQjcj5KCkN9NwopV5RSgW1b1cAqIz7wEw2yGtmMCnzmhnqeRERQeRD/8NxHZROUinAqgBQ0+/7WjCgABBJuwJYAGCldtENWir/3lSbCtMoAK+IyBoRuUa7rFQpVQ9EglMAJaaNznzLcfgJL9VfL1GDvUZ47jncFwG82O/7iSKyVkTeEpFTzBqUiQb6++FrJuIUAA1KqZ39LkuY10sqBVgywGWpMT86BBHJAvAkgJuUUp0A/gJgMoD5AOoB/M680ZnmJKXUcQDOAXC9lsImACLiAnABgMe1i/h6OTaeezQicguAIIAHtYvqAYxTSi0A8E0AD4lIjlnjM8Fgfz98zURcjsM/zCXU6yWVAqxaAGP7fV8JoM6ksViCiDgRCa4eVEo9BQBKqQalVEgpFQZwN5I0LT0UpVSd9n8jgKcReQ4atLq1aP1ao3kjNNU5AD5SSjUAfL0cYbDXCM89AETkagDnAfic0op/tSmwFu3rNQB2AZhq3ijja4i/n5R/zYiIA8AlAB6NXpZor5dUCrA+BDBFRCZqn8KXA3jO5DGZRpvbvgfAVqXU//W7vKzfzS4GsOnI+yYzEcnUiv4hIpkAzkbkOXgOwNXaza4G8Kw5IzTdYZ8oU/31coTBXiPPAVguIm4RmQhgCoBVJozPNCKyDMDNAC5QSnn7XV6sLZqAiExC5LnZbc4o42+Iv5+Uf80AOAvANqVUbfSCRHu9OMweQLxoq1duAPAyADuAe5VSm00elplOAnAlgI3RJbAAfgDgchGZj0g6ei+Ar5oxOBOVAng6En/CAeAhpdRLIvIhgMdE5EsA9gP4tIljNIWIZCCyCrf/a+LXqfh6EZGHAZwOoEhEagH8GMAvMcBrRCm1WUQeA7AFkemx65NxNVjUIM/N9wG4Abyq/W2tUEpdC+BUALeKSBBACMC1SqnhFoInlEGel9MH+vtJpdfMQM+LUuoeHF3rCSTY6yVl2jQQERERxUsqTRESERERxQUDLCIiIiKdMcAiIiIi0hkDLCIiIiKdMcAiIiIi0hkDLCLSjYhcLCJKRKbH+DifF5HbR3ifBSLyt373b9K21NgpIi+LyImxjMkIIvKIiEwxexxEpD8GWESkp8sBvItID5t4+wGAP/X7/lGl1AKl1BREelQ9JSIzYj1ItNGhTv4C4Ls6Ph4RWQQDLCLShbav5UkAvoR+AZaInC4i/xGRJ0Rkm4g8qO0kABE5V7vsXRH5o4g8P8DjFovIkyLyofbvpAFukw1grlJq/UBjU0q9CeAuANdot58sIi9pG3q/E824aZev0I5zq4h09fsZ3hSRhxBpzmsXkd9ot9sgIn0NVkXkO/0u/6l2WaaIvCAi60Vkk4hcpt38HQBnaduCEFES4R81EenlIgAvKaV2iEiriBynlPpIu24BgFmI7Kf2HoCTRGQ1gL8COFUptUfr6DyQ2wD8Xin1roiMQ2Q3hiMzUYtw7G16PsKhTvN3IdIFeqeIHA/gDgAf0451m1LqYRG59oj7LwEwWxvrNQA6lFKLRcQN4D0ReQWRrTumaLcVAM9JZLPwYgB1SqlPAoCI5AKAUiosItUA5gFYc4zxE1ECYYBFRHq5HMAftK8f0b6PBlironuKaVszTQDQBWC3UmqPdpuHoWWYjnAWgJla0gsAckQkWynl6XebMgBNxxhfNGuWBeBEAI/3e0y39v8JiASKAPAQgN/2u/+qfmM9G8BcEfmU9n0uIoHV2dq/tdrlWdrl7wD4rYj8CsDzSql3+j1uI4ByMMAiSioMsIgoZiJSiEgGaLaIKET2+1QiEq0v8vW7eQiRc49geGwATlBK9Qxxmx4Aacd4nAUAtmqP166Umj/M40d19/taAHxdKfVy/xuIyCcA/EIp9dcj7ywiCwGcC+AXIvKKUupW7ao0bfxElERYg0VEevgUgPuVUuOVUhOUUmMB7AFw8hD32QZgkohM0L6/bJDbvQLghug32ua4R9oKoGqwA4nIaYhkx+5WSnUC2CMin9auExGZp910BYBLta+HKtR/GcB1IuLUHmOqiGRql39Ry5JBRCpEpEREygF4lVIPIJIVO67fY00FkMobzxMlJQZYRKSHywE8fcRlTwL47GB30DJSXwPwkoi8C6ABQMcAN70RwCKtaHwLgCNro6CU2gYgVyt2j7pMRNaJyA5EVhheqpTaql33OQBfEpH1iAQ3F2qX3wTgmyKyCpFpx4HGAwB/A7AFwEcisgmRWjKHUuoVRKYWPxCRjQCeAJANYA6AVdr06C0A/hcARKQUQI9Sqn6w54mIEpMopcweAxGlKBHJUkp1aasK/wxgp1Lq96N8rG8A8Cil/hbDeDIQCXiUiCwHcLlS6sJj3S+G430DQKdS6h6jjkFE5mAGi4jM9BUtq7MZkULxo2qXRuAvOLzWazQWAlgnIhsQya59K8bHO5Z2APcZfAwiMgEzWEREREQ6YwaLiIiISGcMsIiIiIh0xgCLiIiISGcMsIiIiIh0xgCLiIiISGcMsIiIiIh09v9/MOhWifQoqAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -636,11 +414,22 @@ } ], "source": [ + "number_of_angles = 400\n", + "angles = np.pi * np.linspace(0, 1, number_of_angles)\n", + "unit_points = np.array([-np.cos(angles), -np.sin(angles), np.zeros(number_of_angles)])\n", + "\n", + "far_field = np.zeros((3, number_of_angles), dtype='complex128')\n", + "\n", + "for i in range(2):\n", + " electric_far = bempp.api.operators.far_field.maxwell.electric_field(sol[2 * i + 1].space, unit_points, k_ext)\n", + " magnetic_far = bempp.api.operators.far_field.maxwell.magnetic_field(sol[2 * i].space, unit_points, k_ext) \n", + " far_field += -electric_far * sol[2 * i + 1] - magnetic_far * sol[2 * i]\n", + " \n", "plt.rcParams['figure.figsize'] = (10, 8) # Resize the figure\n", "\n", - "bistatic_rcs= 10 * np.log10(4 * np.pi * np.sum(np.abs(far_field)**2, axis=0))\n", - "plt.plot(angles * 180 / np.pi, bistatic_rcs)\n", - "plt.title(\"Bistatic RCS [dB]\")\n", + "cross_section = 10 * np.log10(4 * np.pi * np.sum(np.abs(far_field)**2, axis=0))\n", + "plt.plot(angles * 180 / np.pi, cross_section)\n", + "plt.title(\"Scattering Cross Section [dB]\")\n", "_ = plt.xlabel('Angle (Degrees)')" ] } @@ -661,7 +450,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.2" + "version": "3.8.5" } }, "nbformat": 4, diff --git a/test/conftest.py b/test/conftest.py index 2af75583..6481f63e 100644 --- a/test/conftest.py +++ b/test/conftest.py @@ -142,6 +142,6 @@ def test_path(): def default_tolerance(precision): """Given a precision return default tolerance.""" if precision == "single": - return 5e-4 + return 6e-4 if precision == "double": return 1e-10 diff --git a/test/validation/operators/boundary/test_maxwell_boundary.py b/test/validation/operators/boundary/test_maxwell_boundary.py index 2da3c70c..54a7007e 100644 --- a/test/validation/operators/boundary/test_maxwell_boundary.py +++ b/test/validation/operators/boundary/test_maxwell_boundary.py @@ -126,8 +126,8 @@ def test_maxwell_electric_field_bc_sphere( bempp.api.GLOBAL_PARAMETERS.fmm.dense_evaluation = False if precision == "single": - rtol = 1e-5 - atol = 1e-6 + rtol = 1e-4 + atol = 5e-6 else: rtol = 1e-10 atol = 1e-14