Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Incorrect Evaluation Metrics Produced #187

Open
NikhielRahulSingh opened this issue Nov 1, 2024 · 4 comments
Open

Incorrect Evaluation Metrics Produced #187

NikhielRahulSingh opened this issue Nov 1, 2024 · 4 comments

Comments

@NikhielRahulSingh
Copy link

`def beir_evaluation():

actual_contexts_dict = {'0': 
                           {'0': 1, '1': 1, '2': 1, '3': 1, '4': 1, '5': 1, '6': 1, '7': 1, '8': 1, '9': 1}
                        }
results_dict = {'0': 
                   {'0': 1, '1': 1, '2': 1, '3': 1, '4': 1, '5': 1, '6': 1, '7': 1, '8': 1, '9': 1}
                }

# Evaluate retrieval metrics
ndcg, map_score, recall, precision = EvaluateRetrieval.evaluate(
    actual_contexts_dict, results_dict, k_values=[10]
)
mrr = EvaluateRetrieval.evaluate_custom(actual_contexts_dict, results_dict, [10], metric="mrr")

# Print evaluation results
print(f"\nRecall@10   : {recall['Recall@10']:.2f}")
print(f"Precision@10: {precision['P@10']:.2f}")
print(f"\nNDCG@10     : {ndcg['NDCG@10']:.2f}")
print(f"MAP@10      : {map_score['MAP@10']:.2f}")
print(f"MRR@10      : {mrr['MRR@10']:.2f}")`

Recall@10 : 0.90
Precision@10: 0.90

NDCG@10 : 0.94
MAP@10 : 0.90
MRR@10 : 1.00

This is clearly incorrect as everything should be 1. Please can this be resolved

@NikhielRahulSingh
Copy link
Author

from beir.retrieval.evaluation import EvaluateRetrieval

def beir_evaluation():

    actual_contexts_dict = {'0':{'0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5, '6': 6, '7': 7, '8': 8, '9': 9},
                            '1':{'10': 10, '11': 11, '12': 12, '13': 13, '14': 14, '15': 15, '16': 16, '17': 17, '18': 18, '19': 19}
                            }
    results_dict = {'0':{'0': 0, '1': 0, '2': 0, '3': 0, '4': 0, '5': 0, '6': 0, '7': 0, '8': 0, '9': 0},
                    '1':{'10': 10, '11': 11, '12': 12, '13': 13, '14': 14, '15': 15, '16': 16, '17': 17, '18': 18, '19': 19}
                    }

    # Evaluate retrieval metrics
    ndcg, map_score, recall, precision = EvaluateRetrieval.evaluate(
        actual_contexts_dict, results_dict, k_values=[10]
    )
    mrr = EvaluateRetrieval.evaluate_custom(actual_contexts_dict, results_dict, [10], metric="mrr")

    # Print evaluation results
    print(f"\nRecall@10   : {recall['Recall@10']:.2f}")
    print(f"Precision@10: {precision['P@10']:.2f}")
    print(f"\nNDCG@10     : {ndcg['NDCG@10']:.2f}")
    print(f"MAP@10      : {map_score['MAP@10']:.2f}")
    print(f"MRR@10      : {mrr['MRR@10']:.2f}")

# Run the evaluation
beir_evaluation()

Recall@10 : 1.00
Precision@10: 0.95

NDCG@10 : 1.00
MAP@10 : 1.00
MRR@10 : 1.00

Why is precision@10 not 1.00 ?

@shivareddy0117
Copy link

shivareddy0117 commented Nov 16, 2024

`def beir_evaluation():

actual_contexts_dict = {'0': 
                           {'0': 1, '1': 1, '2': 1, '3': 1, '4': 1, '5': 1, '6': 1, '7': 1, '8': 1, '9': 1}
                        }
results_dict = {'0': 
                   {'0': 1, '1': 1, '2': 1, '3': 1, '4': 1, '5': 1, '6': 1, '7': 1, '8': 1, '9': 1}
                }

# Evaluate retrieval metrics
ndcg, map_score, recall, precision = EvaluateRetrieval.evaluate(
    actual_contexts_dict, results_dict, k_values=[10],  ignore_identical_ids=False
)    # please make sure to add the ignore_identical_ids parameters to False to consider all the documents or use the different Query and Documents_ID
mrr = EvaluateRetrieval.evaluate_custom(actual_contexts_dict, results_dict, [10], metric="mrr")

# Print evaluation results
print(f"\nRecall@10   : {recall['Recall@10']:.2f}")
print(f"Precision@10: {precision['P@10']:.2f}")
print(f"\nNDCG@10     : {ndcg['NDCG@10']:.2f}")
print(f"MAP@10      : {map_score['MAP@10']:.2f}")
print(f"MRR@10      : {mrr['MRR@10']:.2f}")`

please make sure to add the ignore_identical_ids parameters to False to consider all the documents or use the different Query and Documents_ID

#please go through this code for better understanding:
https://github.com/beir-cellar/beir/blob/main/beir/retrieval/evaluation.py

@SighingSnow
Copy link

BEIR use pytrec_eval to evaluate. Maybe the solutions can be found in pytrec_eval issuses.

@NikhielRahulSingh
Copy link
Author

y = [[1,2,3,4,5,6,7,8,9,10],
     [11,12,13,14,15,16,17,18,19,20],
     [21,22,23,24,25,26,27,28,29,30]
     ]
y_hat = [[8, 1, 4, 9, 7, 3, 5, 6, 10, 2],
         [15, 13, 18, 11, 20, 14, 17, 16, 19, 12],
         [27, 28, 23, 21, 29, 30, 22, 25, 26, 24]
        ]

evaluator = Beir_Evaluator(y)
evaluator.evaluate_retrieval(y_hat)

Output
Recall@10 : 1.00
Precision@10: 1.00
NDCG@10 : 1.00
MAP@10 : 1.00
MRR@10 : 1.00

from beir.retrieval.evaluation import EvaluateRetrieval

class Beir_Evaluator():

    def __init__(self,benchmarks):
        self.benchmarks = benchmarks

    def _get_beir_format(self,results):

        return {
            str(i): {str(item): int(item) for item in sublist}
            for i, sublist in enumerate(results)
        }

    def evaluate_retrieval(self,retrieved_contexts,k_vals = [10]):
        
        actual_contexts = self._get_beir_format(self.benchmarks)
        retrieved_contexts = self._get_beir_format(retrieved_contexts)

        ndcg, map_score, recall, precision = EvaluateRetrieval.evaluate(
        actual_contexts, retrieved_contexts, k_values=k_vals
        )
        mrr = EvaluateRetrieval.evaluate_custom(actual_contexts, retrieved_contexts, k_vals, metric="mrr")

        # Print evaluation results
        for k in k_vals:
            print(f"\n{k}:")
            print(f"Recall@{k}   : {recall[f'Recall@{k}']:.2f}")
            print(f"Precision@{k}: {precision[f'P@{k}']:.2f}")
            print(f"NDCG@{k}     : {ndcg[f'NDCG@{k}']:.2f}")
            print(f"MAP@{k}      : {map_score[f'MAP@{k}']:.2f}")
            print(f"MRR@{k}      : {mrr[f'MRR@{k}']:.2f}")

Would this be a good approach and is there any benefit in creating a PR ?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants